Outsourced Private Set Intersection
Using Homomorphic Encryption

Florian Kerschbaum
SAP Research
Karlsruhe, Germany
florian.kerschbaum@sap.com

ABSTRACT

Private set intersection enables two parties — a client and a
server — to compute the intersection of their respective sets
without disclosing anything else. It is a fundamental oper-
ation — equivalent to a secure, distributed database join —
and has many applications particularly in privacy-preserving
law enforcement. In this paper we present a novel protocol
that has linear complexity, is secure in the malicious model
without random oracles, is client set size-independent and
efficient. Furthermore, the computation of the intersection
can be outsourced to an oblivious service provider, as in se-
cure cloud computing. We leverage a completely novel con-
struction for computing the intersection using Bloom filter
and homomorphic encryption. For outsourcing we require
and introduce a new homomorphic encryption scheme which
may be of independent interest.

Categories and Subject Descriptors

D.4.6 [Operating Systems|: Security and Protection—
Cryptographic controls; C.2.4 [Computer-Communication
Networks]: Distributed Systems—distributed applications

General Terms
Algorithms, Security

Keywords

Private Set Intersection, Security, Privacy, Database Join,
Bloom Filter

1. INTRODUCTION

Private set intersection (PSI) enables two parties — a
client and a server — to compute the intersection of their re-
spective sets without disclosing anything about their inputs.
The client will learn the intersection of the two sets and the
server will learn nothing. PSI is a fundamental building

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASIACCS ’12, May 2-4, 2012, Seoul, Korea.

Copyright 2012 ACM 978-1-4503-0564-8/11/03 ...$10.00.

block for many applications — equivalent to a secure, dis-
tributed database join. Even as a stand-alone application,
it already has many real-world applications.

Imagine a federal authority maintaining a list of suspects.
It may want to search several commercial databases for ap-
pearances of suspects. A typical example is the terror watch
list (or no-fly list) maintained by the department of home-
land security (DHS) checked against flight passengers to and
from the United States. Clearly, the DHS wants to main-
tain confidentiality for this list, but also the innocent flight
passengers may have a right to or at least an interest in pri-
vacy. Other examples include criminal investigations where
the police (e.g. the FBI) wants to search databases of the
DMV, IRS, or employers. PSI can also be used to realize
private database queries [11]. Using PST they could obtain
the intersection of suspects and individuals in the database.
The privacy of all individuals not in the set of suspects will
be maintained.

Even the size of the client’s set may be sensitive which
is also hidden by our protocols and there may be a need to
authenticate the set of suspects, e.g. by a judge of a federal
court. In certified or authenticated PSI the client first au-
thorizes its set with a trusted third party. Such certification
prevents the client from obtaining the entire server’s set by
including all possible elements in its input.

We abstractly view PSI as the following computation.
There is a client C' which has a set {ci1,...,cv} of size v
and a server S which has a set {s1,...,sw} of size w. Af-
ter the computation the client has obtained the intersection
{c1,...,¢co}N{s1,..., Sw} and the server has learnt nothing.

We optionally extend this notion of PSI to outsourced
PSI (OPSI), as in cloud computing. There is a service
provider P and both client and server submit their sets to
the provider which then computes the intersection. Nev-
ertheless, we maintain privacy, i.e. the provider does not
learn anything about the inputs or the intersection. We
envision a scenario where the server stores its set at the
service provider, e.g. a list of convicted criminal offenders.
The client may then query the database while the server is
off-line. Our protocols readily extend to this scenario.

1.1 Contributions

In this paper we present several PSI protocol variants.
First, we present a preliminary PSI variant secure in the
semi-honest model. This variant explains our novel con-
struction based on Bloom filter [3] and homomorphic en-
cryption [19]. It is established practice in the database com-
munity to use Bloom filter for improved performance of dis-
tributed joins in databases [26, 30]. Bloom filter allow for

false positives when testing set inclusion, but the probabil-
ity of a false positive can be made arbitrarily small using
a parameter k. Our scheme has a second source of false
positives (the SYY technique in [32]), but this has also an
(independent) parameter [.

We then present our main result: a variant secure in the
malicious model (M PST). The MPSI variant additional
requires certification of the client set. Finally, we present
the OPSI variant for outsourcing the computation of the
intersection to an oblivious service provider P. The service
provider may not learn anything about the inputs or the
output (the intersection), but should perform most of the
computation. This is a common setting in cloud comput-
ing where service providers offer computational resources.
In order to enable this outsourcing we introduce a novel
construction for homomorphic encryption which may be of
independent interest.

The protocol variants we propose have a number of ad-
vantages compared to the state of the art. Particularly, we
combine the security and performance advantages of almost
all previous protocols in one protocol. Our protocols are

1. secure, because

(a) the M PSI variant is provably secure in the ma-
licious model. The OPS1I variant is secure in the
semi-honest model, since security in the malicious
model would undo all advantages of outsourcing
the computation. Previous PST protocols also se-
cure in the malicious model are [9, 10, 15, 20, 21,
22, 25].

(b) they require only minimal trust assumptions. We
are secure in the standard model (without ran-
dom oracles). Previous PST protocols also secure
in the standard model are [9, 21, 22, 25]. Our
only cryptographic assumptions is the quadratic
residuosity assumption. This is one of the weak-
est assumptions one can make and to the best
of our knowledge our protocols are the first PST
protocols to only make this assumption.

(c) they are client set size-independent. Although we
reveal an upper bound on the size of the client set
that is different from the security parameter, the
computational effort of the server is independent
of this bound. This is different than client set size-
hiding from the previous work of [1] where the
upper bound of the client set coincides with the
security parameter and is therefore indiscernible.

