
Towards Mechanisms for Detection and Prevention

of Data Exfiltration by Insiders
Keynote Talk Paper

Elisa Bertino

Dept. of Computer Science
Purdue University

West Lafayette, IN 47907, USA

bertino@purdue.edu

Gabriel Ghinita

Dept. of Computer Science
Purdue University

West Lafayette, IN 47907, USA

gghinita@purdue.edu

ABSTRACT
Data represent an extremely important asset for any organization.
Confidential data such as military secrets or intellectual property
must never be disclosed outside the organization. Therefore, one
of the most severe threats in the case of cyber-insider attacks is
the loss of confidential data due to exfiltration. A malicious
insider who has the proper credentials to access the organization
databases may, over time, send data outside the organization
network through a variety of channels, such as email, crafted
HTTP requests that encapsulate data, etc. Existing security tools
for detection of cyber-attacks focus on protecting the boundary
between the organization and the outside world. Numerous
network-level intrusion detection systems (IDS) exist, which
monitor the traffic pattern and attempt to infer anomalous
behavior. While such tools may be effective in protecting against
external attacks, they are less suitable when the data exfiltration is
performed by an insider who has the proper credentials and
authorization to access resources within the organization. In this
paper, we argue that DBMS-layer detection and prevention
systems are the best alternative to defend against data exfiltration
because: (1) DBMS access is performed through a standard,
unique language (SQL) with well-understood semantics; (2)
monitoring the potential disclosure of confidential data is more
effective if done as close as possible to the data source; and (3)
the DBMS layer already has in place a thorough mechanism for
enforcing access control based on subject credentials. By
analyzing the pattern of interaction between subjects and the
DBMS, it is possible to detect anomalous activity that is
indicative of early signs of exfiltration. In the paper, we outline a
taxonomy of cyber-insider dimensions of activities that are
indicative of data exfiltration, and we discuss a high-level
architecture and mechanisms for early detection of exfiltration by
insiders. We also outline a virtualization-based mechanism that
prevents insiders from exfiltrating data, even in the case when
they manage to gain control over the network. The protection
mechanism relies on explicit authorization of data transfers that
cross the organizational boundary.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection – Access controls, Authentication,
Cryptographic controls, Information flow controls, Invasive
software (e.g., viruses, worms, Trojan horses)

General Terms
Management, Design, Security.

Keywords
Insider Threat, Data Exfiltration.

1. INTRODUCTION

Organizations ranging from government institutions (e.g.,
military, judiciary, etc.) and contractors to commercial enterprises,
research labs, etc., are witnessing an increasing amount of
sophisticated insider attacks that are difficult to mitigate with
existing security mechanisms and controls. Insider threats are
staged either by disgruntled employees, or by employees engaged
in malicious activities such as espionage. One of the most
important objectives of insiders is to exfiltrate sensitive data such
as military plans, trade secrets, intellectual property, etc.

The effectiveness of insider attacks is often higher than
conventional (external) attacks for a number of reasons. First,
insiders already possess credentials that allow them legitimate
access to machines and services inside the organization network.
Second, the actions of insiders originate at a trusted domain
within the network, and are not subjected to thorough security
controls in the same way as external accesses are. For instance,
within the organization network there is often no internal firewall,
allowing insiders to stage a broader range of attacks. Third,
insiders are often highly-trained computer technicians, who have
good knowledge about the internal configuration of the network
and the security and auditing controls being deployed. Therefore,
they may be able to circumvent conventional security
mechanisms. Finally, insiders may have physical access to
organization machines. This could give them the possibility to
perform a much broader range of actions than those available to
remote attackers.

Data exfiltration is one of the most serious threats posed by
malicious insiders. Leakage of confidential data about military
plans or business strategies has dire consequences. Note that,
detecting exfiltration by insiders is a difficult task, and one that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASIACCS '11, March 22–24, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0564-8/11/03…$10.00.

