
Scanner Hunter: Understanding HTTP Scanning Traffic

Guowu Xie, Huy Hang
Department of Computer Science
University of California, Riverside

Riverside, California, United States
{xieg, hangh}@cs.ucr.edu

Michalis Faloutsos
Department of Computer Science

University of New Mexico, Albuquerque
Albuquerque, New Mexico, United States

michalis@cs.unm.edu

ABSTRACT

This paper focuses on detecting and studying HTTP scan-
ners, which are malicious entities that explore a website
selectively for “opportunities” that can potentially be used
for subsequent intrusion attempts. Interestingly, there is
practically no prior work on the detection of these entities,
which are different from web crawlers or machines perform-
ing network-level reconnaissance activities such as port scan-
ning. Detecting HTTP scanners is challenging as they are
stealthy and often only probe a few key places on a web-
site, so finding them is a needle-in-the-haystack problem.
At the same time, they pose serious risk because they per-
form the first, exploratory step to provide the seed infor-
mation that may allow hackers to compromise a website.
Our work makes two main contributions. First, we pro-
pose Scanner Hunter, arguably the first method to detect
HTTP scanners efficiently. The novelty and success of the
method lies in the use of community structure, in an ap-
propriately constructed bipartite graph, in order to expose
groups of HTTP scanners. The rationale is that the aggre-
gated behavior makes identifying groups of scanners easier
than attempting to profile and label IP addresses individu-
ally. Scanner Hunter achieves an impressive 96.5% detection
precision, which is roughly twice as high as the precision of
the Machine Learning-based methods that we use as ref-
erence. Second, we provide an extensive study of HTTP
scanners in an effort to understand: (a) their spatial and
temporal properties, (b) the techniques and tools used by
the scanners, and (c) the types of resources they are look-
ing for, which can provides hints as to what the subsequent
penetration attempt may target. We use six months worth
of web traffic logs collected in 2012 from a University cam-
pus, the websites hosted by which received over 1.9 billion
requests from 12.8 million IPs. We found that the number of
HTTP scanners is non-trivial with roughly 4,000 IPs engag-
ing in this type of activity per week. Our work will hopefully
raise the awareness of the community regarding this prob-
lem while at the same time provide a promising detection

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS’14, June 4–6, 2014, Kyoto, Japan.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2800-5/14/06 ...$15.00.

http://dx.doi.org/10.1145/2590296.2590297.

technique that can provide the basis for mitigating the risk
posed by HTTP scanners.

Categories and Subject Descriptors

J.0 [Computer Applications]: General

Keywords

HTTP scanning, HTTP scanner, scanning traffic, web secu-
rity, detection, vulnerability

1. INTRODUCTION
HTTP scanning is a fascinating and lesser known activity

with which hackers aim to discover the security weaknesses
of websites as a precursor to an actual penetration attempt.
Specifically, in HTTP scanning, malicious entities probe a
website for particular resources that seem promising for ex-
ploits or contain sensitive information that could reveal its
structure and its underlying technology. These resources can
be files with security-sensitive information, files containing
passwords, zipped archives of the entire websites, or web
interfaces for authorized users such as phpmyadmin.php.

The amount of requests sent by scanners is small com-
pared to the traffic the websites received because they only
probe for very specific files. At the same time, the risk
that scanners pose is high. For example, an intrusion at-
tempt that seems to have been enabled by HTTP scanning
was carried out by the hacktivist group NullCrew [1]. The
group broke into a Department of Homeland Security web-
site after identifying files that should have been invisible to
the general public.

The motivation for our work is the little attention that
the problem has received so far and the ever-increasing im-
portance of website security. First, there is currently no ex-
isting solution for this problem. Second, scanning is a first
exploratory step towards compromising a website. Third,
having a clear understanding of scanning behaviors could
help administrators secure their websites and provide assis-
tance during forensics analysis. Fourth, understanding what
scanners are looking for can reveal what are the preferred
vulnerabilities. Finally, understanding the spatiotemporal
dynamics of these scanners can provide insights into the
ecosystem that enables them.

The focus of this work is on the problem of HTTP scan-
ning and our goal is to detect and understand the behavior
of HTTP scanners. Ideally, a solution to this problem takes
in as input web traffic logs that record all HTTP requests
sent by external IPs and produces as the desired output a

27

list of IPs that potentially engaged in HTTP scanning ac-
tivities. For such a solution to be useful, it should be able
to accomplish its task with minimal false alarms. This is a
challenging problem for the following reasons: (a) scanners
usually generate few requests, (b) it is not easy to distin-
guish between a scanner and a legitimate web user, and (c)
the number of scanners is significantly smaller than the num-
ber of legitimate users, leading to a needle-in-the-haystack
problem. We substantiate and quantify all these claims in
later sections.

Surprisingly, this problem has attracted very little atten-
tion from the research community. In fact, ours is arguably
the first work focusing on this problem, as we discuss in
section 5. At the same time, it is equally important to clar-
ify what we are not doing. Detecting HTTP scanners is
different from identifying: (a) web crawlers, which collect in-
formation from the entire website for intelligence purposes
(for instance, a retailer may want to know about the pricing
offered by a competitor to adjust the prices of its own prod-
ucts), (b) network-level scanners such as IP or port scanners
that try to discover vulnerable services running on specific
ports of machines in the network, and (c) web application
penetration attempts, which is the step following a success-
ful HTTP scan, In section 5, we present related work in
these areas, and discuss how the problems they aim to solve
are different from the one we focus on.

As our main contribution, we present Scanner Hunter, ar-
guably the most effective method to detect HTTP scanners,
and study scanners and their behaviors over six months. The
key novelty of Scanner Hunter is that it is a graph-based ap-
proach that detects HTTP scanners by focusing on the col-
lective actions of scanners, who search for similar resources.
In addition, we provide an extensive study of HTTP scan-
ning activities over a six-month period to understand their
scanning patterns and their spatiotemporal behavior. We
use real web-logs collected from a University campus from
March 2012 to September 2012 with over 1.9 billion HTTP
requests from 12.8 million external IPs.

Note that, to enable further research in this novel direc-
tion, we will share with the research community the access
logs from the HTTP scanners we have detected (with the IP
addresses appropriately anonymized). Interested researchers
may contact us for more information.

1. Scanner Hunter detects scanners with 96.5%
precision. Our approach identifies malicious communities
of IPs in an appropriately constructed bipartite graph that
captures the interactions between two sets of entities: the
IPs that generate HTTP requests and the resources1 they
have requested. Using a soft co-clustering technique, our
approach identifies groups of IPs with similar requests. It
then uses a labeling step that separates groups that engage
in scanning from those of benign users. The use of clustering
techniques on the graph makes the detection more accurate:
scanning behaviors are easier to recognize for a group of
IPs than for individual ones, especially since scanners are
often stealthy. As a proof of concept, we conducted experi-
ments with simple heuristics and standard Machine Learning
techniques and observe that they only achieved 19.1% and
54.3% precision respectively, compared to 96.5% for Scan-
ner Hunter. Even though a false positive rate of 3-4% may

1A resource in this context is a file of any type and the
full path leading to it. For example, /phpmyadmin/scripts/
inc.php.

seem high, we want to stress that detecting scanners from
millions of users at such a high precision is not trivial. We
provide more details about the experiments in section 3

2. HTTP scanning is widespread: about 4,000
scanners per week for a medium-sized University
network. We conducted an extensive study on scanning
activities for a period of six months to understand: (a) their
spatial and temporal properties, (b) their mechanisms and
the effort to evade detection, and (c) what they are looking
for. We highlight the most interesting observations.

a. Intensity: Roughly 4,000 unique IPs scan at least one
website hosted by the University every week. At the same
time, 80% of the IPs that appear every week have never been
seen before.

b. Spatial distribution: Scanners are widely distributed
across the IP space, which suggests that the IP prefix-based
blocking of scanning activities would require a large and
fine-grained filter set.

c. Complacency: Scanners do not seem afraid of getting
caught, as they appear complacent and sloppy. For example,
more than one third of the scanners used an unusual User-
Agent in their requests and this User-Agent is mozilla/4.0,
which, as we will show in section 4, is not a legitimate User-
Agent.

d. Categories of scanners: We identify four major cat-
egories of scanners based on the resources they look for: (i)
user registration and login pages, (ii) website management
interfaces, (iii) pages with potential vulnerabilities that may
allow activities like remote code execution, and (iv) com-
pressed web archives such as wwwroot.zip, which are the
products of website backup activities and should not be pub-
licly visible.

