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ABSTRACT
Fuzzy inference is a promising approach to implement risk-based
access control systems. However, its application to access con-
trol raises some novel problems that have not been yet investigated.
First, because there are many different fuzzy operations, one must
choose the fuzzy operations that best address security requirements.
Second, risk-based access control, though it improves information
flow and better addresses requirements from critical organizations,
may result in damages by malicious users before mitigating steps
are taken. Third, the scalability of a fuzzy inference-based access
control system is questionable. The time required by a fuzzy in-
ference engine to estimate risks may be quite high especially when
there are tens of parameters and hundreds of fuzzy rules. However,
an access control system may need to serve hundreds or thousands
of users. In this paper, we investigate these issues and present our
solutions or answers to them.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General—secu-
rity and protection; D.4.6 [Operating Systems]: Security and Pro-
tection—Access Controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection

General Terms
Management, Security, Standardization

Keywords
Risk, Access Control, Fuzzy Inference

1. INTRODUCTION
The inflexibility of binary decisions typically taken by current

access control systems is a major inhibitor to information shar-
ing when dealing with events in critical organizations, e.g. hospi-
tals, intelligence departments, fire departments, and military [13].
Specifically, these systems are not able to meet the requirements of
these organizations in a time-efficient manner. For example, when
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there is an emergency in a sensitive building, such as a terrorist at-
tack, professionals, such as firemen, may not receive in time the
clearance to obtain the building information. We thus need access
control systems able to grant accesses to subjects based on the as-
sessment of the current situation and possible risks, even when sub-
jects lack proper permissions. Risk-based access control systems
(RAC) have been recently proposed [13, 8] to address such a need.

The main idea of RAC is that access requests from risky sub-
jects, for example firemen without clearance, can be allowed given
that some mitigating actions, referred to aspost-obligations, will
be taken after the event in order to minimize the possibility of a
future information leak, for example, requiring the firemen to sign
non-disclosure agreements and performing a background check on
involved firemen.

Clearly, the critical step of RAC is the risk estimation of an ac-
cess request that consists of the possibility of an information leak
in the future and the value of the information. Whether an access
request should be allowed and what kind of mitigation should be
adopted purely depend on the risk estimation. Unfortunately, risk
estimation has proven to be a challenging task [20] due to various
reasons. One goal of risk estimation is to predicate thefuturepos-
sibility of information disclosure resulting from the current access.
Determining such a possibility is inherently hard.

Even worse, such an estimation has often to rely on incomplete
or imprecise information and knowledge about relevant risk factors,
e.g. subjects’ background. The lack of such information in practice
precludes approaches purely based on machine learning techniques
or probability theory, e.g. Bayesian networks. The evaluation of
the value of information, another goal of the risk estimation, has
similar difficulties.

However, we believe that a fuzzy inference system is a good
candidate to support the estimation of access risks. A fuzzy infer-
ence system, detailed in Section 2, is a mathematically sound ap-
proach [17] for inferring an unambiguous consequence from vague
evidences and subjective if-then rules. There are some good rea-
sons to support our belief.

First, we usually have good sources forsubjectiveknowledge
about risk factors and rules to estimate access risks [3]. One source
is the past experience, e.g. administrators and security managers
usually have some personal experiences1 about risk factors and
rules from best practices. Another source is collective knowledge.
It is usually the case that chief security officers, system adminis-
trators, and security researchers share high level experience and
possibly effective rules without disclosing the details. This kind of
information is sufficient for security officers to come up with their
own concrete rules based on organizational requirements. More-

1A typical requirement of a job position of security administrators
is at least 2-3 years past experience in a similar job position.
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over, this kind of subjective knowledge can be naturally translated
into the rule base in a fuzzy inference system.

Second, subjective knowledge usually contains some vague con-
cepts, e.g. if the possibility of a terrorist attack to the Pentagon is
very high and the confidence that firemen come from nearby fire
departments is high, then the risk incurred by letting these firemen
access the building map of the Pentagon is low. These vague con-
cepts, e.g. high and low, can be described naturally by carefully
defined membership functions in a fuzzy inference system.

Third, fuzzy inference systems have well-studied semantics [22]
and thousands of successful applications [24] in engineering, medicine,
management, decision support, and psychology, from space shut-
tles to home appliances. More importantly, fuzzy inference rules
can approximate arbitrary functions with unlimited accuracy [17].
This means that theactual function of access risk estimation, if ex-
isting, can always be approximated by fuzzy rules and membership
functions.

Last but not least, fuzzy inference systems are able to combining
both subjective knowledge and objective evidences. The accuracy
of fuzzy rules and membership functions can be further improved
by applying machine learning techniques once we have sufficient
objective information about access risk estimation [10, 4]. More-
over, given sufficient training samples, a fuzzy inference system,
including its membership functions and fuzzy rules, can be built
automatically to precisely match given data [21].

Unfortunately, the application of fuzzy inference systems to es-
timate access risks raises some issues. The answers to these issues
are the focus of this paper. First, as indicated by [15, 9], there are
multiple operations in each fuzzy operation category, such as con-
junctive operations and disjunctive operations in fuzzy rules, and
aggregation operations in the rule consequences. When different
operations, e.g. different conjunctions, are selected for calculating
risk factors, different risk estimations may be generated. A natural
question would be “which operation is the most appropriate one?”
We provide criteria to help users in determining the best operation.

Second, risk-based access control systems, though they may im-
prove information flow and better address requirements from criti-
cal organizations, may result in damages by malicious users before
the mitigating actions take effect. The reason is that there is often
a non-trivial time window between the accesses and the execution
of the corresponding obligations. Malicious users may take advan-
tage of this window to access pieces of valuable information. We
provide an effective method to ensure that the overall damage in
the worst case is still under control.

Third, the scalability of a fuzzy inference-based access control
system seems to be questionable. Fuzzy inference systems need
a non-trivial time to estimate risks especially when there are tens
of parameters and hundreds of fuzzy rules. However, an access
control system may need to serve hundreds or thousands of users.
Therefore a fuzzy inference-based access control system might be
too computationally expensive. In this paper, we verify the effi-
ciency of a fuzzy inference system in various combinations of dif-
ferent inference settings and difference access control settings.