10

cannot be successfully performed with security controls that are
designed for external attacks. One of the reasons why
conventional firewalls/anomaly detection systems (ADS) are not
able to defend against data exfiltration is that insiders may choose
among many available venues to transfer data beyond
organizational boundaries. Often, exfiltrated data are piggybacked
on top of conventional traffic, such as web, email or instant
messaging. A study published in [2] measures the breakdown of
attacks involving data exfiltration with respect to the network
protocols and services used for transport. More than twelve
different methods of exfiltration are identified, including outgoing
HTTP requests, IRC channels, anonymous FTP, Microsoft
Windows network shares, SMTP, etc. Note that, due to the
flexibility available to attackers, traditional filtering/blocking
approaches are not feasible. If attackers use the same channel of
communication that is used by legitimate applications, then
filtering will block non-malicious traffic as well. Deep-packet
inspection is also not suitable, as insiders often use encoding or
encryption before shipping data off-site. Thus, existing network or
operating system level inspection tools that check for anomalous
activity are easily circumvented.

On the other hand, data are often stored in a DBMS which
enforces access control to ensure that only authorized subjects are
able to access data. However, access control does not solve the
problem of malicious insiders who have the proper credentials to
read data. Nevertheless, by analyzing the pattern of interaction
between subjects and the DBMS, it is possible to detect
anomalous activity that is indicative of early signs of exfiltration.
An ADS that functions at the DBMS layer (i.e., at the data source)
is a promising approach towards detection of data exfiltration by
malicious insiders for the following reasons: (1) DBMS access is
performed through a standard, unique language (SQL) with well-
understood semantics. It is therefore feasible to baseline behavior
at this layer, as opposed to doing so at the network or operating
system layer, where the diversity of mechanisms and protocols for
data transfer creates complexity that often confuses conventional
anomaly detection tools. (2) Monitoring the potential disclosure
of confidential data is more effective if done as close as possible
to the data source. Therefore, the DBMS layer is the most suitable
place for detection of early signs of data exfiltration. (3) The
DBMS layer already has in place a thorough mechanism for
enforcing access control based on subject credentials. Additional
information about the subject requesting the data, such as role,
clearance, etc., is instrumental in detection of early signs of
exfiltration. However, such fine-grained information is not
available at other layers of the organization network (e.g., the
network or OS layer).

In this paper, we discuss approaches for detecting and protecting
against data exfiltration from a DBMS by insiders. We argue that
protection should be achieved through careful monitoring of
activity at the DBMS layer. Specifically, we identify four
dimensions of tasks and actions executed by cyber-insiders during
data exfiltration missions; these are: identification of data sources,
data retrieval from the DBMS, lateral movement and exfiltration
proper, i.e., transferring data outside the organization. We
investigate typical actions for each of these four dimensions, and
we discuss possible fine-tuned mechanisms for early detection of
data exfiltration by insiders, in order to minimize the rate of false
positives.

We will also identify factors that characterize the behavior of
subjects when interacting with the DBMS. Based on these factors,

it is possible to build usage profiles and identify observable
DBMS activities that may be indicative of ongoing data
exfiltration. The next step is to devise expected usage baselines
and define threshold characteristics for each activity that will
result in flags signaling potential data exfiltration. The main idea
is to identify sequences and combinations of actions that are
characteristics of data exfiltration. Such actions are permanently
recorded in a repository of events. Subsequently, detection
mechanisms are executed that take as input the individual events
and determine with high accuracy whether an exfiltration mission
is in progress. We will also briefly touch upon strategies for
deciding when to raise alarms based on existing flags, such that
detection accuracy is high (i.e., eliminate false positives). In
addition, we will discuss the necessity of strategies that correlate
warning flags at the DBMS layer with flags provided by other
security information management (SIM) tools, network and OS
anomaly detection tools, etc., to improve the accuracy of
malicious insider detection.

The rest of the paper is organized as follows: in Section 2, we
identify a number of activities that are indicative of data
exfiltration by insiders, grouped along four distinct dimensions. In
Section 3, we outline the characteristics of a pattern matching
based mechanism to create profiles of nominal user behavior and
to detect anomalous behavior with respect to DBMS accesses. In
Section 4, we discuss mechanisms for prevention of data
exfiltration based on explicit authorization of data transfers
enforced at the organizational boundaries. We briefly survey
related work in Section 5 and we conclude with directions for
future work in Section 6.

2. IDENTIFICATION OF CYBER-INSIDER
MISSION ACTIVITIES, TASKS AND
ACTIONS

As the first step towards building accurate mechanisms for
detection of ongoing data exfiltration, it is important to identify
the individual events that may represent signs of malicious cyber-
insider actions. This step aims at characterizing data exfiltration
behavior, and must address fundamental questions such as:

� “What are the distinguishing characteristics of data
queries with the purpose of exfiltration?”