Scope and intended use. Scanner Hunter is not meant
to be: (i) a tool that can perform the same duties of an
Intrusion Detection System, or (ii) a real-time solution for
scanner detection.

Regarding (i), Scanner Hunter is an intelligence-gathering
and advisory tool that can give the administrator a view into
the malicious entities that are scoping out the website and
the kinds of vulnerabilities that they are looking for. This
knowledge can guide the administrator to take protective
measures, as we discuss at the end of section 4.3.

Regarding (ii), real-time detection of scanners is inher-
ently difficult. On the one hand, the labeling of an individ-
ual IP, especially one with few HTTP requests, is not easy
given the wide variations in the behaviors of scanners as well
as in the behaviors of legitimate users themselves. On the
other hand, if we resort to traffic aggregation to obtain a
more complete picture of behavior, like our approach does,
we end up having to collect data over a sufficiently long win-
dow of observation. We discuss and substantiate this issue
throughout the paper.

2. METHODOLOGY
In this section, we first provide some definitions and back-

ground and then present our method, Scanner Hunter.

2.1 Definitions and background
There are several types of HTTP requests, as one re-

quest can be a POST, a GET, a HEAD, or others. In this work,
we are only interested in POSTs and GETs for simplicity. A
POST request sends information to the target website (e.g.
filling an online form) and a GET request retrieves informa-

28

tion from the website. When a remote web server receives
a HTTP request, the server will process it and return a re-
sponse along with a response code that indicates whether
the request succeeded.

A failed HTTP request is indicated by response code 40X,
where X is a single-digit number. For instance, the response
code 404 indicates that the resource does not exist and 403

says that the server is refusing to return the requested re-
source [2]. Here, we refer to requests that trigger a response
with code 40X as failed HTTP requests, and the others, suc-
cessful HTTP requests.

A User-Agent is a string contained in the User-Agent field
of an HTTP request that provides some description about
the application that generates the request. A typical value
is the name of a web browser with version information.

The resource requested by an HTTP request (example.
com/inc/login.php?user=admin) usually has four separate
components: a domain name (example.com), a directory
name (/inc/) that contains the file sought by an HTTP
request, the name of the file (login.php), and a set of pa-
rameters (user=admin) that may alter the server’s response.
We define a Re-Path, which stands for Resource-Path, to
be the portion of an URL that contains both the directory
path and the name of the file. For example, the Re-Path in
the example is /inc/login.php.

Although we have already defined HTTP scanners, here
we want to highlight some interesting behaviors that we will
exploit in detecting them. Note that these behaviors on
their own are not sufficient without the additional techniques
of our method, as we will show in section 3. Recall that
scanners explore a website in a targeted fashion and their
probing is a preparation for a subsequent exploitation. The
behavior of scanners exhibits the following characteristics:

• Because scanners blindly look for resources of interest,
many of their HTTP requests will fail.

• They do not request or even download embedded ob-
jects that are unlikely to lead to exploits like JPEG
images.

Benign crawlers are automated programs chiefly used
by search engines to index the Web. They are different
from HTTP scanners in that they follow existing links in-
stead of searching for resources that may not exist, b) they
state what they are in the User-Agent field (e.g. Google-
bot, Yahoo! Slurp, etc), c) the IP of the machine running
the crawler program is usually registered by the company
it belongs to, and d) they would (optionally) request the
robots.txt file from the website that contains instructions
as to where they’re allowed to crawl.

A stealthy crawler is similar to a benign crawler in be-
havior except that it customizes its User-Agent field to make
it look like their HTTP requests come from a regular web
browser. There already exists work devoted to the detection
of stealthy crawlers [3], and it is not a focus for our work.

2.2 Methodology
To identify HTTP scanners, there are four main steps,

which Scanner Hunter executes as follows.
1. Preprocessing: Scanner Hunter processes the web

traffic logs to filter out requests unlikely to be from
HTTP scanners.

2. Bipartite graph construction: Scanner Hunter cap-
tures the suspicious HTTP requests in a bipartite graph

Web traffic log

Successful
HTTP

Other
Failed HTTP

Failed HTTP
by Crawlers

(2) Constructing Bipartite Graph

（3）Clustering Bipartite Graph

（4）Labeling Bipartite Clusters

(1) Preprocessing traffic log

Figure 1: Scanner Hunter’s main operations.

where one set of vertices correspond to IPs and the
other to the Re-Paths they requested.

3. Co-clustering: Scanner Hunter uses a soft co-clustering
algorithm to group the IPs into communities where IPs
in the same community have similar behaviors.

4. Community labeling: Scanner Hunter inspects each
community output from previous step and label each
of them as a community of users or scanners.

We now describe the operation and rationale of each step
in detail. At the end, we will also explain why each step
is necessary for achieving high precision in identifying scan-
ners.

1. Preprocessing: Given web traffic logs as inputs,
which may be collected by passively monitoring HTTP traf-
fic or collected from web server logs (like Apache log files),
Scanner Hunter reads in all HTTP requests from the logs
and separate them into three different categories: success-
ful HTTP requests, failed HTTP requests generated by web
crawlers, and other failed HTTP requests. As their names
suggest, the first category contains only successful HTTP
requests, the second failed HTTP requests generated by
known and benign web crawlers, and the third all other
failed HTTP requests.

There are several reasons for including this step. First,
popular websites receive an extremely high number of HTTP
requests each day and processing all of them would consume
a lot of time and resources. Second, we have seen from man-
ual inspection that most scanners produce a large number of
failed requests, which contain enough information for Scan-
ner Hunter to identify the scanners.

In addition, we filter out requests that were followed by
server-side errors and failed requests that may come from be-
nign crawlers because they may generate them in the process
of following all possible links whether they may be broken
or not. The same crawlers may frequently re-check the web
pages they have indexed before even after those same web

29

pages have been removed. This means that crawlers exhibit
similar behaviors to those of scanners and by removing the
requests generated by legitimate crawlers, Scanner Hunter
avoids mistaking the activities of benign crawlers for those
of scanners and achieves higher accuracy. To this end, we
first attempt to detect the presence of well known and be-
nign web crawlers in the data according to the properties we
mentioned in Section 2.1. Although there exist methods to
detect web crawlers, as it is a well-studied problem [3], here
we find it sufficient to label an IP as a benign crawler if two
conditions are met:

C1: The User-Agent fields of its requests indicate that the
application that generated the requests is a benign crawler
(Googlebot, Yahoo! Slurp, etc.) and the IP has requested
the file robots.txt.

C2: The information collected from reverse-DNS lookup
of the IP indicates that the IP belongs to the organizations
that User-Agent claims it is.

2. Bipartite graph construction: In this step, Scan-
ner Hunter constructs a weighted undirected bipartite graph
G = 〈I, P,E〉 where I is the set of IPs that produced the
failed HTTP requests, P the set of Re-Paths that the IPs
requested unsuccessfully, and E the set of edges. An edge
e ∈ E between IP i ∈ I and Re-Path p ∈ P if and only if
IP i requested the Re-Path p but failed to access it during
the monitoring interval. We assigned a uniform weight of 1
to all edges in the graph. Note that we did experiment with
several other weight-assigning schemes (such as one where
the weight of an edge is the number of times the IP requested
the Re-Path) but we observed that the uniform weight al-
lows Scanner Hunter to achieve the highest accuracy.