The rest of this paper is organized as follows: Section 2 presents
a fuzzy BLP example and compares it with an existing Fuzzy MLS [8].
Section 3 discusses the algebraic properties of different operations
and defines measures to choose the operations. Relevant theorems
to support these choices are presented. Section 4 investigates how
to control the overall damage and proposes our solution. Section
5 investigates the scalability problem of fuzzy inference by exper-
iments. Section 6 discusses related work. Section 7 concludes the
paper and suggests a future direction.

2. MOTIVATION EXAMPLE
The recently proposed Fuzzy Multi-Level Security (Fuzzy MLS) [8]

is an example of risk-based access control systems2. Fuzzy MLS
quantifies the risk of an access request based on a sigmoid function
on the difference between a subject security label and an object se-
curity label. The larger the difference is, the higher the risk is. The
result is described as a real number in the interval[0, 1], where 1
represents an absolute deny (the highest risk), and 0 represents an
absolute permit (the lowest risk). Fuzzy MLS further divides the
interval [0, 1] into n sub-intervals between 0 and 1, referred to as
risk bands. If the risk of an access request is evaluated to a band, the
request is allowed only if the risk mitigation measures associated
with the band are applied. Mitigation measures might be obliga-
tions that require some subject to perform some operations, e.g.,
obtain confirmation from a direct manager, either before an access
authorization or after the access authorization.

In this section, we apply a fuzzy inference system to develop
a different risk-based access control example and compare these
two approaches. Both examples are based on the same risk factors,
subject security labels, and object security labels.

2.1 A Fuzzy BLP Example
Suppose that there are some documents and an automatic doc-

ument sensitivity score system. The score system, like a FICO
credit score [1], calculates a document score based on four cate-
gories of document, each of which has an upper score bound: au-
thors (300), contents (300), departments (200), intended audiences
(200). Each category contains some mandatory and optional prop-
erties that have different values. Each value has a sensitivity score
defined by security experts. The score of missing properties (no
value in that property) is ignored. Given a document, its score is
calculated by the sum of its property scores. The lowest document
score (sum of the lowest scores of mandatory property values) is
500 and the highest score is 1000.

The security labels of documents are divided into unclassified,
classified, secret, and top secret based on their scores. If we adopt
the following crisp boundary scores for security labels: 500-600
(unclassified), 601-750 (classified), 751-900 (secret), 901-1000 (top
secret), we may feel that the sensitivity of a document with score
601 (classified) might be overestimated while the sensitivity of a
document with score 600 (unclassified) is underestimated. To smooth
the transition between security labels, we can apply a trapezoidal
function

trapmf(x; a, b, c, d) = max(min(
x− a

b− a
, 1,

d− x

d− c
), 0)

and define four different membership functions for each security
label (See Figure 1).

• unclassified:uc(x) = trapmf(x; 500, 500, 550, 650)

• classified:c(x) = trapmf(x; 550, 650, 700, 800)

• secret:s(x) = trapmf(x; 700, 800, 850, 950)

• top secret:ts(x) = trapmf(x; 850, 950, 1000, 1000)

Given a document, its membership degree to a specific security
label is determined by its membership function. For instance, the
membership degrees of a document with score are 600 are: 0.5 (un-
classified), 0.5(classified), 0 (secret), and 0(top secret). Similarly,

2Even though there is a term “fuzzy” in Fuzzy MLS, the system
does not adopt any concept from fuzzy inference.
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Figure 1: Object Membership functions

the membership degree of a document with score 601 are: 0.49 (un-
classified), 0.51 (classified). We thus realize a smoother transition
between security labels.

Assuming that we have a similar subject clearance score system
and four different membership functions for subject security labels
(see Figure 2).
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Figure 2: Subject Membership functions

Suppose also that we have a percentage risk score system and
five membership functions for risk estimations, extremely low, low,
medium, high, and extremely high, determined by experts (See Fig-
ure 3).
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Figure 3: Risk Membership functions

We introduce some “if antecedentthenconsequent” rules in Ta-
ble 1 to implement a risk-based BLP system to satisfy its simple
security property. These rules determine an access risk mainly by
the object security label and secondly by the subject security label.
The interpretation of the rule with id equal to 1, for instance, is that
if the object security label is unclassified,thenthe access risk is ex-
tremely low. The interpretation of rule with id equal to 2 is thatif
the subject security label is not unclassifiedand the object security
label is classified,then the access risk is low. The last column in
Table 1 represents the weight of a rule.

The procedures to evaluate the risk for a subject with score 750
that accesses a document with score 750 is as follows:

1. Fuzzification: this step calculates the membership degrees
of the subject and the object for each different label based
on their predefined membership functions. Subject member-
ship degrees are: 0.0076 (unclassified), 0.5814 (classified),
0.5814 (secret), and 0.0076 (top secret). Document member-
ship degrees are: 0 (unclassified), 0.5 (classified), 0.5 (se-
cret), and 0 (top secret).

2. Application of fuzzy operations: this step calculates the fir-
ing degree of a rule based on the membership degrees and
logical operations in the antecedent of the rule. In this par-
ticular example, we choose theproductoperation as the con-
junction operationTp(x, y) = x · y. For instance, the confi-
dence degree of the rule with id equal to 5 is0.5814× 0.5 =
0.2907.

Table 1: BLP risk inference rules

Antecedent Consequent
ID Subject Label Object Label Risk W
1 N/A unclassified extremely low 1.0
2 not unclassified classified low 1.0
3 unclassified classified medium 1.0
4 unclassified secret high 1.0
5 classified secret high 1.0
6 secret secret low 1.0
7 top secret secret low 1.0
8 not top secret top secret extremely high 1.0
9 top secret top secret medium 1.0
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Figure 4: The surface of the risk-based BLP system

3. Application of the implication method: this step calculates
the risk estimation of a rule based on the conjunction of its
consequent, its firing degree, and its weight. For instance,
the risk estimation of the rule with id equal to 5 is0.2907 ×

mfhigh × 1, where mfhigh is the membership function for
“access risk is high”.