(d) the MPSI variant uses certified client sets. The
client has to certify its (entire) set with a trusted
third party who verifies that it adheres to some
policy. This prevents the client from “stealing”
the server’s input by submitting a set with all
possible elements as its input. This was first in-
troduced in [5] and later used as authenticated
client sets in [12] where certification is performed
on single elements only. The certification of the
entire set has the advantage that the client cannot
omit single elements and the trusted third party
can therefore enforce stricter policies.

2. efficient, because

(a) the PSI and MPSI variants have linear com-
plexity (O(k(v + w))). Previous protocols with
linear O(v + w) complexity are [12] (secure in
the semi-honest model) and [10, 20, 22] (secure
in the malicious model). The OPST variant has
quadratic complexity (O(kw?)). Both complexi-
ties are optimal, if in the OPSI variant there is
only one key (used for the homomorphic encryp-
tion scheme) and the provider is not supposed to
learn any information including the intersection’s
size.

(b) the PSI and MPSI variants do not use expen-
sive operations. We do not use modular expo-
nentiations or full-domain hash functions (which
also require modular exponentiations [8]). In-
stead we only use modular multiplications. The
OPS1 variant uses bilinear maps on elliptic curves
but the computation is performed by a powerful
service provider.

(c) the M PSI variant uses a similar (absolute) num-
ber of normalized modular multiplications as the
most efficient, linear-complexity protocols. De
Cristofaro et al. [10] perform an extensive anal-
ysis and De Cristofaro and Tsudik [12] present
implementation results. We use a similar number
of modular multiplications as the best protocol in
[10]. Nevertheless, as stated above we do not use
full-domain hashing (which has been ignored in
the analysis in [10]) and require much less pre-
computation. In [10] De Cristofaro et al. assume
pre-computation of fixed-base modular exponen-
tiations which may become a problem when deal-
ing with multiple protocol instances with different
parameters.

3. are the first that can be outsourced to an oblivious
service provider where

(a) both client and server only submit encrypted in-
put and the service provider performs the compu-
tation obliviously without learning anything about
the input (including the client set size) and the
intersection (including its size).

(b) the computation can be performed independently.
Independent from either the client’s or server’s
on-line availability, i.e. either client or server store
their (encrypted) input at the service provider
and the other party can query with their input
any time when required.

The remainder of the paper is structured as follows: We
next present related work on private set intersection in Sec-
tion 2. In Section 3 we review the homomorphic encryption
schemes used. We describe the protocols in Section 4 and
extend them to outsourcing in Section 5. We present our
conclusions in Section 6.

)

2. RELATED WORK
2.1 Security Models

Before reviewing previous PSI protocols we briefly ex-
plain the security models. Security in PST is evaluated by
comparison to an ideal model. In the ideal model, both
client and server submit their input to a trusted third party
which performs the intersection and returns the result (to
the client). This is compared to the real model implementing
the protocol.

According to the definitions by Goldreich [18] a semi-
honest adversary in the real model adheres to the protocol by
faithfully providing correct input, but may keep a record of
all interactions and later try to infer additional information
from it. Security against a semi-honest adversary requires
that client and server in the real model do not learn more in-
formation than in the ideal model, if they behave according
to the protocol specification.

To the contrary, a malicious adversary may behave arbi-
trarily in the real model. Security against a malicious adver-
sary implies that client and server in the real model always
do not learn more information than in the ideal model. For
every adversary in the real model there must be an adversary
in the ideal model that simulates the same behavior. Never-
theless, malicious adversaries may still refuse to participate,
abort prematurely or (worse) modify their input. We offer
client set certification to partially address this problem.

2.2 Private Set Intersection

PSI can be realized using general secure computation [33],
but specialized protocols are more efficient. Several such
specialized protocols have been proposed in the literature.
We group them by their basic technique.

PSI using Oblivious Polynomial Evaluation.

Using oblivious polynomial evaluation [27] one can evalu-
ate a polynomial without disclosing the coefficients. The
idea is to represent the set elements as the roots of the
polynomial and then obliviously evaluate it on the other
party’s set elements. Freedman et al. [15] present proto-
cols secure against semi-honest and malicious adversaries
(in the random oracle model). The computation complexity
is quadratic O(vw), although the number modular expo-
nentiations can be reduced to O(wloglogv). Kissner and
Song [25] extend the construction to additional set opera-
tions and multiple players. They present protocols secure
against semi-honest and malicious adversaries (in the stan-
dard model) using generic zero-knowledge proofs. The com-
putation complexity remains quadratic at O(vw). Dachman-
Soled et al. [9] presented an improved construction secure
against malicious adversaries based on [25] without generic
zero-knowledge proofs, although this increases the complex-
ity. Hazay and Nissim [21] also present improved zero-
knowledge proofs. Their construction is secure against ma-
licious adversaries in the standard model and has O(v +
w(loglogv + logw)) complexity, which can be further re-
duced in the random oracle model.

While some of these protocols already achieve security
against malicious adversaries in the standard model, none
of them achieves linear complexity as our protocols do.

PSI using Oblivious Pseudo-Random Functions.

Using oblivious pseudo-random functions [14] the client
can evaluate a keyed, pseudo-random function on its input
where the server holds the key. The idea is to compute the
intersection on the pseudo-random functions of the set ele-
ments. The client obtains the result of the pseudo-random
function obliviously. Hazay and Lindell [20] present the first
such protocols secure against semi-honest and malicious ad-
versaries. These are the first linear O(v + w) complexity
protocols. Jarecki and Liu [22, 23] further improved these
protocols.

While these protocols already achieve security in the stan-
dard model and linear complexity, their constants are quite
high and have been improved subsequently. We furthermore
provide client set certification, client set size-independence
and outsourcing.