3. Co-clustering: Given the bipartite graph G gener-
ated in the previous step, Scanner Hunter uses a soft clus-
tering algorithm2 to partition G into a set of communities
C = {c1, c2, ... cn}. We adapted and used an algorithm in-
spired by Phantom [4], which we tailored to our problem.
Each community ci is a bipartite subgraph of the original
G. Therefore, ci = 〈Ii, Pi, Ei〉 where Ii is the set of all IPs
in ci, Pi the set of all Re-Paths in ci, and Ei the set of all
edges exclusively between Ii and Pi. We expect the output
communities (used interchangeably with bipartite subgraphs
from now on) from the soft clustering algorithm to have the
following properties:

• The IPs (Ii) in each community are well-connected to
each other through the Re-Paths (Pi) they requested.

• The soft-clustering approach may put an IP in more
than one community because the IP may request many
different Re-Paths.

The input to our adapted co-clustering algorithm is the
bipartite graph G, represented by a weighted adjacency ma-
trix M . In the beginning, the algorithm considers the graph
as a single community that consists of all of the IPs and
Re-Paths. For each community c:

1) The algorithm leverages a Singular Value Decomposi-
tion (SVD) technique to figure out how to best “cut” c into
two child communities ca and cb so that a vertex in ca will
be more strongly connected to the other vertices in ca than
with those in cb.

2) The algorithm computes the cohesiveness value of
each of the two child communities. The cohesiveness of a

2A soft clustering algorithm is one that allows a single
node in the graph to be in more than one communities.

child community indicates how well separated it is from its
sibling.

Given a child community ca and its sibling cb, let γ(ca)
and γ(cb) be the cohesiveness of ca and cb respectively, and
they are calculated as follows. If Ec is the set of edges con-
tained in the initial community c and Eca the set of all edges
contained in ca, γ(ca) = |Eca |/|Ec|

3) Let Tγ be a predefined threshold for the cohesiveness
value that dictates when Scanner Hunter would stop di-
viding communities. More specifically, if γ(ca) ≥ Tγ and
γ(cb) ≥ Tγ , the algorithm will retain both ca and cb and
proceed to check if each of them can be divided further into
smaller communities. Otherwise, the community c will not
be divided further.

4) The algorithm stops when there is no community that
can be subdivided.

The inquisitive reader can consult [4, 5] for details.
4. Community labeling: Even legitimate users may

form communities in a bipartite graph because some popu-
lar web pages or embedded objects may become unavailable
by accident. For this reason, in this step, Scanner Hunter in-
spects each community individually and employs a heuristic
to determine whether the community consists of benign IPs
or HTTP scanners. To this end, we carefully studied the
scanners’ activities to find potentially useful metrics. Af-
ter many experiments, we narrowed down to two metrics
that gave high precision: average HTTP failure ratio and
average embedded objects ratio. The two metrics in combi-
nation capture the behavior of the scanners sufficiently for
our algorithm to achieve high precision. Even though legit-
imate users may produce failed requests, their failure ratio
is usually low. Moreover, scanners tend to not download
embedded objects such as images or video and instead focus
more on resources like php, asp, and mdb (database) files,
which are more likely to be exploited.

We now define the average failure ratio and average em-
bedded object ratio of a community c to capture the differ-
ence between communities of scanners and legitimate users.

• For IP address i, let Ti be its number of requests, Fi

its number of failed requests, and Ni be the number
of requests that IP i made for non-HTML document
type resources (for example, images, javascript objects,
etc.), i’s failure ratio and embedded-object ratio
are respectively: FR(i) = Fi/Ti, ER(i) = Ni/Ti

• The average failure ratio and the average embedded-
object ratio of all IPs in a community c are respec-
tively:
FR(c) = 1

|c|

∑
i∈c

FR(i), ER(c) = 1

|c|

∑
i∈c

ER(i)

If there exists a community c where FR(c) > TFR and
ER(c) < TER, Scanner Hunter will label c as a commu-
nity of HTTP scanners. All IPs in these community are
considered as HTTP scanners. This heuristic is very useful
because it allows Scanner Hunter to avoid mislabeling com-
munities that may be formed by benign IPs requesting mis-
placed/temporarily unavailable resources. We will discuss
the effectiveness of this heuristic in the following section.

We also would like to stress that both co-clustering and
labeling are integral to the performance of Scanner Hunter
because: i) inspecting individual IPs and relying on the IPs’
failed requests alone will generate a high amount of False
Positives (which we will show in section 3 and ii) blindly
labeling each community after co-clustering will also lead to

30

mislabeling benign IPs as scanners, as we have explained in
Step 4 of Scanner Hunter.

3. PERFORMANCE EVALUATION
In this section, we present the dataset used in our study

(3.1), how we select values for the parameters of Scanner
Hunter (3.2), and how we evaluate the performance of Scan-
ner Hunter (3.4).

3.1 Dataset and evaluation method
Our real-world dataset consists of 28 weeks of Web traffic

collected from a University campus network.
Our data collection tool was deployed at the only edge

gateway router connecting the University to the Internet,
which all incoming and outgoing Web traffic passes through.
At this gateway router, we captured the full payload of all
packets arriving at TCP ports 80, 8000, and 8080 of the Uni-
versity’s servers. Afterwards, we performed Deep-Packet In-
spection (DPI) on each packet to extract all of the HTTP re-
quests sent toward the websites internal to the University as
well as the associated HTTP responses. The important fields
that we logged from each HTTP request and response are:
timestamp, URL, server IP, client IP, content-type, content-
length, response code, referrer, and User-Agent.

On a average, we recorded 70.6M requests a week from
929.6K external IPs, 409.8K of which generated a total of
7.5M failed requests. We presented these weekly averages
because we apply Scanner Hunter on the weekly partitions
rather than the full dataset. We will discuss the motivation
for partitioning data into weeks in the next section.

Metrics: We use two metrics to measure Scanner Hunter’s
performance: Precision (P) and the total number of la-
beled scanners. Given the numbers of True Positive (TP),
False Positive (FP), the Precision, which is the fraction
of IPs we label as scanners that are in fact scanners, is cal-
culated as: P = TP/(TP + FP)

Validation. Given that we do not have the ground-truth
in our dataset, we did not evaluate the recall for Scanner
Hunter. Instead, we focus on assessing the accuracy of iden-
tification, which we try to achieve through sampling and
manual verification. We manually assess if each IP is an
HTTP scanner or not based on all its HTTP transactions
during the monitoring interval. Specifically, we consider its
User-Agent, the Re-Paths it asked for, its failure ratio, its
embedded-object ratio, the referrers for each of its requests,
and the HTTP response codes that it received when the re-
quests themselves failed. We are very conservative in our
manual verification and only label those IPs with very obvi-
ous scanning activities as scanners.

To evaluate the precision, we randomly select 300 IPs from
labeled scanners by Scanner Hunter, then manually verify
them as described before, and label an IP as a True Posi-
tive, if it clearly exhibited the characteristics of an HTTP
scanner. Otherwise, we count it as a False Positive.

3.2 Parameter selection
a. Cohesiveness threshold Tγ : The soft co-clustering

algorithm has the cohesiveness threshold Tγ as its sole pa-
rameter. To recap, the cohesiveness threshold determines
when the algorithm should stop subdividing a community.
As Figure 2(a) shows, the lower the value of cohesiveness,
the co-clustering algorithm creates more smaller but more
strongly connected non-trivial communities. A non-trivial

community is one in which there is more than one IP and one
Re-Path. Essentially, lower cohesiveness value leads to the
creation of communities in which the IPs are more similar
in behaviors because they have requested similar resources.