4. Aggregation of all outputs: this step calculates the risk esti-
mation based on the disjunction of the risk estimations of all
rules. In this particular example, we choose the “sum” oper-
ationSl as the disjunction operationSl(x, y) = min(1, x+
y). The result is a piecewise membership function, referred
as the result function of aggregationrf.

5. Defuzzification: this step generates the final risk score by
calculating the center of gravity of functionrf.

risk = centroid(rf(x)) =

∫

rf(x)xdx
∫

rf(x)dx

For this access, the final risk estimation is 38.6412.

Based on the choices of operations in the example, we obtain the
surface of the risk estimation function shown in Figure 4. We can
see that it follows the rules in Table 1.

As mentioned in the introduction, we have different choices of
fuzzy operations. If we choose the conjunction, disjunction, im-
plication method, and aggregation to bemin(x, y), max(x, y),
min(x, y), andmax(x, y), respectively, the risk surface function,
as shown in Figure 5, is different especially in some boundaries.
However, the risk surface in Figure 5 seems to follow the rules in
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Figure 5: The surface using different operations

Table 1 as well. As a more precise comparison, given an access re-
quest to a document with score 750 from a subject with score 750,
the inference system in Figure 4 estimates the risk at 38.6412, while
the inference system in Figure 5 estimates the risk at 50. Such a
non-trivial difference among risk scores results in different mitiga-
tion measures. We may want to know which score is more accurate.
The answer is 38.6412 and the reason is detailed in Section 3.1.

2.2 Comparison
Compared to Fuzzy MLS, our Fuzzy BLP example suggests a

more general and flexible approach to risk-based access control.
The crucial difference is that we provide a general methodology
to enable security officers to implement customized risk-based ac-
cess control by specifying their own fuzzy rules. These rules can
be translated from their experience in best practices. For Fuzzy
MLS, the sigmoid function is specific to a MLS system. By spec-
ifying fuzzy rules like “if the difference between security labels is
extremely high,thenthe access risk is extremely high”, we can eas-
ily generate a risk estimation function by a fuzzy inference system
that is similar to the sigmoid function applied in the Fuzzy MLS.
If we wish to implement the same system as the Fuzzy MLS, we
may train a Sugeno-type fuzzy inference system by the data gener-
ated by the Fuzzy MLS function [21]. The trained fuzzy inference
system behaves exactly the same as the Fuzzy MLS. By contrast,
without a fuzzy inference system, it is hard to construct the risk
estimation function shown in Figure 4.

3. OPERATIONS ON RISK FACTORS
In the antecedent of risk rules, three operations are required: con-

junction, disjunction, and negation. These operations are defined in
a real unit domain [0, 1] and are used to aggregate membership de-
grees of different risk factors to generate the firing degree of the
antecedent. We may consider the membership degree of a risk fac-
tor (a fuzzy set) to be a confidence degree as a member of the risk
factor, and the firing degree of a rule to be a confidence degree of
its antecedent. We thus use the term “confidence degree” to mean
both “membership degree” and “firing degree”.

These operations are usually sufficient to describe rules or rec-
ommendations from best practices. A conjunction relation between
two risk factors means that these factors in a rule should be con-
sidered all together. A disjunction relation means that considering
either of these two risk factors is fine for a rule.

A negation (¬) means that the complement of a risk factor is
applied in a rule, and thus is represented by¬x = 1 − x where
x is the confidence degree of the risk factor. Unlike conjunction

and disjunction,1− x is the only negation method widely used in
practice and thus will not be discussed again.

Given an access request, several rules might be applicable, i.e.
the confidence degrees of antecedents in these rules are not 0. Like-
wise, several different implication methods may be applied to gen-
erate the risk estimation for each rule and several different aggrega-
tion operations may be applied to generate the final risk estimation
function.

In the following sections, we investigate the algebraic proper-
ties of these operations and illustrate the connection between their
algebraic properties and the correlation between risk factors.

3.1 Conjunction
Intuitively, we expect that the conjunction (T ) of two confidence

degreesx andy of risk factors satisfies the following properties:

• The evaluation order does not matter when aggregating two
or more confidence degrees.

• The aggregationT (x, y) is non-decreasing with respect to
bothx andy.

• The value 1 (full confidence) is the identity element (T (1, x) =
x), and 0 (no confidence) is the zero element (T (x,0) = 0).
The intuition is as follows. When combining1 and another
confidence degreex, because1 means full confidence, the
combined confidence degree should simply bex. When com-
bining 0 andx, because0 means no confidence, the com-
bined confidence should be0.

These requirements are met exactly by the following definition
of t-norms.

DEFINITION 1 (TRIANGULAR NORM (T-NORM) [12]). A bi-
nary operationT in the real unit interval [0,1] is a t-norm iff

1. it is associative and commutative, i.e.∀x, y, z ∈ [0, 1],
T (T (x, y), z) = T (x, T (y, z) andT (x, y) = T (y, z);

2. it is monotonic in the first argument, i.e.∀x, y, z ∈ [0, 1], x ≤

y impliesT (x, z) ≤ T (y, z);

3. it satisfies the boundary condition, i.e.∀x ∈ [0, 1], T (1, x) =
x.

LEMMA 1. A t-normT is monotonic in the second argument,
i.e. ∀x, y, z ∈ [0, 1], x ≤ y impliesT (z, x) ≤ T (z, y). Further-
more, a t-normT satisfiesT (0, x) = 0 andT (x, y) ≤ min(x, y).

All proofs of lemmas and theorems are in the Appendix. This
lemma shows that the definition of t-norm satisfies all requirements
for conjunction listed above.

There are uncountably many t-norms [16]. Different t-norms are
desirable in different settings of risk factors. The following three
basic t-norms are of particular interest to us, because they match
some common correlations between risk factors.