PSI using Blind Signatures.

Using blind signatures [6] a client can obtain a signature
on its input without disclosing it. The idea is to present
(aggregate) signatures of the elements of a set, hash the re-
sult of the verification and compute the intersection on the
hashes. De Cristofaro and Tsudik [12] present protocols se-
cure against semi-honest adversaries. These protocols also
have linear O(v+w) complexity. De Cristofaro et al. [10] ex-
tend the protocols to security against malicious adversaries
in the random oracle model. They maintain linear complex-
ity and show that they have significantly lower constants
than [22].

Our protocols also have linear complexity and similar con-
stants, but do not need full domain hash functions and are
secure in the standard model. De Cristofaro et al. [10] ig-
nored the costs of full-domain hash functions in their anal-
ysis.

De Cristofaro et al. [10] also use the notion of authen-
ticated PSI where the client has to present its input to
a trusted third party. This has first been introduced for
mutual authentication (certification) by Camenisch and Za-
verucha [5], but their protocol has quadratic O(vw) com-
plexity. Ateniese et al. [1] later also present a protocol
loosely based on [12] which is client set size-hiding. It has
complexity O(w + vlogwv). They also present a variant in
which the client complexity can be reduced to O(v), but
incurs a penalty polynomial in the security parameter.

Furthermore, we are not aware of previous protocols where
the computation can be outsourced to an oblivious service
provider.

2.3 Bloom Filters in Cryptography

We present a novel construction for PSI using Bloom fil-
ter [3]. Bloom filter have been used in cryptography before.

Bellovin and Cheswick [2] and independently Goh [17] use
Bloom filter to securely search documents. It enables check-
ing whether a document contains certain keywords with-
out disclosing any of them. Their protection mechanism is
to compute the hash function as a cryptographic pseudo-
random function. This technique has been used in [31] to
securely query a database and in [29] for privacy-preserving
data mining.

Nojima and Kadobayashi [28] present an interactive proto-
col for securely checking set inclusion via Bloom filter with-
out disclosing the Bloom filter or the checked element. They
use blind signatures or oblivious pseudo-random functions

in order to compute the hash functions of the Bloom filter.
Their protocols are only secure against semi-honest adver-
saries. While these also have linear O(w) complexity, they
increase the constants compared to PST based on blind sig-
natures by the number of hash functions. We present a
completely novel construction based on homomorphic en-
cryption which is secure against malicious adversaries in the
standard model and has significantly reduced constants.
Kerschbaum [24] recently presented techniques to check

public-key encrypted Bloom filter using zero-knowledge proofs.

They enable to non-interactively check for the inclusion or
exclusion of an element from a Bloom filter without dis-
closing the Bloom filter content. They similarly use homo-
morphic encryption for protecting the content of the Bloom
filter. These protocols are complementary to the ones pre-
sented in this paper, since, although they are non-interactive,
they require to disclose the checked elements, i.e. one party’s
input. In this paper we present secure protocols which pro-
vide protect both parties’ input and furthermore can be out-
sourced without requiring trust in the service provider.

3. CRYPTOGRAPHIC BUILDING BLOCKS

3.1 Goldwasser Micali Encryption

Goldwasser-Micali (GM) encryption [19] is a public-key,
semantically-secure (IND-CPA) and homomorphic encryp-
tion scheme. GM encryption uses quadratic residuosity mod-
ulo a composite of two large primes p and ¢ (RSA modulus)
to encrypt one bit of plaintext. A quadratic residue r is a
number, such that there exists a number s: s = r mod n.
GM encodes a 1 as a quadratic non-residue and a 0 as a
quadratic residue. Particularly, the quadratic non-residues
are pseudo quadratic residues, i.e. their Jacobi symbols
are all 1. The hardness of differentiating pseudo quadratic
residues from quadratic residues is known as the quadratic
residuosity assumption.

We can summarize the operations as follows
KeyGen(k): Let k be a security parameter. Given k gen-
erate the private key sk = {p,q} and the public key pk =
{n = pq,u} where u is a pseudo quadratic residue.
Encrypt(xz, pk): Given plaintext x and public key pk pro-
duces ciphertext c. To encrypt a 0 choose a random number
r and compute rZ mod n (a quadratic residue). To encrypt a
1 also choose a random number r and computes ur? mod n
(a quadratic non-residue).

Decrypt(c, sk): Given ciphertext ¢ and private key sk pro-

duces plaintext z. Compute the Legendre symbol L (%)
and decide x = 1, if L (%) =—land z=0,if L (%) =1.

Let E(z) denote encryption of x under GM public key pk
and let D(c) denote the corresponding decryption. Multiply-
ing two ciphertexts, e.g. E(z)-F(y), results in an encryption
of the exclusive-or denoted by .

D(E(z)-E(y)) =z @y

GM encryption is semantically-secure (IND-CPA), i.e. one
cannot infer from a ciphertext and the public key whether
the ciphertext has a specific plaintext, e.g. by encrypting
the plaintext and then comparing it.

3.2 Sander Young Yung Technique

Sander, Young and Yung (SYY) [32] introduce a technique
that allows the computation of one logical-and operation

on ciphertexts. The input ciphertexts are encrypted using
GM encryption. Recall that we can perform any number
of exclusive-or operations on the ciphertexts. A ciphertext
E(x) is first expanded as follows:

Expand(c, pk): Given GM ciphertext ¢ = F(z) and public
key pk computes an expanded ciphertext ¢! = El(m) We
compute E(e;) repeatedly [times (0 < ¢ <).

1. Flip a fresh random coin r; € {0,1} (i =1,...,1).

2. Choose a ciphertext corresponding to the plaintext e;
according to the random coin and set

E(ei) = { E(z)-E1)=E(@®l) ifri=0

E(0) ifr, =1

The result is an I-length vector E'(z) = E(e1),..., E(e)).