To determine the right threshold value, we conducted an
experiment where we varied Tγ and tried to assess the per-
formance of Scanner Hunter on the training partion d. For
each value of Tγ shown in Figure 2(b), we can see that when
we set the value of Tγ to 0.975, we achieve a good balance
between precision and the total number of labeled scanners.
This is the value that we use in the rest of this paper.

b. Embedded and failure ratios: Once we have the
communities, Scanner Hunter performs its labeling step. To
recap, given a community ci in the set of all communities
C, the community’s failure ratio is FR(ci) and ER(ci) its
embedded-object ratio. Let TFR and TER be thresholds such
that if FR(ci) > TFR and ER(ci) < TER, we label c as a
community of HTTP scanners and ci as a community of
users otherwise. We will show below the process that helps
us decide the values for TER and TFR.

We first picked one weekly partition of our data as a train-
ing dataset, henceforth referred to as d, and ran Scanner
Hunter’s clustering step on d with a cohesiveness value of
0.975. Given the set of communities C = {c1, c2, ..., cn} pro-
duced by this step, we represent each ci as a pair of coordi-
nates (xi, yi) where xi = FR(ci) and yi = ER(ci) and plot
the set C as a heat map as shown in Figure 2(c).

Recall that an HTTP scanner tends to have a higher fail-
ure ratio and a lower embedded-object ratio than a legiti-
mate user because the scanner does not know exactly where
the vulnerable resources reside and does not want to waste
bandwidth downloading objects it does not need. This ob-
servation, in turns, implies that the communities located
in the lower right quadrant of the heat map in Figure 2(c)
would be the most suspicious.

Selecting threshold values for TFR and TER. We be-
gin with the community with the highest failure ratio and
the lowest embedded-object ratio and set TFR and TER to
this community’s values, in essence defining a rectangular
area limited by the lines y = TER, x = TFR, x = 1.0, and
y = 0. We then manually inspected each community inside
this area to judge whether each IP in that community is an
HTTP scanner before we expanded the area by increasing
TER and decreasing TFR. What we observed in this process
is that when we vary the values of TER and TFR within the
range of [0.25, 0.6], Scanner Hunter achieved a reasonable
balance between the number of correctly identified scanners
and the number of mislabeled legitimate users. We also re-
peated the same process with different values of cohesiveness
and came to the same conclusion each time: with [0.25, 0.6]
as a range of candidate values for TER and TFR, Scanner
Hunter achieves a high level of accuracy.

In conclusion, our study showed that the performance of
our approach is quite robust to the values of the thresholds
in the range [0.25, 0.6]. In the rest of this paper, we report
results using TER = 0.5 and TFR = 0.5.

3.3 Understanding False Positives
We want to further investigate why our approach misclas-

sifies some IPs as HTTP scanners. An added benefit of using
a manual verification process is that it provided us with a
first-hand knowledge of falsely labeled IP addresses. We find
two basic groups among the False Positive cases:

31

(a) # and avg. size of
communities as a function
of cohesiveness

(b) Precision and # of IPs la-
beled as scanners with varied
cohesiveness

(c) TFR and TER of communities
generated by cohesiveness value
0.975

(d) # of IP prefixes of scan-
ners and users

Figure 2: Parameter selection. In 2(b), the values for TER and TFR are respectively 0.5 and 0.5

Benign web crawlers: 89% of all misclassified IPs be-
long to stealthy crawlers masquerading as regular users, as
we determined in our manual inspection. These IPs down-
loaded very few embedded objects and they crawled a small
number of pages, some of which happened to be unavailable
due to broken links. The resulting high failure ratio and low
embedded-object ratio confused our algorithm.

Legitimate web users: The remaining 11% of the False
positives are legitimate users. Let’s say that there exists a
web page w1 at the URL abc.com/index.html and there is
an embedded object o on w that is hosted by website w2

at the URL xyz.com/tmp.php, where our monitoring tool is
placed. In the case that w1 is very popular and o is sud-
denly unavailable, all of the requests intended for o will con-
sequently fail.

Because our monitoring point is at w2, it would appear
as if a large number of users are requesting a non-existing
resource because our monitoring tool is not aware of w1. As
a result, Scanner Hunter will group the IPs requesting o into
a community in which the failure ratio and embedded-object
ratio exceed the predefined thresholds. All of the IPs in this
community will then be labeled as HTTP scanners. This is
the reason why Scanner Hunter mislabeled that very small
percentage of benign IPs in our dataset.

3.4 Evaluating Scanner Hunter
a. Precision is stable over time. We used one week’s

data to establish the values of the three parameters of our
Scanner Hunter, namely cohesiveness threshold Tγ , embedded-
object ratio threshold TER, and failure ratio TFR.

We assess the performance of our approach on five other
weekly data partitions in Figure 2(d) (top flat red line). On
average, the precision of Scanner Hunter is 96.5%. This is a
success, given that there are nearly one million external IPs
in each weekly data partition. We validated these Precision
rates in through sampling and manual inspection, using the
same process as in the training set.

Figure 2(d) (lower jagged blue line) shows the total num-
ber of IPs labeled as scanners by Scanner Hunter for each of
the weekly partitions. Note that the sharp drop in identi-
fied scanners on the 8th weekly partition is an artifact of the
data collection: for three days out of seven of the 8th week,
there were issues with the monitor device and the collection
was incomplete.

b. Comparing Scanner Hunter with our baseline
approaches. Here, we introduce two baseline approaches
as reference points in evaluating the performance of our ap-
proach. We consider two fundamental approaches: a simple
heuristic and a group of machine-learning algorithms. Both

of these methods develop profiles and compare IPs in isola-
tion, in contrast to our graph-based approach. We show the
results for these two baseline approaches to provide some in-
sight into the complexity of the problem of detecting HTTP
scanners. Ultimately, this comparison demonstrates that the
graph-based technique used by Scanner Hunter is crucial for
obtaining high precision and recall rates.

First, the simple heuristic decides if an IP is a scanner
only based on its failure and embedded-object ratios, as we
explain below. Second, the machine-learning (ML) approach
develops a profile of how a HTTP scanner behaves, and uses
that to determine if an IP is a scanner or not. We used
the WEKA machine learning software tool, and considered
multiple ML algorithms and did significant fine-tuning and
parameter optimization.

We introduce both approaches in order to provide some in-
sight into the difficulty of the problem Scanner Hunter was
designed to solve. Overall, both the simple heuristic and
the ML approach perform poorly (19.1% and 54.3% respec-
tively), compared to the 96.5% precision of Scanner Hunter.
We attribute this to the use of communities that helps re-
veal the similar behaviors of scanners as they are viewed in
terms of groups while looking at each IP in isolation does
not provide enough information to identify scanners.

1. Simple heuristic: The simple heuristic determines if
an IP i is an HTTP scanner or not based on the two metrics:
FR(i) and ER(i). Specifically, if FR(i) > TFR and ER(i) <
TER, then IP i is labeled as a scanner. Recall that Scanner
Hunter determines whether a community is one of HTTP
scanners based on the community’s failure ratio FR and
embedded-object ratio ER.

For evaluating the simple heuristic, we randomly selected
a weekly data partition Di and applied the heuristic on it.
We varied the values for TER and TFR and chose the ones
that produced the highest Precision rates, which we ob-
tained in the same way that we described in Section 2.

2. Machine-learning algorithms: From the machine
leaning software collection WEKA [6], we selected three
commonly used algorithms: Support Vector Machine (SVM),
K-Nearest Neighbors (K = 1, 3, 5), and Decision Trees. We
created our training data from HTTP scanners identified by
Scanner Hunter, since we are not aware of any other method
to obtain a large training set. We considered using only man-
ually verified scanners, but the training set would have been
to small.