• Tg(x, y) = min(x, y) (Gödel t-norm)

• Tp(x, y) = x · y (Product t-norm)

• Tl(x, y) = max(0, x+ y − 1) (Łukasiewicz t-norm)

The Gödel t-norm is useful whenx ady are the confidence es-
timates of the same risk factor, perhaps obtained by two different
methods of estimation or by two different experts/expert groups.
Taking a pessimistic view, we take the minimal of the two esti-
mates. For example, given a rule “if the object security label eval-
uated by DoD is extremely lowand the object security label eval-
uated by CIA is extremely low,then the access risk is extremely
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low”, it makes sense to choose the minimal confidence degree from
all estimates of the object in this rule. The Gödel t-norm is also the
only t-norm where eachx ∈ [0, 1] is an idempotent element, that is,
Tg(x, x) = x. This reflects the intuition that when two estimates
are the same, one takes the consensus.

The product t-norm is useful when two confidence degrees from
two risk factors are relatively independent from each other. For
instance, given a rule “if the subject security label provided by DoD
is not unclassifiedandthe object security label by CIA is classified,
then the access risk is low.” Since the estimates of these two risk
factors are based on sources that are highly independent from each
other, a product t-norm should be adopted, like a similar situation
in probability theory.This is the reason whyTp is the best choice
for the example in Section 2.1.

The product t-norm belongs to an important subclass of t-norms
called strict t-norms. Astrict t-norm is strictly increasing in both
of its arguments, that is,Tp(x1, y1) > Tp(x2, y2) if either x1 >
x2 ∧ y1 ≥ y2 or x1 ≥ x2 ∧ y1 > y2. Product t-norm, thus,
generates smoother aggregation results than the other two t-norms
do. If we have little information about the correlation between risk
factors but want to obtain smoother access decisions,Tp is the best
choice.

The Łukasiewicz t-norm is the only t-norm that satisfies the “Law
of Non-Contradiction”:Tl(¬x, x) = 0. Such a characteristic is
more useful when we need to specify a disjunction relation and
thus will be revisited in Section 3.2.

LEMMA 2. The Łukasiewicz t-norm is the pointwise smallest
t-norm in these three t-norms.

This characteristic is useful when two risk factors contribute to
the risk assessment for an object. For instance, an improper access
to a plasma-based weapon plan may represent two different values
to an adversary: the value of the existence of such a plan and the
value of its content, i.e. we lose money in both these respects. The
risk of an access to the plan, thus, depends not only on each of these
values but also on the sum of these values.

Accordingly, we may define a rule to control the access to these
kinds of plans as “if a plan’s existence value is low and the plan’s
content value is low,thenthe access risk is low”3. Because of the
two different values represented by such plans, we will expect the
t-norm to be able to better handle the case that neither of the two
confidence degrees is really low but their conjunction should be
very low. For instance, given some inputs, the confidence degree of
one value to be low is medium, e.g. 0.5, and the confidence degree
of another value to be low is medium too, e.g. 0.5. In this case, the
confidence degree of the antecedent of the rule should be extremely
low because the possibility of the sum of these two valuesnot to
be low is extremely high, i.e. this rule should be not applicable. In
this case,Tp, Tg, andTl will generate different confidence degrees:
0.25, 0.5, and 0, respectively. It is obvious that onlyTl generates
a reasonable confidence degree in this setting. The result is not
surprising becauseTl is point-wisely the smallest t-norms in these
three operations. In other words, to reach a same confidence degree
of a low risk,Tl requires higher confidence degrees of these two
risk factors.

The Łukasiewicz t-norm is an example of another important sub-
classes of t-norms, the nilpotent t-norms. Anilpotent t-normen-

sures that∀x ∈ [0, 1), ∃n ∈ N such that

n
︷ ︸︸ ︷

T (x, T (x . . . , T (x, x)) . . .) =

3This example is only used to illustrate the use ofTl, therefore we
do not use one concept to represent the sum of these two values,
which may be simpler.

0. That is, it has the following property: no matter how small a con-
fidence degree a risk factor is, when enough risk factors with the
same or even smaller confidence degrees are ANDed, the rule is no
longer applicable because the confidence degree of its antecedent
is zero.

3.2 Disjunction
Intuitively, we expect that the disjunction (S) of two risk values

x andy satisfies the following properties (only the last one differs
from the conjunction case):

• The evaluation order does not matter when aggregating two
or more confidence degrees.

• The aggregationS(x, y) is non-decreasing with respect to
bothx andy.

• The value 1 (absolutely permit) is the subsuming element
(S(1, x) = 1), and 0 (absolutely deny) is the identity element
(S(x, 0) = x).

These properties are satisfied by any t-conorm. The definition
of t-conorm is different from that of t-norm only in the boundary
condition:∀x ∈ [0, 1], S(0, x) = x. The standard way to define a
t-conorm is to use a t-norm:S(x, y) = 1−T ((1−x), (1−y)) [16,
11], and theS is referred to as theT ’s dual t-conorm. Thus, the
three dual t-conorms are:

• Sg(x, y) = max(x, y) (Gödel t-conorm)

• Sp(x, y) = x+ y − x · y (Product t-conorm)

• Sl(x, y) = min(1, x+ y) (Łukasiewicz t-conorm)

The criteria for choosing an appropriate t-conorm are exactly the
same as for t-norms. The Gödel t-conorm is useful when aggre-
gating the confidence estimates of the same risk factor. For in-
stance, given a rule “if the object security label evaluated by DoD
is extremely highor the object security label evaluated by CIA is
extremely high,then the access risk is extremely high”, it makes
sense to choose the maximal confidence degree from all estimates
of the object in this rule.

Product t-conorms can be used to calculate the disjunction of
confidence degrees of two independent risk factors. Because either
of these two factors is fine, the sum of the confidence degrees of
two factors is a reasonable choice. However the part of confidence
degree on which two independent risk factors impact together is
counted twice; therefore the product t-conorm of two confidence
degrees, referred to asx andy, should bex + y − x · y. For in-
stance, given the rule “if either a object security label is unclassified
or a subject security label is top secret,thenthe access risk is ex-
tremely low”, it makes sense to choose the product t-conorm as the
disjunction in this rule.