If the input ciphertext is z = 1, then 2 ® 1 = 0 and E'(z)
is an all Os vector, i.e. e, =0 (0 < ¢ < 1). Otherwise, if the
input ciphertext x = 0, then e; is uniformly distributed in
{0,1}.
Decrypt(ct, sk): In order to decrypt E'(z), one decrypts
each E(e;) and if all e; = 0, decides z = 1 and if any e; = 1,
decides = 0. Note that there is a small probability 27
to falsely decrypt a ciphertext E'(0) as a 1. We denote this
decryption operation as D'(c!).

One can now compute a logical-and of any number of
expanded ciphertexts, e.g. E'(z) = E(e1),...,E(e;) and
E'(y) = E(f1),..., E(f;). We compute the pair-wise prod-
uct of the ciphertexts, i.e.

E'(zny) = E'(z)x E'(y)

= E(e1) E(f1),...,E(e) - E(f1)
= E(el@fl),...,E(el@fl)

If at least one of E'(z) or E'(y) consists of randomly dis-
tributed plaintexts in {0,1}, then E'(z A y) consists ran-
domly distributed plaintexts. Only if both are all Os plain-
texts, then E'(x A y) has all Os plaintexts (except with neg-
ligible probability in).

4. PRIVATE SET INTERSECTION
4.1 Bloom Filter

Bloom filter [3] provide a space- and time-efficient mean to
check the inclusion of an element in a set. An empty Bloom
filter b consists of m bits, all set to 0, and k hash functions h;
(0 <14 < k). Note that we do not require the hash functions
to be random oracles. We write b; (0 < j < m) for the j-th
bit of Bloom filter b. Bloom filter support the operations
Add(z) for addition of element x to the set and Test(x) to
test for inclusion of element x.

Create(m): m bits (0 < j < m) are set to 0

Vib; =0
and k hash functions h; (0 <4 < k) are published
Vi.h; : {0,1}" — {0,...,m — 1}

Add(z): The element z is hashed with all k£ hash functions
h; and the k bits at the resulting indices g; are set to 1.

Vi.gi = hi(z) => by, =1

Test(x): Again, the element x is hashed with all k£ hash
functions h; and if all k£ bits at the resulting indices g; are
set, then the test function returns 1 (true).

k—1
/\ bh;(2) (1)
=0

Bloom filter have a small probability for false positives,
i.e. Test(z) may return true, although z has never been
added. The more elements are added to the set, the more
likely false positives are. Given the number w of elements
to be added and a desired maximum false positive rate 27,
one can compute the necessary size m of the Bloom filter as

_ wk
T In%2

4.2 Protocol

The basic idea of our protocol is to send a Bloom filter
for the client set (bit-wise) encrypted using GM encryption.
Then we evaluate the Test function (Equation 1) for each el-
ement in the server set using the SY'Y technique. Finally, we
compute the exclusive-or between the expanded ciphertext
result and the server’s element and return it.

Let s;,; denote the j-th bit of the server’s element s;. In
the same way as we can expand the Bloom filter using the
SYY technique, we can also construct an expanded vector of
each of the server’s elements. Then the expanded ciphertext
of an element is

El(si) = E(Si,l), ey E(Si’l)

We use the same notation as for the SYY technique in order
to stress that we can perform common operations on both of
these ciphertexts. We can decrypt the expanded ciphertext
bit-wise and reconstruct s;. We denote a logical-and of fan-
in more than two as

HEl(xi) = E'(z1) X ... x E'(2n)

Figure 1 shows our private set intersection protocol (secure
in the semi-honest model).

The returned elements s’ are either elements in the inter-
section (if all Bloom filter bits are 1, i.e. /\?;& b, (s;) = 1) or
randomly chosen elements in {0, 1}l. Ideally, the parameter
l should be chosen larger than the logarithm of the input
domain size. Then, the server’s elements are padded with
0Os. It still remains crucial (in the malicious model) that
the client performs the set intersection and does not rely on
the trailing Os for the identification of the elements in the
intersection.

4.2.1 Security Proof

We prove security by comparison between the real model
and an ideal model. The real model is the execution of our
PSI protocol. The ideal model — as in many other secure
computations — consists of a trusted server implementing the
set intersection functionality N. The trusted server receives
the input from both — client ¢, ..., ¢, and server s1, ..., Sy,
respectively — and returns to the client the intersection of
their sets {c;} N {s;}. The server obtains no output. The
ideal model remains for all security proofs.

In a semi-honest protocol the clients do not deviate from
the protocol, therefore following Goldreich’s proof construc-
tion [18] we only need to simulate their views. A view is

the messages (and coin tosses) a party receives during pro-
tocol execution. The simulator may use the party’s input
and output in order to create an (computationally) indistin-
guishable simulation of the view. This proves that the party
cannot infer any additional information (except its input and
output).

THEOREM 1. If the quadratic residuosity assumption holds,
then protocol PSIT implements private set intersection in the
semi-honest model.

PROOF. The resulting security proof in the semi-honest
model is quite simple. The server does obtain any informa-
tion, since all its messages are encrypted (if the quadratic
residuosity assumption holds). Its view can therefore be
simulated using ciphertexts only. These are all independent
due to IND-CPA security of the GM encryption scheme.

The client only receives the messages for its output, i.e.
the intersection. A simulator of its view is therefore trivially
its output. O

4.3 Malicious Model

The M PSI variant secure in the malicious model uses
client set certification. In an M PSI protocol the client
presents his set to a trusted third party which attests that
this is the set used in the PSI protocol.