Feature selection. For each algorithm, we consider a total
of 15 features: failure ratio, embedded-object ratio, suspi-
cious referrer ratio, the number of and the ratio of requested
non-existing Re-Path, the maximum, average, and minimum

32

size of connected component in the referrer graph, the maxi-
mum number of consecutive failed HTTP requests, the Inter-
Arrival Time (IAT) between two consecutive failed requests,
and the number of retries after a failure. Using WEKA’s fea-
ture elimination capability, we narrowed the set of 15 fea-
tures down to a total of 9: failure ratio, embedded-object
ratio, suspicious referrer ratio (a referrer value is suspicious
if it is the empty string or it is exactly the same value as
the URL of the website), the ratio of requested non-existing
Re-Paths, the size of the largest connected component in
referrer graph, the maximum number of consecutive failed
HTTP requests, the IAT between two consecutive failed re-
quests, and the number of retries after a failure.

Training the ML algorithms. We picked two consecutive
weekly data partitions Di and Di+1, the former for training
and the latter for testing. We first applied Scanner Hunter
on Di to obtain a list of n potential scanners and selected
also n IPs determined to be benign by Scanner Hunter; we
call this first set M and the second B. We then used the
HTTP requests produced by each IP in both sets to train
the ML algorithms, which were then used to classify the IPs
in the data partition Di+1.

Note that the IPs in set M do not include all of the IPs
labeled as scanners by Scanner Hunter in Di. We have to
exclude some IPs from Scanner Hunter’s results because the
ML algorithms require that there are enough HTTP requests
produced by each IP (in this case, at least 5) to be effective.
Each of the IPs in M then had at least 5 HTTP requests
associated with them.

From our experiments, the three ML algorithms exhibited
comparable performances. The Decision Tree algorithms
(more specifically “Adtree”) achieved slightly higher preci-
sion in a few of our experiments. As a result, we selected
Decision Trees as the representative from the ML-based ap-
proach, and we use the term “ML learning algorithm” to
refer to Decision Trees for the remaining of this paper.

 0

 20

 40

 60

 80

 100

The precision of Scanner Hunter

%

Heuristic
Machine Learning

Scanner Hunter

 0

 1000

 2000

 3000

 4000

 5000

The number of detected scanners

Heuristic
Machine Learning

Scanner Hunter

Figure 3: Performances of Scanner Hunter and baselines

Comparison: the precision of Scanner Hunter is
close to twice that of the ML algorithm. We can see
from Figure 3 (top) that the precision for the simple heuristic
and ML approaches are only 19.1% and 54.3%, respectively.
It must be stressed that for the heuristic approach, we varied
the parameters and provided the highest precision it could
achieve. For the ML approach, we picked the algorithm that
gave the best performance with respect to precision. The
fact that both approaches performed poorly underscores an
important observation: scanners and users exhibit a wide
range and often similar behaviors that classifying individual
IPs is a difficult problem. This suggests that there is a need
to aggregate the behavior and classify groups instead, which
forms the basis of our graph-based approach.

Comparison: Scanner Hunter identifies more scan-
ners more accurately. Not only is the precision of Scan-
ner Hunter higher, it also identifies more scanners than the
two baseline methods. In Figure 3 (bottom), we plot the
number of scanners that each method identified. Although
the difference between the numbers of detected scanners for
Scanner Hunter and the ML algorithm is not large, the fact
is that Scanner Hunter enjoys a much higher precision and
therefore is capable of capturing more scanners while having
much fewer false alarms.

3.5 Discussion
Here, we discuss various practical deployment tips, how

adversaries may evade Scanner Hunter, and the effect of
NAT and dynamic IP allocation.

Selecting the right window of observation. Through-
out the paper, we used a week as the time interval units and
partitioned our data accordingly. We experimented with
daily web logs, but we observed that the amount of scanner
traffic in each partition was too small. As a result, there
was limited information available to the co-clustering step,
which is a critical component of Scanner Hunter. Specifi-
cally, with an insufficient number of HTTP requests from
scanners, cohesive communities would not be formed and
scanners would eventually be isolated into their own trivial
communities. When we applied Scanner Hunter on multi-
ple daily data partitions, we observed that Scanner Hunter
still exhibited high precision, but the amount of detected
scanners dropped significantly.

As a practical tip, if a network administrator wants to
use Scanner Hunter, we would recommend them to tune the
monitoring interval according to the size of their network,
as one that is large enough may attract sufficient requests
from scanners to enable a finer-grained partitioning of data.

Evading detection. At a high level, the scanner should
have to (a) visit available web pages that are unrelated to
its purposes, (b) download embedded objects such as pic-
tures and video, and (c) send HTTP requests from as many
different IPs as possible, ideally, one HTTP request per IP.
However, these efforts would increase the cost of scanning
in terms of time, download bandwidth, or the number of IP
addresses under the malicious entity’s control. Furthermore,
this would force the scanner to stand out from the targeted
website’s point of view, as the scanner would have no choice
but produce much more traffic toward the website.

How dynamic IP allocation and NAT affect Scan-
ner Hunter. Because Scanner Hunter captures the be-
haviors of HTTP scanners, the dynamic allocation of IPs
with moderate dynamic behavior would not impair Scanner
Hunter’s performance. Scanner Hunter does not use any
information that can be retrieved from the IP address for
the purpose of detection. In fact, the use of a group-based
method will likely circumvent the issue as the same scanner
behind many different dynamic IPs would search for similar
non-existent resources and be put into the same community.

It is possible that in the case where there are many ma-
chines sharing the same public IP due to the effect of Net-
work Address Translation (NAT), the amount of failed re-
quests produced by a malicious scanner may become “di-
luted” by of many more legitimate requests from the other
machines with an identical IP. However, in practice the ef-
fect of NATs will depend on: (a) how popular the targeted
website is, and (b) the number of real IPs behind the NAT.

33

Both factors determine the probability that a non-scanning
IP behind the NAT will contact the same website that the
scanner behind the NAT is probing. Finally, if NATs be-
come a significant concern, we can modify the way in which
Scanner Hunter operates: instead of grouping requests by
the IP addresses can group the requests by the tuple 〈IP,
User-Agent〉. We believe this would be a good solution as it
has been shown in [7] that when a User-Agent is combined
with an IP address, they can become a fingerprint that can
effectively distinguishes remote browsers.

Using Scanner Hunter to assist in creating hon-
eypots. Once Scanner Hunter has been run, the network
administrator can certainly gather the nonexistent URLs re-
quested by the scanners to create a set of fake webpages not
linked to by any other legitimate pages. They then can mon-
itor these fake pages and observe the IPs trying to access
them.

4. PROFILING SCANNERS IN THE WILD
In this section, we present the results of the extensive

study we conducted on the behaviors of HTTP scanners in
the wild. These are the highlights from this study: 1) scan-
ners are widely dispersed across IP space; 2) more than 90%
of the returning scanners look for new resources and at least
half of the Re-Paths that they request are new; 3) scanners
spent little attention on disguising themselves to avoid de-
tection, as seen by their complacent use of User-Agent and
referrer fields in the requests; 4) there are four categories of
vulnerabilities that the scanners in our dataset are interested
in.

4.1 Spatiotemporal properties of scanners
One of the more obvious questions that comes to mind is

whether a network administrator can prevent scanning ac-
tivities by blocking HTTP requests from certain IP prefixes.
The answer is that such a solution will not be very practical
or efficient because of two conclusions that we made once we
have studied more closely the spatial and temporal proper-
ties of scanners: 1) the filter set will have to be large enough
to cover all of the diverse IP prefixes, 2) the filters would
have short life-span and will be of limited use because most
(80%) HTTP scanners, as we will show, are seen only once
and never come back.

Figure 4(a) demonstrates the reason why we conclude that
the IP addresses black list keep track of for the purpose of
blocking scanning IPs will have to be large. In this figure,
we show the percentage of distinct prefixes that remain each
time we remove the least octet from the IP address. We can
see that, for example, the number of distinct /16 IP prefixes
accounts for at least 60% of the total number of original
IPs. Furthermore, because HTTP scanners are as diversely
distributed across the IP space as users, it follows that an
extremely large and fine-grained filter set would be needed
to block the scanners.