As we mentioned in Section 3.1, the Łukasiewicz t-norm is the
only t-norm that satisfies the “Law of Non-Contradiction”. Like-
wise, the Łukasiewicz t-conorm is the only t-conorm that satisfies
the “Law of Excluded Middle”, that is,Sl(¬x, x) = 1. It is usu-
ally the case that vague concepts do not follow the Law of Non-
Contradiction. For instance, a document with a 750 score is “sort
of” classified (0.5)and “sort of” secret (0.5); therefore, the confi-
dence degree of the document to be classified and not classified is
not zero.

However, many vague concepts still follow the law of excluded
middle. For instance, a confidence degree of a document with a 750
score to be classifiedor not classified (e.g. secret) should be 1. Nei-
ther the Gödel t-conorm or the Product t-conorm can generate this
correct answer,max(0.5, 0.5) = 0.5 and0.5 + 0.5− 0.5× 0.5 =
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0.75. Only the Łukasiewicz t-conorm can generate the correct an-
swer0.5+0.5 = 1. Therefore, the disjunction of a rule “if a object
security label is classifiedor the object security label is secret,then
the access risk is medium” should be the Łukasiewicz t-conorm.
This is the reason whySl is the best choice in Section 2.1.

3.3 Implication Operation
Given a rule “if x is A and y is B, thenz is C”, it is obvious

that different choices of implication operations, i.e. the operation
to generate the risk estimation of this rule based on its firing degree
and its consequentC, may generate different risk estimations. Two
commonly used implication operations areTg andTp. There are
some good reasons why these two operations are the most widely
applied.

In an auto cruise controller, a smooth controller makes passen-
gers more comfortable. Likewise, a smooth risk decision maker
may improve the information requesters experience because ac-
cess decisions from an absolute permit and an absolute deny are
a smooth transition.

Smoothness is a generic notion, and there are several different
understandings and formalizations of what smooth means. In math-
ematical terms, the smoothness of a function is typically formalized
as the existence of first, second, or higher order derivatives. To
compare the smoothness of different functions in our context, such
a definition is obviously not sufficient.

What we expect to be a smoothest operation is indeed a function
that minimizes the number of disturbance and/or the sum of chang-
ing rates in either the “accelerating part” or the “decelerating part”
in the output. Assume the firing degree of a rule to bex and its
consequent to be C, its implication operation can be specified by a
functionT (x,C) : [0, 1] → [0, C] whereT is a t-norm. To eval-
uate the smoothness of a function we thus introduce the following
two measures.

• the number of indifferentiable points in the function domain
[0,1], referred to asα-measure;

• the integral of the square of the second order derivative of the
function in the function domain [0,1], i.e.

∫
1

0
T ′′(x,C)2dx,

referred to asβ-measure.

The following definition specifies how to compare the smooth-
ness of two functions.

DEFINITION 2. LetTi(x,C) andTj(x,C) be two implication
operations,Ti(x,C) is smoother thanTj(x,C) iff

• theα-measure ofTi(x,C) is smaller, OR

• theα-measure ofTi(x,C) equals that ofTj(x,C) and the
β-measure ofTi(x,C) is smaller.

THEOREM 1. Tp is the smoothest t-norm among all continuous
t-norms.

Based on this theorem, if we expect to obtain smooth access de-
cisions between different risk estimations, we should chooseTp as
the implication operation.

In a highly sensitive context, like for example in the case of CIA
or FBI information, if something bad happens, we may want to take
mitigating actions as quickly as possible. One way to achieve this
goal is using adaptive fuzzy rules that take mitigation measures as
the input of some risk factors and enforcing these rules as quickly
as possible. The choice of implication operations can make a dif-
ference here. Because all t-norms are monotonic, to compare the
quickness of different functions when enforcing a rule, we only

need to introduce a new measure,γ-measure, which counts the
minimal distanced of an implication functionT (x,C) such that
d = x′

− 0 andT (x′, C) = C, i.e. how quick an implication can
generate (enforce) a full fire degree of its consequent. If thedx of
Tx is less thandy of Ty, we say thatTx is quicker thanTy.

THEOREM 2. Tg is the quickest t-norm among all continuous
t-norms.

Based on this theorem, to quickly enforce some rules, e.g. emer-
gency rules, we should chooseTg as the implication operation.

3.4 Aggregation
To generate the final risk estimation, we need to aggregate risk

estimations from fired rules. Since each “IF THEN” rule only spec-
ifies a risk estimation based on certain risk factors, it is unsurprising
that t-conorms (disjunctions) are used to aggregate risk estimations.
Likewise, the choice of aggregation operations depends on the cor-
relation between different rules. Different t-conormsSg, Sl, and
Sp can be applied to different situations.

Essentially, there is no difference between the aggregation of dif-
ferent rules and the disjunction used in the antecedent of a rule. A
rule with a disjunction operation in its antecedent can be specified
by two different rule. The example in Section 3.2, “if either a ob-
ject security label is unclassifiedor a subject security label is top
secret,thenthe access risk is extremely low”, can be specified us-
ing two rules: “if a object security label is unclassified,thenthe risk
is extremely low” and “if a subject security label is top secret,then
the risk is extremely low”. Obviously,Sl should be applied here to
aggregate their risk estimation.

Therefore, the criteria discussed in Section 3.2 can be applied
here to choose the best aggregation operation. If the relation is not
clear, we may choose the best operation based on the requirement
on the tolerance to inaccuracy inputs.

3.5 Discussion
One common situation in the applications of fuzzy inference

systems, e.g. fuzzy control, is the choice of the fuzzy operation,
e.g.Tp, Tl, or Tg. Such choice is somewhat arbitrary and, once
selected, the chosen operation is applied to all rules. Since our
objective is the best accuracy of risk estimation, we donot sug-
gest using one type of conjunction, disjunction, implication, and
aggregation for all rules. Instead, we suggest the following steps to
choose the most appropriate operations in a fuzzy inference-based
access control system.