Let S(z) denote the signature of = by the trusted third
party. Furthermore, the trusted third party now generates
the key n,u for the GM encryption. This ensures that the
key is trustworthy and can be used by both client and server.

In the malicious model we need to account for the false
positives of a Bloom filter. A client could present a set to
the trusted third party and have it certified while knowl-
edgeable about false positives of this set with unintended
privacy leakages. The client could, for example, probe for
specific values at the server. We need to prevent the client
from maliciously generating hash collisions.

Hence, the trusted third party also generates an exponent
e that it only shares with the server S. All elements are
(RSA) encrypted using this exponent before added to the
Bloom filter. Nevertheless, we do not require the RSA as-
sumption to hold as [10] does, since the client does not know
e. Figure 2 shows the key generation and distribution by the
trusted third party.

In the M PS1T protocol the trusted third party certifies the
client set and submits signatures to the client. The client
submits the signature S(E(b1), ..., E(bm)) to the server for
verification during the PSI protocol. Of course, the server
also encrypts his set with the secret exponent by the trusted
third party before performing the encrypted Bloom filter test
operation. Figure 3 shows the interaction between client and
trusted third party.

4.3.1 Security Proof

We prove the security of the M PST protocol variant. Note
that while the server may not adhere to the prescribed com-
putation, e.g. by returning an encrypted element El(si)
without testing the Bloom filter, it does not attack correct-
ness of the computation. The client always locally performs
the intersection with its input set. The server can only vio-
late its own privacy by revealing additional input and there-
fore in most practical situations where privacy is relevant
he is not even inclined to do so. Therefore there is always
a server in the real model leading to the same output in

C ¢ b=Create(m)
i=1,...v:b.Add(c;)
C—S : nuED),...,Ebny)
S s odi=1,...,w: E'(s}) = E'(s;) x H?;&Expand(E(bhj(si)))
S—C : EYs)),...,E(sh)
C ey NS,y S0t
Figure 1: Private Set Intersection Protocol PSI
T T on,u,e
T—C : nu
T—S : nyue
Figure 2: Key Distribution in the M PSI Protocol
C—T : c,...,co
T ¢ b=Create(m)
i=1,...,v:b.Add(c;®* mod n)
T —C EMi),...,E(bm),S(E(b1),...,E(bm))
CcC—S EMi),...,E(bm),S(E(b1),...,E(bm))
S Doi=1,...,w: El(sg) = El(si) X H?;&Ea:pand(E(bhj(sie mod n)))

Figure 3: Malicious Private Set Intersection Protocol M PSI

the ideal model. Loosely speaking, there is no difference
between the server choosing s’ as an input and the server
“sneaking” s’ into the result.

We again prove security by comparison between real and
ideal model. The real model is the execution of the M PST
protocol this time. Furthermore, client and server may now
behave arbitrarily during protocol execution (except proto-
col abortion).

THEOREM 2. If the quadratic residuosity assumption holds,
then protocol M PSI implements certified private set inter-
section in the malicious model.

PROOF.

Confidentiality of the client:

All inputs are encrypted using IND-CPA secure encryp-
tion (under the quadratic residuosity assumption).
Confidentiality of the server:

The client cannot predict the encrypted element s¢ for
any element s of the server. It is indistinguishable from
a random number without the knowledge of e. Therefore
the client cannot force a hash collision — even if the hash
functions of the Bloom filter are reversible — with a chosen
set presented to the trusted third party. The occurrence of
any collision is random.

Hence, the probability for a false positive match between
the Bloom filter and an element in the server’s set is

27k 427!

The probability of falsely revealing an element by the server
is therefore negligible in k or [.

To ensure security against a malicious client (server), it
must be shown that for any possible client (server) behavior
in the real model, there is an input that the client (server)
provides to the TTP in the ideal model, such that his view

in the real protocol is efficiently simulatable from his view
in the ideal model.

Construction of a simulator SIMs from a malicious real-
world server S:

1. The simulator SIMs executes KeyGen(x) in the GM
encryption.

2. The simulator SIMg creates an all 1s Bloom filter
b, ie. by =1 (i = 1,...,m). The simulator sends
n,u, E(b1),..., E(bm) and simulates the signature S(E(b1),
ey E(bm)).

3. After receiving E'(s}),..., E'(s},) from the malicious
server S, the simulator SIMs decrypts si,...,s,.

4. The simulator SIMgs now plays the role of the ideal
server interacting with the TTP (and the ideal client).
The simulator submits s/, ..., s,, to the TTP.

Since GM encryption is IND-CPA secure under the quadratic
residuosity assumption, the view of the malicious server S
in the simulation by SIMgs and in the real protocol are in-
distinguishable. A
Output of (honest) real client C interacting with S:

For each set s,...,s, the client C receives, there is an
input set si,...,8w by the server S. The client builds the
intersection {ci,...,co} N{sl,..., sy} and each elements s;
has been used by the simulator in the ideal model, such that
the outputs are identical.

Construction of a simulator SIMc from a malicious real-
world client C:

1. The simulator SIMc now plays the role of the trusted
third party T performing the certification. After re-
ceiving c1, . . . , ¢, the simulator computes the encrypted

Bloom filter. It records the set C = {c1,...,c,} and
returns the encrypted and signed Bloom filter E(b1),
., E(bw), S(E(b1), ..., E(bm)).

2. The simulator STM¢c now plays the role of the real-
world server. After receiving E(b1), ..., E(bm), S(E(b1),
..., E(bm)) the simulator verifies the signature. If it
does not check, it aborts.

3. The simulator SIM¢c now plays the role of the ideal
client interacting with the TTP (and the ideal server).
The simulator submits C.