Figure 4(b) demonstrates the reason why the aforemen-
tioned filters will have limited life spans and usefulness. In
this figure, we show the result of the experiment in which we
kept track of each scanner labeled by Scanner Hunter and
count how many daily visits they paid to the monitored web-
sites during one week and during the entire six-month pe-
riod. Interesting enough, no more than 20% of the scanners
return to the websites hosted by the University campus in
either periods. In fact, less than 5% of them came back for

a third time. This clearly indicates that no IP prefix-based,
static blacklists can keep up with the scanning activities.

What we would like to know then, given that some (20%)
scanners do return to the same websites, is whether scanners
look for the same resources or different ones during subse-
quent visits. To find out, we performed an experiment on
the entire six-month-long dataset as follows. Let the set
S be scanner IPs that visited the monitored websites more
than twice on different days. For each s ∈ S we calculated
the Average Ratio of new resources that s looks for using
the following formula:

AR(s) =
1

n− 1

n∑

i=2

|Wi \
⋃i−1

j=1
Wj |

|Wi|

n is the total number of daily visits that s paid to the
monitored websites, Wi is the set of Re-Paths sought by s
on the ith visit in the dataset, and

⋃i−1

j=1
Wj represents the

accumulative set of every resource that s has requested up
to the (i−1)th visit. The (i−1)th and ith visits do not have
to be on consecutive days.

What we discovered from the experiment is shown in Fig-
ure 4(c): for more than 90% of the returning scanners, half
of what they look for each time is new. This indicates that
the scanners that do come back tend to probe for resources
that they did not request before.

4.2 The tools used for HTTP scanning
Not only are we interested in identifying HTTP scanners,

we also would like to know about the existing tools that
allow them to carry out the act. As it turns out, the values
of the User-Agent fields in the HTTP requests can give us
an insight into the types of applications the scanners use.
In Appendix A we show the values and statistics for the top
10 most popular User-Agents used by the HTTP scanners
identified by Scanner Hunter so the more inquisitive reader
can take a look. Although most of them are simpler than
User-Agent strings produced by major browsers, there are
three that deserve the most scrutiny:

• mozilla/4.0: Even though the User-Agent string men-
tions mozilla, the requests with this User-Agent string
were not generated by the popular Firefox browser be-
cause it has no information on the system on which
the browser runs or the information about the plug-
ins within the browser. An example of a legitimate
User-Agent string is: Mozilla/5.0 (Macintosh; In-

tel Mac OS X 10_8_4) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/ 28.0.1500.71 Safari/537.36

• <empty>: This means the User-Agent field is empty.
By default, none of the major web browsers generate
requests with empty User-Agent field.

• ineturl:/1.0: This User-Agent string can be found
by a number of HTTP-based applications that use a
specific library. In this case, it may be possible that a
number of malicious entities used the library to imple-
ment their scanning tools.

At the same time, we were also interested in the distribu-
tion of the number of User-Agents per scanning IP address.
From Figure 4(d), we can clearly see that each IP in the
90% of the IPs labeled as scanners by Scanner Hunter pro-
duced requests with exactly one User-Agent string. We take
this to suggest that most scanners use only one scanning
application.

34

(a) Number of IP prefixes of
scanners and users

(b) Number of IP prefixes
of scanners and users

(c) Scanners look for new
things when coming back

(d) Scanners tend to not
have empty User-Agents.

Figure 4: Spatio-temporal behaviors of scanners in the wild

There are IPs associated with more than one User-Agent
string, as seen in the same Figure. When we manually looked
into the HTTP requests produced by those IPs, we observed
that a) different User-Agents showed up at different times
during the day, and b) different User-Agents requested dif-
ferent Re-Paths. Therefore we believed that most of them
were different scanners that happened to fall under the same
IPs due to the effect of Network Address Translation (NAT).

Interestingly, however, there is a reason for us to believe
that there were also scanners that used more than one ap-
plication at a time. For example, there are four IPs located
inside the Autonomous System number 50543 that are sus-
picious because:

• Each IP appeared on multiple blacklists [8].
• Each IP is associated with the same two User-Agents.
• Their behaviors are similar. For example, suspicious

IP s1 sent two set of requests, each with a different
User-Agent. The requests are close in time and the
two User-Agents almost always appeared in a specific
order.

Given the above facts, we came to the conclusion that
there is a strong likelihood each of those IPs used two ap-
plications for malicious purposes: one application to probe
for the existence of vulnerable resources and the other to
analyze the resources that the first application actually dis-
covered. Even more interesting is the fact that the same two
User-Agents could be seen with each of the 4 IPs: xpymep.exe
and mozilla /4.0 (compatible; msie 6.0; windows 98;

win 9x 4.90). According to [9], xpymep.exe is the name of
a binary that is considered unsafe to download.

One natural question that can be asked is whether a net-
work administrator can block scanning activities using the
values of the User-Agent fields in the HTTP requests. The
answer is no because of two reasons: 1) the False Positive
rate would be high, and 2) even though such a solution may
mitigate scanning activities in the short term, it would not
be effective in the long run due to how trivial it is to change
the value of the User-Agent field. After all, scanners leave
their User-Agent strings as-is possibly because of the little
attention the problem has received. Once the scanners real-
ize that the User-Agent strings may be a liability, we believe
they would spend more effort on disguising the User-Agent
more carefully.

4.3 What resources scanners look for
We present our findings regarding the resources that a

scanner may be most interested in because armed with this
knowledge, network administrators can gain a better un-

derstanding of the scanners’ motivations and better secure
their networks. For this purpose, we collected all the Re-
Paths requested by the IPs labeled as scanners by Scanner
Hunter for the entire 6-month duration of our full dataset,
extract their file types, and ranked them according to their
popularity.

There are three types of files that dominate the list and ac-
count for 97% of the requests: php (43%), asp/aspx (26%),
and rar/zip/7z (24%). The most probable explanation
would be that php and asp/aspx scripts are the least secured
with respect to access permissions or more likely to contain
exploitable vulnerabilities. The rar/zip/7z are compressed
archives that, in the context of web server management, tend
to be files used for backup or storing outdated data and, if
left unsecured, would provide information that could enable
future exploitations.

Identifying groups of resources systematically. We
wanted to obtain a deeper understanding as to the intention
of the scanners beyond the file types they are looking for.
For that, we tried to identify categories of scanners based
on the targeted Re-Paths. More precisely, we performed
the following actions on each of the communities labeled as
scanners by Scanner Hunter:
(a) We extract all Re-Paths from the community and re-

move all non-alphanumeric characters from them.
(b) We convert each processed Re-Path into trigrams,

which are sequences of three consecutive characters.
Once the trigrams are extracted, the community is rep-
resented by the set of unique trigrams.

Given the set of communities C = {ci}, 1 ≤ i ≤ |C|, let
ti be the trigram set representation for each ci. We then
compute the Jaccard similarity measurement between every
possible pair: J(ci, cj) = |ti ∩ tj |/|ti ∪ tj |

We then identify groups of similar communities of scan-
ners as follows:
(a) We pick the pair of communities with the largest sim-

ilarity value and, if this similarity exceeds a threshold
TJ , we merge them to form a new community.

(b) We calculate the similarity measurement between the
new community with all old ones.

(c) We repeat the above two steps until the largest simi-
larity between any two communities is less than TJ .