1. Choose the best operations based on the correlation of risk
factors, e.g., if two risk factors are independent to each other,
Tp andSp should apply.

2. Choose the best operations that meet desired properties for
risk factors without clear correlations, e.g., if we prepare to
quickly enforce emergency rules, we may chooseTg as the
implication operation.

3. Choose the operations that require the least computation, i.e.
Tp andSp, if we do not have any special requirement. In
some proposals [17],Tg andSg were considered to be the
cheapest one. However, based on our experimental results
in Section 5.2,Tp andSp are the cheapest one in a modern
CPU like Intel Core 2 Duo.

4. CONTROLLING THE DAMAGE
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There is one issue that exists in traditional access control sys-
tems but becomes more serious in risk-based access control sys-
tems. The issue is how to limit the damage caused by malicious
users to a controllable scope, i.e. within an upper bound. Examples
of potentially malicious users include employees who are going to
be fired and may sabotage valuable resources, employees who are
bribed by competitors, accounts that are hacked by intruders.

As mentioned in the introduction, the goal of risk-based access
control is to maximize the flow of information provided that the
total risk is kept under a certain level. When information flow is
maximized, it is important that some post-access mitigation, e.g.
post-obligations or audits that only enable administrators to take an
action after accesses, are adopted. Generally speaking, a risk-based
access control system provides more access opportunities for users
than a traditional access control system does under same or sim-
ilar situations. However, such a benefit has some cost. There is
a non-trivial time window between accesses and the execution of
post-obligations. This means that malicious users may possibly de-
stroy or stole much more sensitive information during such a time
window in a risk-based access control system than in a traditional
access control system. Such a situation can arise in all risk-based
access control systems, including the fuzzy inference-based solu-
tion described in this paper. In this section we propose a general
approach to solve the problem. We also discuss how to implement
the approach in a fuzzy inference-based system.

4.1 The Access Quota
Risk-based access control systems, when they are in operation,

are somewhat similar to credit card systems. Users who are eval-
uated to be less risky can access information (buy anything using
their credit cards) first and then fulfill obligations required by the
access in time (pay their credit card balance in time). Therefore,
it is natural for us to introduce a solution that is similar to a credit
card system.

The solution introduces a new concept: the access quota that
defines a number of access tokens. An access token is similar to a
cent in a credit limit. There are two different types of access quotas:
the access quota for users and the access quota for obligations. The
access quota for users is the number of access tokens predefined
for each user, similar to the credit limit for each credit card user.
The number of token for a user is determined by security experts
based on the background information about the user. Similarly, the
number of tokens for an obligation is defined by security experts
based on the importance or sensitivity of the obligation. The access
quota for an obligation is similar to the price of a merchandise.

We donot define the access quota for any particular object be-
cause we believe that the access quota for obligations works better
for our purpose. The access risk for an object depends on many
factors including subjects and context. The access quota for an ob-
ject may be different for different subjects and for different context
factors. Therefore, there is no single number that can best describe
the exact quota for a particular object. By contrast, each obligation
is comparatively much simpler; the importance of each obligation
is thus easier for experts to evaluate. The set of obligations required
by each access are determined purely by the risk estimation of an
access request; therefore, the sum of the access quotas of the obli-
gations probably is the best way to describe the the access quota of
the object in the access request.

The high-level idea of our solution to control the overall damage
in a risk-based access control system is as follows (see Figure 6):

• All current access tokens of subjects are recorded in a track-
ing table of access tokens.

• Given an access request, the number of available access to-
kens of the subject of the access is verified after a risk esti-
mation stage. If the number of available access tokens is less
than the sum of the access quotas of the obligations required
by the risk estimation, the access will be denied.

• If an access request is allowed, the tracking table is updated
as follows: the access tokens of the subject of the access are
subtracted by the sum of the access quotas of the obligations
required by the access.

• If an obligation has been fulfilled, the tracking table is up-
dated as follows: the access tokens of the subject of the ac-
cess that is relevant to the obligation are added by the access
quota of the obligation.

The quotas for both users and obligations depend on applica-
tions and may vary. In some implementations, we may further set
day, week, or month quotas for users or may assign quotas for obli-
gations by some more complicated equations to realize the fine-
grained control of quotas. Even though a real system based on our
approach could be fairly complicated, if we assume that the maxi-
mum quota for users isα, the minimum quota for obligations isβ,
and the most valuable object costsγ, we have the following theo-
rem to prove the effectiveness of our approach.

THEOREM 3. If each risky access requires at least one obliga-
tion to be fulfilled, the potential damage resulting from any mali-
cious user at any particular time has an upper boundαγ/β.

The assumption of this theorem is reasonable and fairly easy to
be met in practice.

4.2 A Fuzzy Inference-based Solution
The solution introduced in the previous section obviously works

for a fuzzy inference-based access control system as well. How-
ever, a more efficient solution can be devised based on the same
idea in a fuzzy inference based system. The cost of such a solution
is a slightly higher overall damage in the worst case.

The solution, referred to as Fuzzy Solution, is as follows:

• We introduce a new membership functionTokenCheck(s)
wheres is a subject such that

TokenCheck(s) =

{

0 if t(s) ≤ δ

1 if t(s) > δ

wheret(s) returns the current number of tokens of subject
s andδ is a predefined threshold for a minimal number of
required tokens.δ might be zero, the minimal quota of obli-
gations, or the maximal quota of obligations.

• The body of each fuzzy inference rule is ANDed with the
TokenCheck(s) membership function. Such a step ensures
that when the current number of tokens of the subject is be-
low the thresholdδ, all fuzzy inference rules become not ap-
plicable. A default deny will be returned in this situation.

If we adopt the same assumption of Theorem 3, then we have the
following lemma about the Fuzzy Solution.