4. After receiving the intersection Z, the simulator SIMc
creates w — |Z| random elements and adds them and
the elements in Z to &' = {s},...,5,}. It encrypts
each bit of each s; and sends E(s11),...,E(s,;) to

the client C.

Since the set C equals the client set {c1,...,¢,} and the
set S only contains the elements in Z and randomly chosen
elements, the view of the malicious client C' in the simulation
by SIMc and in the real protocol are indistinguishable.

O
4.4 Data Transfer

It is often required to transfer additional data d; (e.g. a
database tuple) along with a matching element s;. Our pro-
tocols can be easily extended to accommodate data transfer.
Let Ek,(z) denote the symmetric encryption with key Kj.
The server chooses a random key K; in the symmetric en-
cryption system for each element s;. It uses the (bit-wise)
expanded ciphertext E'(K;) of the key instead of the ex-
panded ciphertext El(si) of the element in preparing its re-
sponse and also returns Eg, (si, d;) to the client. The client
can now recover the key K;, if it used to be able to recover
the element s; (i.e. in case of a match). Using the key it can
decrypt the data.

4.5 Comparison

We compare our M PSI protocol to the best known pri-
vate set intersection protocol in the malicious model in [10].
We compare correctness, communication complexity and com-
putational performance. Nevertheless, differently from [10]
we do not require random oracles or any assumption stronger
than hardness of determining quadratic residuosity.

4.5.1 Correctness

Bloom filter may produce false positives. In our case the
probability of a false positive is 27% +27!. Note that the pa-
rameters can be chosen to make this probability arbitrarily
small.

In [10] there is no correctness parameter stated, but it has
an implicit one depending on its security parameter x. In
their case the probability of a false positive is 27".

4.5.2 Communication

Depending on the correctness parameters we also increase
communication complexity. We transfer m + lw group ele-
ments. Assuming m is chosen depending on the client’s set
size, we transfer O(kv + lw) group elements.

The protocol of [10] requires less communication, such
that it is beneficial in congested networks. It transfers 7v+3

group elements and w + 1 cryptographic hashes. Although
we achieve better performance for very large client set sizes
(and k < 7In*2 < 4), these seem unreasonable assumptions
in practice.

4.5.3 Performance

We now compare the performance of our M PST protocol
to the performance of the best variant in [10]. A detailed
analysis of the performance of all PST protocols can be also
found in [10]. They conclude that the protocol in [10] has
the lowest constants of the linear complexity protocols. This
is underpinned by several implementations in [12].

GM encryption only uses modular multiplication and we
can prepare in a pre-computation phase all quadratic residues
r2 for randomizing the ciphertexts. The client does not need
to perform any encryption — this is done during certification
by the trusted third party. The server needs to expand the
ciphertexts and therefore compute the negation (k modular
multiplications). It does not need to randomize each cipher-
text in the expanded ciphertext, but only the result (! mod-
ular multiplications). Then it needs to compute the product
of the expanded ciphertexts and the element (k! 4+ ! modu-
lar multiplications). The server performs this operations for
each of its w elements. In summary, we have w(kl + k + 21)
modular multiplications.

De Cristofaro et al. [10] achieve 240w + 960v modular
multiplications. If we instantiate k = 16 and [= 32, then
we achieve 592w modular multiplications.

We emphasize that the analysis in [10] ignores v + w full-
domain hash functions. If we — following their convention
— estimate each full domain hash function as 240 modular
multiplications, then their cost increases to 480w + 1200wv.
Our protocol is more efficient, if the client set size v is at
least one tenth of the server set size w. Furthermore, in any
case the computational load on the client using our proto-
cols is significantly smaller and therefore better suitable for
computationally weak devices.

De Cristofaro et al. [10] also assume pre-computation of
fixed-base modular exponentiations. This may become a
problem when dealing with multiple protocol instances with
different parameters. If we ignore those (and, of course, our
pre-computation of quadratic residues), then our protocol is
more efficient, if the client set size v is at least 6% of the
server set size w.

We conclude that our protocol has similar constants to
the most efficient, linear-complexity version of [10]. We re-
mind the reader that our protocol is secure in the standard
model whereas [10] requires random oracles. As the first
PSIT protocol we show an outsourced variant in the next
section.

S. OUTSOURCING

A novel and useful feature of using Bloom filter for private
set intersection is that the computation can be outsourced to
an oblivious service provider, e.g. in cloud computing. The
goal of an oblivious service provider — as opposed to the
trusted third party in the ideal model — is that the provider
does not learn anything about the inputs or the intersection
(including its size). We modify our protocol as follows. The
client still submits its encrypted Bloom filter b for its set
{c1,...,cyv}, but the server now submits a Bloom filter b for
each s;. Note that the service provider does not have access
to the hash function results hj(s;). The service provider

C : b =Create(m)
i=1,...v:b.Add(c;)

C—P T’L,U,El(bl),...,El(bm)
S : i=1,...,w: b =Create(m)
b, Add(s;)
S—P : Ei(bla),., E1(Viym), E4(s1), -, Eb(sw)
P coi=1,...,w:
J=1,...,m: Ex(=bj Abi ;) = é(E1(1) - Ex(bs), E1(bi ;)
Ej(st) = Ej(si) x [}, Ezpand(E2(—bj AV ;) - E2(1))
P—C EY(sh),..., Ey(sl)

Figure 4: Outsourced Private Set Intersection Protocol OPSI

obliviously to the server’s set evaluates the Test function
(on the ciphertexts) as

/\ =(=bj A b y)
j=1

The problem is that this formula has multiplicative depth
2 which can no longer be evaluated using the SYY tech-
nique. We therefore construct a new combination of homo-
morphic encryption system that can evaluate this formula
and may be of independent interest. We use Boneh, Goh,
Nissim (BGN) encryption instead of GM encryption which
enables evaluating one multiplication of fan-in 2 (comple-
menting unbounded addition). Then after evaluating the
first logical-and we use again the SY'Y technique for the sec-
ond logical-and.