We experimented with different values for the Jaccard
similarity threshold TJ and found out TJ = 0.3 works reason-
ably well. Table 1 shows the top 10 largest groups (out of 42)
that remain once the merging concludes. The first column
contains the ranks of the groups according to the number of
unique IPs, the second the number of scanning IPs in each

35

#IPs #Re-Paths File types URL patterns Description

1 913 337
asp(58.3%) reg.asp, user reg.aspx

User registration and login pages
php (36.7%) bbs/reg.php, login.asp

2 664 1143 asp (91.2%) *member/index do.php Unclear
3 569 11273 rar/zip/7z (94.7%) *wwwroot.zip Backup files
4 433 9098 php (87.1%) {include | data | plus}/*.php Unclear
5 203 4836 asp (99.8%) wp-{admin | login | comments

| trackback}*.php
wordpress-related vulnerabilities

6 126 689 php (94.7%) wp-content/*/[tim]thumb.php Vulnerabilities that may allow remote code execution
7 112 401 php (100.0%) */demo/index.php Demo versions of web services. May be more vulnerable

than actual services
8 88 638 asp (88.3%) *admin* Admin-related pages
9 59 123 asp/aspx (87.2%) */{fckeditor | ewebeditor |

htmledit}/*
Some websites let users change contents through various
editor interfaces, which the scanners searched for

10 58 139 php (90.6%) *{phpmyadmin | sql}* Control panels for backend databases

Table 1: The 10 largest groups of HTTP scanners and their targets. “*” indicates any sequence of characters.

group, the third the number of unique Re-Paths found in
each group, the fourth the most dominant file types as well
as the percentage of the Re-Paths with these file types, the
fifth a brief description for the observed patterns in each
group’s Re-Paths, and the final column some explanations
regarding the vulnerabilities the scanners were aiming for.

Note that there are many ways to do the above grouping,
but we adopted this approach because it is simple and the
groups it produces exhibit similar scanning behavior as we
discuss below.

The following are the key take-aways from our close in-
spection of the final groups.

1. Individual groups are homogenous in terms of
User-Agents and file types even though we only merged
communities based on the trigrams in their Re-Paths. In
fact, for each group, the most dominant User-Agent often
accounts for at least 90% of the scanner IPs and the most
popular file type appears in at least 87% of the Re-Paths
except for Group number 1.

This observed homogeneity within groups shows our group-
ing scheme works well for the purpose of discovering popular
categories of vulnerabilities the scanners are interested in.

2. There are four major categories of resources
the scanners want to find on the websites hosted by the
University campus. They are as follows.
(a) Public login and registration pages for regular

users. Related group(s): 1.
(b) Control panels exclusive to administrators. For

example, web interfaces for website management and
interactions with backend databases. Related group(s):
5, 8, 9, 10.

(c) Vulnerable pages, which may allow intrusion through
remote code execution, cross-site scripting, or SQL in-
jection [10]. Related group(s): 6.

(d) Backup files that may contain sensitive information
for exploits. Related group(s): 3.

The resources found in these categories are quite sensitive
for security purposes. If the scanning entities successfully
exploit them, they can seriously compromise the security of
the websites. For example, the scanners in Group number 6
were primarily concerned with exploiting a known vulnera-
bility in Wordpress [10] that would allow remote execution
of malicious code.

There are groups whose intents are unclear (groups 2, 4,
and 7), so we did not list them in the above categories.

3. Backup files are a major target of scanners. It is
surprising how aggressive (11,273 Re-Paths for 569 IPs) they
are in Group number 3 of the table in the way they tend to
have more unique Re-Paths per IP than other groups.

4. Toward a systematic categorization of scan-
ner intention. This grouping scheme helps us uncover the
top 10 major vulnerability categories from the web traffic of
the University campus. This represents another significant
use of our approach. Using Scanner Hunter and the group-
ing scheme, network administrators would be well-informed
about the most sought-after vulnerabilities, and thus be able
to proactively secure vulnerable resources.

4.4 The complacency of Scanners
We have seen that scanners do not attempt to disguising

their User-Agents. Further inspection shows a continuation
of this complacency, where they do not try to make the
values of the referrer field in the requests to look similar to
those of legitimate users: 90% of the times, the referrer field
of a scanner’s request is empty versus 10% for a user.

Recall that a request usually has empty referrer field when
a user types the URL directly into the URL bar of their
browser or clicks on a bookmark. However, there are many
embedded objects on a web page, so the referrer field in
every request to an embedded object will be the URL of
the original page. This is why only a small percentage of
legitimate requests have empty referrer fields.

This is not the case with scanners because: a) the pages
they requested do not exist most of the times and therefore
there were no subsequent requests for embedded objects b)
even if the pages existed, the scanners tend to only request
the pages without downloading the embedded objects. Also
noteworthy is the fact that in about 5% of the HTTP re-
quests generated by scanners, the referrer field and the URL
field are identical.

5. RELATED WORK
To the best of our knowledge, there exists no work on the

specific problem of HTTP scanners. There are, as noted
before, many studies that focus on the problem of detecting
crawlers [3, 11, 12].

Much work has also been done on detecting port scan-
ners [13, 14]. Port scanning is different from HTTP scanning
in that port scanners check for open ports, which are lim-
ited and well-defined, to determine which applications are
running. HTTP scanners explore a much wider field where
they do not know where a file of interest (e.g. myadmin.php)
may be on a remote server or even whether the name of the
file has been changed. Moreover, the existing work may not
translate to solutions in the case of HTTP scanner. For in-
stance, solutions like [13] relies on the assumption that users
rarely initiate failed connections while port scanners rarely
make successful ones. This assumption doesn’t hold with

36

HTTP scanners, which often locate an existing web direc-
tory (eliciting a successful HTTP response), then search for
files under it. Even users can make failed HTTP requests in
succession when a website goes down. Other solutions such
as [14] work on port scanners because the port range is lim-
ited and fixed, which is not the case with HTTP scanners.

The use of honeypots [15, 16] may detect some scanning
activities, but we see these efforts as a complementary effort
to ours. We focus on the question of “who are the HTTP
scanners exploring my network”, which may benefit from
learning about scanners who are targeting other networks.
However, the entities operating the scanners may be clever
enough to simply target already established websites.

There is also a body of work on developing applications
for security professional to test the security of specific appli-
cations [17, 18, 19] and there have been some efforts invested
in detecting covert, malicious web traffic [20]. [21, 22] are
two works in the literature that confirms our observation
that the behaviors of web users are diverse, which is why it
is difficult to automatically look at an IP in isolation and
decide whether the IP is engaging in scanning activities.

6. CONCLUSION
In this work, we identify and study the problem of HTTP

scanners, which is by far not trivial and has received little
attention to date.

Our main contribution is Scanner Hunter, an effective
method to detect HTTP scanners that achieves a 96.5% de-
tection precision. The key novelty of Scanner Hunter the
use of a graph-based approach that detects HTTP scanners
by comparing the group behavior of scanners versus that of
legitimate users. The precision of Scanner Hunter is more
than double of that of baseline solutions, while detecting
more scanners at the same time.

As our second contribution, we provide an extensive study
of HTTP scanning over a six-month period to understand:
(a) what they are looking for and (b) their spatial and tem-
poral behaviors. It is clear that the problem is acute, with
roughly 4,000 unique IPs scanning a medium-sized Univer-
sity network every week and 80% new IPs every week.

Finally, we provide an initial effort towards systematically
inferring the intention and targets of scanning. We identify
four major categories based on the targeted resources: (i)
user registration and login pages, (ii) website management
interfaces, (iii) pages with potential vulnerabilities, and (iv)
compressed web archives (e.g wwwroot.zip), the products of
website backup activities and should not be publicly visible.

The ultimate goal of our work is to: (a) raise the awareness
to this problem and (b) provide an initial but promising
detection technique to mitigate the risk posed by HTTP
scanners. Our goal is to provide one more complementary
layer of defense to website security, at the early stage, when
hackers are scoping out potential targets.

7. ACKNOWLEDGEMENTS
The authors would like to thank the reviewers for their

helpful comments and suggestions regarding browser finger-
prints and using Scanner Hunter to create effective honey-
pots.