LEMMA 3. If each risky access requires at least one obligation
to be fulfilled, the potential damage resulting from any malicious
user at any particular time based on a Fuzzy Solution has an upper
bound(α/β + 1)γ.
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Figure 6: A General Method to Control the Overall Damage

Due to the expressiveness of membership functions and fuzzy
rules, we may implement more flexible policies to control the over-
all damage. One case would be a better solution to control the
overall damage resulting from high level managers who typically
own much large access quotas. The solution is based on a limita-
tion on the hourly token changing rate of a subject, i.e. no subject
can spend too many access tokens within one hour.4

Such a solution only requires a new table to record the update
history of access tokens, and a new membership functionTokenRate(s)
to calculate an access token hourly changing rate based the ta-
ble and compare the rate with a thresholdθ. TokenRate(s) re-
turns 0 if the rate is larger thanθ and returns 1 otherwise. The
TokenRate(s) will be ANDed with all fuzzy rules to enforce this
policy.

5. THE EFFICIENCY OF INFERENCE
There are various successful applications of fuzzy inference in

engineering fields, such as the attitude control system of space shut-
tles [7] or the automatic focus systems of digital cameras [18]. Tens
of parameters and hundreds of inference rules are usually sufficient
for these applications. For instance, in the attitude control system,
only three parameters and tens of rules are applied [7]. Therefore,
the computation overhead is very small.

Because of the high expressiveness of fuzzy rules and member-
ship functions, we believe that tens of parameters and hundreds
of inference rules are also sufficient for majority risk-based access
control systems. However, there is one crucial difference here. An
access control system may provide services for tens, hundreds, or
thousands users simultaneously, but a fuzzy controller is typically
used to control one object’s action, e.g. an instrument or a vehicle.
Therefore, the computation requirement of the fuzzy inference may
be a problem for a fuzzy inference based access control system in
practice. In this section, we investigate this problem and present
our answer to this important question based on experiments.

5.1 The Experiment Settings
Our objective is to verify whether the fuzzy inference is scal-

able enough for applications in risk based access control systems.
Therefore, the required experimental data, including membership
functions (and their parameters) and fuzzy inference rules, and in-
puts, are generated randomly5 because we do not need to consider
the rationale of these membership functions and inference rules.
We are only concerned with their computation overhead.

4Perhaps a different time range could be better for some sensitive
contexts. The hourly token changing rate is only used for an illus-
tration purpose.
5The data generation cannot be purely random, for instance, it is
highly possible that a random membership function is not valid due
to illegal parameters.

As we can see from Section 2.1, the efficiency of a fuzzy infer-
ence system depends on the following factors:

• The scale of the inputs (risk factors).

• The scale of the inference rules (the knowledge of risk esti-
mation).

• The complexity of the membership functions (the fuzzifica-
tion of concepts).

• The complexity of the defuzzification methods.

• The complexity of the inference functions, e.g. the fuzzy op-
erations in the rule body, the implication, and the aggregation
of consequences.

• The complexity of the integral process. This is a hidden fac-
tor for the complexity of the fuzzy inference. The more ac-
curate the integral result is, the high computation cost it re-
quires.

To obtain a clear picture of the efficiency of a fuzzy inference
system and investigate the relation between the efficiency and afore-
mentioned factors, we first choose a typical setting of a fuzzy in-
ference system for access control and then adjust each factor indi-
vidually to obtain the results. The typical setting, which we believe
meets most of the access control requirements, is as follows:

• Number of risk factors: 200.

• Number of inference rules: 3000.

• The conjunction, disjunction, implication, and aggregation
areTp, Sp, Tp, andSp, respectively.

• Fuzzification method: the Gaussian curve function

f(x;σ, c) = e

−(x− c)2

2σ2

• Defuzzification method: the centroid function.

The fuzzy inference system has been implemented using C Lan-
guage and runs on a PC with Core 2 Duo 3.2GHz and 3GB Mem-
ory.

5.2 Experimental Results
The first experiment verifies the scalability of a fuzzy inference

system based on the typical setting. We randomly generate differ-
ent sets of access requests. The set size is in the range [200, 25600],
and the total response time for each set is shown in a log-log graph
(see Figure 7). It is unsurprising to see that the response time is lin-
ear in the size of request sets. Given the facts that 1600 requests and
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3200 requests require 14.37s and 29.5s, respectively, to compute, it
is safe to say that the computation power of modern computers is
sufficient to execute fuzzy inference-based access control systems
for a typical setting. In the following experiments, the number of
access requests will be set to 800 if not otherwise specified.
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Figure 7: The scalability of fuzzy inference

The second experiment verifies the impact of the scale of risk
factors and the result is shown in Figure 8. As we can see from
Figure 8, the response time is unsurprisingly linear in the number
of risk factors, which is good for our approach. More importantly,
given 800 risk factors, a response time of 24s for 800 access re-
quests is definitely sufficient for an access control system. Each
access request only requires 0.03s to obtain a response.
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Figure 8: The impact of the number of risk factors

The third experiment verifies the impact of the scale of fuzzy
rules, and the result is shown in Figure 9. The response time is
linear in the number of fuzzy rules, which is reasonable. It is inter-
esting to see that the impact of the risk factor scale is slightly more
obviously than that of the fuzzy rule scale. Given 8000 fuzzy rules,
a response time of 19s for 800 access requests is more than enough
for an access control system.
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Figure 9: The impact of the number of fuzzy rules

The fourth experiment verifies the impact of different fuzzifica-
tion methods (membership functions), and the result is shown in
Figure 10. The membership functions in the figure are described as
follows:

• dsigmf: a function composed of difference between two sig-
moidal functions;

• gauss2mf: a Gaussian combination function;

• gaussmf: a Gaussian curve function;

• gbellmf: a generalized bell-shaped function;

• pimf: aπ-shaped function;

• smf: a S-shaped function;

• trapmf: a trapezoidal-shaped function;

• trimf: a triangular-shaped function.