5.1 Boneh, Goh, Nissim Encryption

Instead of describing the BGN encryption system as in [4],
we will describe its simplification based on the techniques of
GM encryption [19]. We emphasize that while our simplifi-
cation reduces the plaintext domain from Z, to Zo, it also
has a few advantages. First, it is no longer necessary to solve
the hard problem of discrete logarithm for decryption, but
instead simple computations suffice. Second, the domain of
the plaintext does not need be kept secret by the private key
holder. Instead any party can perform operations, such as
negation, in the group of the plaintext.

5.1.1 Cryptographic Pairings

Given a security parameter k, let G; and G2 be two groups
of order n = pq for two large primes p and ¢, where the
bit-size of m is determined by the security parameter k.
Our scheme uses a computable, non-degenerate bilinear map
é:G1 x G1 — G2. Modified Weil or Tate pairings on super-
singular elliptic curves are examples of such maps. Recall
that a bilinear pairing satisfies the following three proper-
ties:

e Bilinear: for g,h € G1 and for a,b € Z7,, é(g* A =
é(g,)™

e Non-degenerate: é(g,g) # 1 is a generator of G2

e Computable: there exists an efficient algorithm to com-
pute é(g, h) for all g,h € G1
5.1.2 Algorithm

Recall that GM encryption is based on quadratic residues.
In the first stage we encrypt using elements in group G;. We

encode a 0 as a quadratic residue in G1, and a 1 as a pseudo
quadratic residue in Gi. Let Ei(z) denote the encryption
of plaintext x in this first stage and let D1 (c) denote the
corresponding decryption. Clearly, F1(z) is homomorphic
in the exclusive-or operation.

Di(Er(z) - Er(y) =Dy

Using the properties of the bilinear map we can then also
perform one logical-and operation on two ciphertexts. Since
the result of the bilinear map inherits the exponents, if one
operand is a quadratic residue, then the result will be a
quadratic residue. The result will be either a quadratic
residue or quadratic non-residue in G2. We then have a
second-stage encryption scheme following the GM construc-
tion. Let E2(z) denote the encryption of plaintext z in this
second stage and let D2 (c) denote the corresponding decryp-
tion.

D2(é(En(z), Ea(y))) =z Ay

And again, the second-stage encryption system is homo-
morphic in the exclusive-or operation.

Da(Ez(x) E2(y)) =z Dy

We can now use the SYY technique on the second-stage
encryption for unbounded fan-in logical-and. Let E}(x) de-
note the expanded ciphertext (using the same Ezpand algo-
rithm as in Section 3.2).

D5(Es(z) x E5(y)) =z Ay

Using this combination of homomorphic encryption sys-
tems we can evaluate the formula above on ciphertexts.

5.1.3 Security

We adopt the IND-CPA security model for our construc-
tion. Our encryption algorithm does not involve any new
primitives, but is a simplification of BGN encryption to GM
encryption. We therefore make the following proposition.

PROPOSITION 1. If the quadratic residuosity assumption
holds, then our encryption scheme is IND-CPA secure.

5.2 Protocol

In the outsourced protocol we introduce a third party,
the service provider P. Both, client and server, send their
encrypted inputs to the service provider who does not learn
anything about either inputs or output. Figure 4 shows the
protocol.

The protocol is only secure in the semi-honest model. Se-
curity against a malicious service provider — while not tech-
nically difficult — requires verifying the integrity of the com-
putation which has the same complexity as performing the
computation. Verifiable computation [7, 16] may help by
shifting this complexity to a pre-computation phase, but is
prohibitively expensive in practice due to its use of fully ho-
momorphic encryption. We therefore argue that security in
the malicious model annihilates any advantage of outsourc-
ing.

Outsourced computation can be performed independently
from either the client’s or server’s on-line availability. The
client can store an encrypted Bloom filter at the service
provider and the server may query new sets or elements
as they arrive. Vice-versa, the server may store encrypted
element-wise Bloom filter and bit-wise encrypted elements
and the client may query using new Bloom filter.

5.2.1 Security Proof

The security of this protocol (in the semi-honest model)
also trivially follows from the security of the encryption
scheme.

In case of outsourcing we have to also simulate the view of
the service provider — an additional party in the ideal model.
We consider the service provider as just another party in the
protocol with no input or output, i.e. its view is empty in
the ideal model. It does not interact with the trusted server.

THEOREM 3. If the quadratic residuosity assumption holds,
then protocol OPSI implements private set intersection in
the semi-honest model.

PROOF. The server receives no messages and the client
only the intersection, such that simulators are trivial.

In the protocol execution the service provider only receives
encrypted messages, such that a simulator only needs to
simulate ciphertexts. These are all independent due to IND-
CPA security of our encryption scheme. []

6. CONCLUSIONS

We have investigated private set intersection protocols.
We have presented a novel construction based on Bloom fil-
ter and homomorphic encryption. Our construction is secure
against malicious adversaries in the standard model. Fur-
thermore, we have the client certify its set with a trusted
third party and hide the size of the client set from the server.
Our construction is efficient. It has not only optimal com-
plexity, but also constants similar to protocols only secure
in the random oracle model. We extend our construction to
outsourcing the computation of the intersection to an obliv-
ious service provider. This makes private set intersection
amenable to secure cloud computing.

7. REFERENCES

[1] G. Ateniese, E. De Cristofaro, and G. Tsudik. (If) Size
Matters: Size-Hiding Private Set Intersection.
Proceedings of the 14th International Conference on
Practice and Theory in Public Key Cryptography,
2011.