8. REFERENCES

[1] P. Ducklin, “DHS website falls victim to hacktivist
intrusion,”
http://nakedsecurity.sophos.com/2013/01/07/dhs-
website-falls-victim-to-hacktivist-intrusion/, 2013.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
transfer protocol–http/1.1,” 1999.

[3] G. Jacob, E. Kirda, C. Kruegel, and G. a. Vigna,
“Pubcrawl: protecting users and businesses from
crawlers,” in Proceedings of the 21st USENIX

conference on Security symposium. USENIX
Association, 2012, pp. 25–25.

[4] R. Keralapura, A. Nucci, Z.-L. Zhang, and L. Gao,
“Profiling users in a 3g network using hourglass
co-clustering,” in Proceedings of the sixteenth annual

international conference on Mobile computing and

networking. ACM, 2010, pp. 341–352.

[5] I. S. Dhillon, “Co-clustering documents and words
using bipartite spectral graph partitioning,” in
Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and

data mining. ACM, 2001, pp. 269–274.

[6] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall,
G. Holmes, and S. J. Cunningham, “Weka: Practical
machine learning tools and techniques with java
implementations,” 1999.

[7] P. Eckersley, “How unique is your web browser?” in
Privacy Enhancing Technologies. Springer, 2010, pp.
1–18.

[8] “HE BGP Toolkit,” http://bgp.he.net/.

[9] “http://f.virscan.org/xpymep.exe.html,”
http://f.virscan.org/xpymep.exe.html.

[10] “Wordpress timthumb plugin - remote code execution,”
http://www.exploit-db.com/exploits/17602/.

[11] A. Stassopoulou and M. D. Dikaiakos, “Crawler
detection: A bayesian approach,” in Internet

Surveillance and Protection, 2006. ICISP’06.

International Conference on. IEEE, 2006, pp. 16–16.

[12] A. Lourenço and O. Belo, “Applying clickstream data
mining to real-time web crawler detection and
containment using clicktips platform,” in Advances in

Data Analysis. Springer, 2007, pp. 351–358.

[13] J. Jung, V. Paxson, A. W. Berger, and
H. Balakrishnan, “Fast portscan detection using
sequential hypothesis testing,” in Security and

Privacy, 2004. Proceedings. 2004 IEEE Symposium

on. IEEE, 2004, pp. 211–225.

[14] C. Gates, “Coordinated scans detection,” in
Proceedings of the Network and Distributed System

Security Symposium, NDSS 2009. The Internet
Society, 2009.

[15] N. Provos, “A virtual honeypot framework.” in
USENIX Security Symposium, vol. 173, 2004.

[16] B. Borisaniya, A. Patel, D. R. Patel, and H. Patel,
“Incorporating honeypot for intrusion detection in
cloud infrastructure,” in Trust Management VI.
Springer, 2012, pp. 84–96.

[17] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna,
“Enemy of the state: a state-aware black-box web
vulnerability scanner,” in Proceedings of the 21st

37

USENIX conference on Security symposium.
USENIX Association, 2012, pp. 26–26.

[18] T. Jensen, H. Pedersen, M. C. Olesen, and R. R.
Hansen, “Thaps: automated vulnerability scanning of
php applications,” in Secure IT Systems. Springer,
2012, pp. 31–46.

[19] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic,
“Secubat: a web vulnerability scanner,” in Proceedings

of the 15th international conference on World Wide

Web. ACM, 2006, pp. 247–256.

[20] K. Borders and A. Prakash, “Web tap: detecting
covert web traffic,” in Proceedings of the 11th ACM

conference on Computer and communications security.
ACM, 2004, pp. 110–120.

[21] G. Xie, M. Iliofotou, T. Karagiannis, M. Faloutsos,
and Y. Jin, “Resurf: Reconstructing web-surfing
activity from network traffic,” in IFIP Networking

Conference, 2013. IEEE, 2013, pp. 1–9.

[22] M. Meiss, F. Menczer, and A. Vespignani, “On the lack
of typical behavior in the global web traffic network,”
in Proceedings of the 14th international conference on

World Wide Web. ACM, 2005, pp. 510–518.

APPENDIX

A. SUSPICIOUS USER-AGENTS

User-Agent % requests
mozilla/4.0 31.2%
mozilla/3.0 (compatible; indy library) 14.5%
mozilla/4.0 (compatible; msie 6.0; windows nt 5.1;
sv1)

6.0%

mozilla/4.0 (compatible; msie 6.0; windows nt 5.1;
sv1;)

3.8%

<empty> 2.5%
mozilla/5.0 (windows; u; windows nt 5.1; en-us;
rv:1.9.2) gecko/20100115 firefox/3.6

0.8%

mozilla/4.0 (compatible; msie 6.0; windows nt 5.1) 0.8%
mozilla/5.0 (compatible; msie 9.0; windows nt 6.1;
trident/5.0)

0.8%

ineturl:/1.0 0.5%
mozilla/4.0 (compatible; msie 6.0; windows nt 5.1;
sv1; .net clr 2.0.50727)

0.5%

61.4%

Table 2: The 10 most popular User-Agents in our
dataset.

In the table above we show the top ten most popular
HTTP scanners User-Agents that we observed in our dataset.
As mentioned in section 4, the scanner User-Agents are sus-
picious because they tend to be too short and do not contain
information about specific browser plug-ins.

B. TIPS ON ENHANCING Scanner Hunter’

PERFORMANCE
1. Opportunistically improving the accuracy of

detection via customization. Here, we present several

potential methods for improving the detection accuracy, if
additional information or the assistance of the network ad-
ministrator is provided. Note that these methods are not
used in our current implementation of Scanner Hunter. We
did not implemented these ideas due to two reasons: (a)
we wanted to assess the performance of the algorithm in

its own merit and in its generality, as customization and
the necessary additional information may not be available
at some deployment sites and (b) we did not have the nec-
essary information for our dataset for some of the proposed
improvements.

• Using an IP whitelist. The network administrator
could over time identify web crawlers, either by consid-
ering external sources of information or by observing
crawling behavior on their website. We expect this to
have a considerably positive impact on precision since
we saw in section 3.3 that 89% of the False Positives
were stealthy crawlers.

• Take into account the web resources that be-
come unavailable. The idea here is to explicitly con-
sider web sources, such as pages or files, that become
unavailable either temporarily or permanently, and ex-
clude the failed requests for those resources from the
bipartite graph. This would require a collaboration be-
tween the website administrator and the network ad-
ministrator, which may not be the same person in large
institutions. The addition of this technique could be
particularly helpful for websites that undergo signifi-
cant restructuring, which for many many is not that
often.

• Focus on requests for particular file types. Scan-
ners seem to be interested in particular resources and
file types, such as php, asp, and zip as we will discuss
further in section 4. Our algorithm could be configured
to consider only those files or give them more weight
during: (a) the creation of the bipartite graph, (b) cre-
ating the communities, or (c) labeling a community.

2. Handling non-standard HTTP failure messages.
Some websites do not use the standard HTTP failure mes-
sages, but Scanner Hunter can easily consider such non-
standard messages. In fact, our algorithm will be deployed
by the network administrator who manages the website, or
at least with their collaboration. Therefore, if the website
responds with non-standard failure messages, it is trivial to
specify those so that they algorithm can detect them prop-
erly. Note that the website in our dataset was using con-
forming, 40X HTTP failure responses, so we had no reason
to make this trivial extra step. In addition, most websites
respond with a 40X code when a request fails for one reason
or another. Non-conforming failure responses is often ac-
companied by a customized web page containing a message
that states the reason of the failure. Scanner Hunter will
still work as expected as long as failed requests are properly
specified by the network administrator or via observation.
Scanner Hunter then would take into account this informa-
tion when it preprocesses the log files.

38

s