As expected, different fuzzification methods do result in quite dif-
ferent response times from 42.5s (gbellmf) to 4.65s (trimf). For-
tunately, the most widely used Gaussian curve function (gaussmf)
results in a reasonable response time of 7.21s. In practice, “cheap”
functions may be applied in the situation in which a quick response
is important or there are many concurrent access requests.
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Figure 10: The impact of membership functions

The fifth experiment verifies the impact of different defuzzifica-
tion methods, and the result is shown in Figure 11. The defuzzifi-
cation functions in the figure are described as follows:

• centroid: the centroid of area;

• bisector: the bisector of area;

• mom: the mean value of maximum;

• som: the smallest (absolute) value of maximum;

• lom: the largest (absolute) value of maximum.

Because both centroid and bisector require the inference system
to calculate the integral of the aggregated consequence function,
one would expect that both centroid and bisection result in a longer
response time. However, all defuzzification methods show a similar
performance. The reason why their results are similar is explained
in next experiment. Because of similar computational complexity
requirements, we are free to choose a defuzzification method that
best serve our problem. Usually it is the centroid function.
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Figure 11: The impact of defuzzification methods

The implementation of defuzzification functions is based on sam-
ple points. There is no real integral process, and the integral is cal-
culated by the sum of the sample interval multiplied by the function
value at each sample point. Therefore, the computation complex-
ities of different defuzzification functions are similar. The default
size of sample points is 101. The sample size might greatly affect
the response time. To investigate the impact of the sample size,
we conduct an experiment. The result is shown in Figure 12. We
can clearly see that the sample size has little effect on the response
times because the cost of computing 10001 sample points is still
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Figure 12: The impact of the size of sample points

dominated by the cost of other steps in the fuzzy inference. Such a
result is good for our approach.

The last experiment focuses on the impact of different t-norms
and their dual t-conorms in fuzzy inference. To see their difference,
we decide that if a t-norm is chosen for the fuzzy conjunction, then
the fuzzy disjunction, the implication, and the aggregation are its t-
conorm, the t-norm, and its t-conorm, respectively. The experiment
result is shown in Figure 13. In the literature of fuzzy inference,Tg

andSg were recognized as the cheapest fuzzy operations. The re-
sult shows thatTp andSp are the cheapest one. The result also
reveals a fact that a float computation is much cheaper than a com-
parison operation in a modern CPU.
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Figure 13: The impact of t-norms

6. RELATED WORK
We have already compared our work with the Fuzzy MLS system

in Section 2.2. Therefore, in this section, we compare our work
with relevant work in fuzzy logics and fuzzy control.

T-norms play a key role in all applications of fuzzy inferences;
thus the construction and classification of t-norms is an important
topic in fuzzy systems. Jenei et al. [15, 14] and Maes et al. [19]
propose various different ways to construct t-norms based on their
classification and algebraic properties. These proposals, though
they are purely based some mathematical properties and have lit-
tle connection with real applications, compliment our approach.

Properties of fuzzy operations have been investigated in fuzzy
control in terms of stability [6] and in recommendation systems in
terms of similarity [23]. Because their purpose is different from
ours, these proposals adopt different measures to evaluate differ-
ent operations. One property mentioned in this paper, that is, the
smoothness, has been investigated in fuzzy control [5]. However,
the distinct feature of smoothness in fuzzy control approaches is
that these approaches have to reduce the oscillation before the out-
put reaches its intended value when measuring these properties.
Therefore, these approaches adopt different measures from ours,
even if the meaning of smoothness is similar.

There are plenty of proposals on risk analysis, vulnerability as-
sessment, threats and asset evaluation [3]. These proposals may
help security officers to build membership functions and inference
rules. The work reported in this paper complements these propos-
als by providing a sound approach that is able to translate these
analysis results into executable actions and rules.

7. CONCLUSION

In this paper, we show that fuzzy inference is a good approach
for estimating access risks. Specific problems concerning the ap-
plication of fuzzy inference to access control are investigated and
solved. In particular, the correctness of the solutions given in this
paper are provable. In the future, we plan to apply our approach to
database systems and investigate an approach to enable the database
query engine to estimate query risks.
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APPENDIX

A. PROOFS

PROOFLEMMA 1. By the definition of t-norm, we have that
x ≤ y implies T (x, z) ≤ T (y, z). Because t-norms is commu-
tative, we have thatT (x, z) = T (z, x) andT (y, z) = T (z, y).
Therefore,T (z, x) ≤ T (z, y).

x ≤ 1 implies T (0, x) ≤ T (0, 1) = T (1, 0) = 0. Thus
T (0, x) = 0.

T (x, y) ≤ T (1, y) = y andT (x, y) ≤ T (x, 1) = x. Thus
T (x, y) ≤ min(x, y).

PROOFLEMMA 2. Based on Lemma 1,Tl is pointwisely smaller
thanTg, i.e.min(x, y).

Sincex, y ∈ [0, 1], we have that(1−x)(1−y) ≥ 0, i.e.x ·y ≥

x+y−1. Becausex ·y ≥ 0, Tl is pointwisely smaller thanTp.

PROOFTHEOREM1. Tp is continuous, therefore theα-measure
of Tp is zero.

T ′

p(x,C) = C, andT ′′

p (x,C) = 0, therefore theβ-measure of
Tp is zero.

PROOFTHEOREM2. It is obvious thatd = C for Tg because
Tg(C,C) = C andTg(x,C) < C for anyx < C. For any other
T , T (C,C) ≤ Tg(C,C) = C. Based on Lemma 1 andT is
monotonic, we haveT (x′, C) = C iff x′ ≥ C.

PROOFTHEOREM3. At any particular time, a user must have at
mostα tokens. The user in turn must have at mostα/β suspending
obligations, that is, obligations should be fulfilled but have not been
fulfilled. Such a situation means that the user can only have at most
α/β access requests given his access quotaα. Therefore, the upper
bound of the damages isα/β × γ = αγ/β.

PROOFLEMMA 3. The worst case in the Fuzzy Solution is that
the thresholdδ is zero. Such a situation means that even if the
number of tokens of a user is not sufficient for an access request,
it is still possible that the access is allowed. After the access, the
number of tokens of the user become negative and the user cannot
access any other resources before fulfilling his obligations. There-
fore, the user can have at mostα/β + 1 accesses. Thus, the upper
bound of his damages is(α/β + 1)γ
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