� “Which data sources does an insider target?”

� “What information should be collected to detect such
actions?”

In the rest of this section, we will explore in detail each of these
questions.

We envision an approach to data exfiltration detection which
builds upon the assumption that exfiltration represents an
anomalous state that can be distinguished from the legitimate
actions executed in a DBMS. Therefore, a central component of
the anomaly detection framework for DBMS consists of building
accurate DBMS access profiles. Such profiles can be created at
various levels of granularity, i.e., one profile for all database
subjects, or customized profiles for each particular role. In our
presentation, we will focus on building profiles for each database
role. Earlier work in [7] showed that role-based profiling is a
feasible approach that allows for accurate characterization of

11

Table 1. Summary of Dimensions and Actions within Cyber-
Insider Exfiltration Mission

profiles. Next, we enumerate some factors that must be considered
when building such profiles, with focus on the actions that are
typical of an insider exfiltration mission. Note that, some of these
actions occur individually within normal operations of DBMS.
Therefore, our aim is to provide a thorough characterization and
classification of suspicious actions, which will be used later on in
the detection phase (described in Section 3) to accurately separate
true exfiltration activity from false positives.

Table 1 presents a summary of the dimensions that make up the
insider exfiltration mission, and the corresponding activities.
Dimensions A and B are strictly related to DBMS operation and
the SQL query language. Dimensions C and D are concerned with
the correlation among DBMS events and events captured by other
tools such as network ADS, service logs and security monitors
(e.g., authentication/authorization logs), etc.

Dimension A: Identifying Sources of Data

As a first action in the cyber-insider exfiltration mission, the
adversary will search for sources of data that contain sensitive
information. In a DBMS, data objects are represented by tables,
views, rows and columns. Dimension A consists of discovery of

such objects that contain sensitive information, as well as
discovery of the authorization permissions associated to these
objects. We identify four actions within this dimension:

1. Learning the DBMS schema. The cyber-insider will issue
DBMS queries that reveal the structure of the database(s)
existent in the organization. This action can be performed
either directly, by querying the DBMS structure, or
indirectly, by querying certain repositories that contain
documentation, diagrams, etc., about the database structure.
In the former case, the “tell” of suspicious activity is
represented by the issuance of an unusual amount of DDL
(data definition language) queries, such as SHOW TABLES,
SHOW COLUMNS, etc. In the latter case, the sign of
suspicious activity is accessing internal data from a
documentation repository, which is typically clearly marked
within an organization and can be easily monitored.

2. Finding objects that contain sensitive data. This is the
equivalent of a “reconnaissance” step to decide which data to
target. Once the schema is known, the cyber-insider will
query selected parts of the data, to evaluate which objects
contain sensitive information worth exfiltrating. Due to the
large data size, the insider needs to carefully choose which
data to exfiltrate, in order to avoid triggering alarms based on
the amount of retrieved data (basic filters in use today trigger
alarms when the result set size, expressed either as the
number of records retrieved, or as the amount of data bytes
transferred, exceeds a certain threshold).

3. Learning authorization settings for tables, views,
columns and rows. The cyber-insider will not risk
attempting to read protected objects that typically trigger
alarms in case of unauthorized accesses. Therefore, the
insider will perform a necessary step of checking the
authorization settings first. Such actions will be represented
by commands that manipulate access control objects, e.g.,
SHOW GRANTS. Recording such commands in the event
log is common practice in existing DBMS, and a query
workload that consists mainly of such commands may be an
indicator of suspicious activity.

4. Issuing fake interrogations to conceal the tracks of the
exfiltration mission. Cyber-insiders are typically skilled
individuals that are aware of the security controls in place
within the organization. Therefore, the insider will constantly
attempt to circumvent such controls, and also to learn
whether his or her activities are currently under surveillance.
To that extent, the insider will issue fake queries in the
attempt to convey legitimacy to the activities executed from
categories A1-A3 above. “Decoy” queries that do not
provide useful information, or repetitive innocuous queries,
e.g.,

SELECT to_char(sysdate, 'DD-Mon-YYYY
HH24:MI:SS') FROM dual;

may be inserted on purpose to deceive alarms. Taking into
consideration such queries may give indication of suspicious
activity.