[2] S. Bellovin, and W. Cheswick. Privacy-Enhanced
Searches Using Encrypted Bloom Filters. Cryptology
ePrint Archive Report 2004/022, 2004.

[3] B. Bloom. Space/Time Trade-offs in Hash Coding
with Allowable Errors. Communication of the ACM
13(7), 1970.

[4] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF
Formulas on Ciphertexts. Proceedings of the 2nd
Theory of Cryptography Conference, 2005.

[5] J. Camenisch, and G. Zaverucha. Private Intersection
of Certified Sets. Proceedings of the 13th International
Conference on Financial Cryptography and Data
Security, 2009.

[6] D. Chaum. Blind Signatures for Untraceable
Payments. Proceedings of CRYPTO, 1983.

[7] K. Chung, Y. Kalai, and S. Vadhan. Improved
Delegation of Computation Using Fully Homomorphic
Encryption. Proceedings of CRYPTO, 2010.

[8] J. Coron. On the Exact Security of Full Domain Hash.
Proceedings of CRYPTO, 2000.

[9] D. Dachman-Soled, T. Malkin, M. Raykova, and Moti
Yung. Efficient Robust Private Set Intersection.
Proceedings of the 7Tth International Conference on
Applied Cryptography and Network Security, 2009.

[10] E. De Cristofaro, J. Kim, and G. Tsudik.
Linear-Complexity Private Set Intersection Protocols
Secure in Malicious Model. Proceedings of
ASIACRYPT, 2010.

[11] E. De Cristofaro, Y. Lu, and G. Tsudik. Efficient
Techniques for Privacy-Preserving Sharing of Sensitive
Information. Proceedings of the 2nd International
Conference on Trust and Trustworthy Computing,
2011.

[12] E. De Cristofaro, and G. Tsudik. Practical Private Set
Intersection Protocols with Linear Complexity.
Proceedings of the 14th International Conference on
Financial Cryptography and Data Security, 2010.

[13] U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge
Proofs of Identity. Journal of Cryptology 1(2), 1988.

[14] M. Freedman, Y. Ishai, B. Pinkas, and O. Reingold.
Keyword Search and Oblivious Pseudorandom
Functions. Proceedings of the 2nd Theory of
Cryptography Conference, 2005.

[15] M. Freedman, K. Nissim, and B. Pinkas. Efficient
Private Matching and Set Intersection. Proceedings of
EUROCRYPT, 2004.

[16] R. Gennaro, C. Gentry, and B. Parno. Non-interactive
Verifiable Computing: Outsourcing Computation to
Untrusted Workers. Proceedings of CRYPTO, 2010.

[17] E. Goh. Secure Indexes. Cryptology ePrint Archive
Report 2003/216, 2003.

[18] O. Goldreich. Foundations of Cryptography: Basic
Applications. Cambridge University Press, 2004.

[19] S. Goldwasser, and S. Micali. Probabilistic Encryption.
Journal of Computer and Systems Science 28(2), 1984.

[20] C. Hazay, and Y. Lindell. Efficient Protocols for Set
Intersection and Pattern Matching with Security
Against Malicious and Covert Adversaries. Proceedings
of the 5th Theory of Cryptography Conference, 2008.

[21] C. Hazay, and K. Nissim. Efficient Set Operations in
the Presence of Malicious Adversaries. Proceedings of
the 13th International Conference on Practice and
Theory in Public Key Cryptography, 2010.

[22] S. Jarecki, and X. Liu. Efficient Oblivious

(23]

24]

25]

(26]

27]

Pseudorandom Function with Applications to
Adaptive OT and Secure Computation of Set
Intersection. Proceedings of the 6th Theory of
Cryptography Conference, 2009.

S. Jarecki, and X. Liu. Fast Secure Computation of
Set Intersection. Proceedings of the 7th International
Conference on Security and Cryptography for
Networks, 2010.

F. Kerschbaum. Public-Key Encrypted Bloom Filters
with Applications to Supply Chain Integrity.
Proceedings of the 25th IFIP WG 11.3 Conference on
Data and Applications Security, 2011.

L. Kissner, and D. Song. Privacy-Preserving Set
Operations. Proceedings of CRYPTO, 2005.

L. Michael, W. Nejdl, O. Papapetrou, and W.
Siberski. Improving Distributed Join Efficiency with
Extended Bloom Filter Operations. Proceedings of the
21st International Conference on Advanced
Networking and Applications, 2007.

M. Naor and B. Pinkas. Oblivious Transfer and
Polynomial Evaluation. Proceedings of the 31st
Symposium on Theory of Computer Science, 1999.

(28]

29]

(30]

R. Nojima, and Y. Kadobayashi. Cryptographically
Secure Bloom-Filters. Transactions on Data Privacy
2, 2009.

L. Qiu, Y. Li, and X. Wu. Preserving Privacy in
Association Rule Mining with Bloom Filters. Journal
of Intelligent Information Systems 29(8), 2009.

S. Ramesh, O. Papapetrou, and W. Siberski.
Optimizing Distributed Joins with Bloom Filters.
Proceedings of the 5th International Conference on
Distributed Computing and Internet Technology, 2009.
M. Raykova, B. Vo, S. Bellovin, and T. Malkin. Secure
Anonymous Database Search. Proceedings of the ACM
Cloud Computing Security Workshop, 2009.

T. Sander, A. Young, and M. Yung. Non-Interactive
CryptoComputing For NC1. Proceedings of the 40th
Symposium on Foundations of Computer Science,
1999.

A. Yao. Protocols for Secure Computations.
Proceedings of the IEEE Symposium on Foundations
of Computer Science, 1982.