Dimension B: Retrieving Data from DBMS

Once the data sources have been identified, the second dimension
of activities executed by the cyber-insider is concerned with
retrieving the actual data from the database. Note that, this does

Dimension of
Activity

Action

(A)

Identify data
sources

1. Learn DBMS schema

2. Find objects that contain sensitive data

3. Learn authorization settings for tables, views,
columns, and rows.

4. Issue fake interrogations to conceal tracks of
exfiltration

(B)

Retrieve data
from DBMS

1. Transfer preparation (i.e., narrow-down)
queries

2. Bulk transfer queries

3. Issue decoy queries

(C)

Lateral
movement

1. Transfer of results within organization

2. Changes to authorization permissions

3. Hide/deactivate staging resources

4. Encryption of data

(D) Exfiltration
(proper)

1. Transfer of data outside organization

2. Hide data transfer within complex operations

3. Initiate fake transfers to check for surveillance
signs

12

not necessarily imply transfer of data outside the organization
(this aspect is addressed in Dimension D), as cyber-insiders
typically use staging servers within the same administrative
domain to cache data before exfiltrating them outside the
organizational boundaries.

1. Transfer Preparation. To avoid large-sized data
transfers, the cyber-insider will attempt to narrow down the
information that is being retrieved, in order to keep the result
count low (and hence not trigger alarms). Certain queries
may exhibit a clear pattern of “narrowing-down” in order to
restrict query result size. For instance, consider that the
insider wants to issue the query

SELECT * FROM employees WHERE proj_name =
”defense_project”;

Since many employees may be involved in the project, the
insider will first issue a COUNT query that returns the
number of results, but not the actual results. Such “guard”
queries, which are not typically occurring within normal
system operation may be an important sign of suspicious
activity.

2. Bulk Transfer Queries. The insider executes SQL queries
to retrieve confidential information from the database. Such
queries are likely to return a large number of results
compared to typical queries. Therefore, a sign of ongoing
exfiltration is that queries have low selectivity. The insider
will attempt to break down such queries into ones with
higher selectivity, but whose combined results still give the
desired information.

3. Issue decoy queries. To cover his or her tracks, the cyber-
insider will issue additional decoy queries that do not
provide any benefit with respect to the exfiltration mission,
but instead have the purpose of concealing malicious activity
and confusing anomaly detection tools. For instance, to
create queries with high selectivity (and therefore increase
the amount of query selectivity on average), query predicates
that are certain to return no results may be issued. For
instance,

SELECT * WHERE attribute_name !=
attribute_name;

will always return zero results, circumventing certain
syntactic query checkers that may look for patterns of data
retrieval “en-masse” (i.e., queries without selection
predicates).

Dimension C: Lateral Movement

In order to prevent detection, cyber-insiders often engage in a
number of activities aimed at concealing the attack tracks, as well
as at learning whether the activities of the attacker are being
monitored. To confuse the security controls, the cyber-insider may
perform the following activities:

1. Transfer of results within the organization. The insider
initiates a data transfer from the database client machine to a
staging server. This operation may use non-standard data
transfer protocols, and typically involves transferring large
amounts of data.

2. Changes of authorization rights and resource
permissions. With the aim of hiding its malicious actions,
the insider will restrict the access to the staged data, such that

other organization members with access to the machine will
not be able to detect the presence of the staged data. Signs of
such actions are the use of OS or database-level access
control configuration tools and wizards. Note that,
conventional auditing mechanisms should log such special
commands, in order to facilitate accurate detection, as
described in Section 3.

3. Hide and/or deactivate resources used for staging. The
insider may temporarily take a machine off the network, or
disable services such as remote access (for other users) to
cover his/her tracks. For instance, the insider may want to
prevent other users from being able to notice a decrease in
available disk space on the staging server. A sign of such
activity occurring may be represented by unexpected lack of
resource availability. Similar to case A3, such events should
be captured and logged for future analysis in the process of
exfiltration detection.

4. Encryption of data. The cyber-insider will attempt to
prevent other users or system administrators from finding
that confidential data is stored outside the allowed security
realm of the DBMS. For instance, routine file system
scanners may scan files for certain patterns that are indicative
of confidential data. To cover its tracks, the malicious cyber-
insider may encrypt data to prevent exposure of staged data.
Encryption typically requires considerable amounts of
computation; therefore signs of unusually high CPU
utilization may be indicative that some potentially malicious
anomalous activity is ongoing.

Dimension D: Exfiltration (proper)

This dimension is concerned with activities of transferring
sensitive data across the organizational boundaries.

1. Transfer of data outside the organization. The cyber-
insider will initiate a number of data transfers, possibly
disguised in the form of innocuous protocols such as HTTP.
The sign of this step may be the presence of network flows to
a host that is not typically part of the set of destination hosts
for outside connections.

2. Hide data transfer within complex operations. Rather
than issuing a stand-alone exfiltration transfer which may
trigger alarms, the insider may execute a series of legitimate
transfers in sequence, except for one single session that sends
the sensitive data. However, seen as a whole, the entire batch
of transfers may evade detection.

3. Initiate fake transfers to check for surveillance signs.
Before exfiltrating the actual data, the insider may attempt a
series of transfers that are innocuous, but similar in nature to
the characteristics of the planned exfiltration step (e.g.,
similar destination IP address, similar amount of bytes
transferred, etc). If an alarm is raised for the fake transfer, the
insider will learn that such an approach will be detected.
Furthermore, the insider will have a good motivation for the
innocuous transfer, so his/her identity will not be placed on a
watch list if an alarm is triggered (instead, the event will be
flagged as a false alarm).

13

3. ANOMALOUS EVENT CORRELATION
AND ANALYSIS

In this section, we discuss a high-level architecture of a DBMS-
centric mechanism for detecting data exfiltration by malicious
insiders. The key idea underlying this approach is to identify
actions, tasks and sequences thereof, that are part of the
exfiltration mission carried out by a cyber-insider. To distinguish
cyber-insider mission actions from legitimate user activities, it is
necessary to build profiles of nominal behavior for each role
present in the DBMS. These role profiles are subsequently used to
detect anomalous behavior that is indicative of exfiltration. Note
that, DBMS role access profiles fit naturally in typical deployment
contexts, since the database already has a Role Based Access
Control (RBAC) mechanism in place. Authorizations are specified
with respect to roles and not with respect to individual users. One
or more roles are assigned to each user and privileges are assigned
to roles. The system that we discuss is assumed to build a profile
for each role and will be able to determine role intruders, that is,
individuals that while holding a specific role deviate from the
normal behavior of that role.

We identify three main tasks that this architecture must provide,
as follows:

(1) Identify the individual actions pertaining to DBMS accesses
that are part of the cyber-insider mission to exfiltrate sensitive
information from within the organization. All such events must be
recorded in an audit log for further processing in subsequent
steps.

(2) Determine what are the inter-relationships and correlations
between individual actions and dimensions of activities, and
devise mechanisms that are capable of recognizing and
reconstructing cyber-insider exfiltration missions by assembling
together individual actions from the event log. One objective of
this step is to maximize detection accuracy, i.e., minimize the rate
of false positives.

(3) Cross-check the sequence of tasks and activities within the
recognized cyber-insider mission with other sets of events and red

flags raised at other monitoring layers, such as operating system
and network layer ADSs. Even though by themselves these
additional signals are not sufficient for effective exfiltration
detection, they are used to confirm the threats identified at the
DBMS layer and thus to increase the accuracy of the overall
mechanism.

Figure 1 shows the architecture of the proposed exfiltration
detection mechanism. The flow of interactions between the
modules involved in exfiltration detection is as follows: during
the training phase, the SQL commands submitted to the DBMS
(or read from the audit log) are analyzed by the profile creator
module to create the initial profiles of the database users. For
every SQL command under detection, the feature selector module
extracts the features from the queries in the format expected by
the detection engine. The detection engine then runs the extracted
features through the detection algorithm. If an anomaly is
detected, the detection mechanism submits its assessment of the
SQL command to the response engine according to a pre-defined
interface; otherwise the command information is sent to the
profile creator process for updating the profiles. Note that, the fact
that a query is anomalous may not necessarily imply ongoing
exfiltration. Other information such as network ADS and security
policies must also be taken into account. For example, if the user
logged under the role is performing some special activities to
manage an emergency, the detection mechanism may be instructed
not to raise alarms in such circumstances.

From a system design point of view, Figure 2 shows the various
components involved in event processing and correlation, as well
as the interaction between them. The DBMS records the access
events into the raw event log, which represents the input for the
analysis tasks. However, the raw event log is not suitable for
direct processing, since the data are not properly organized and
indexed to allow for fast response to a large number of exfiltration
detection strategies. Therefore, an index of events is created,
which contains sequences and combinations of events that can be
efficiently interrogated by the analysis modules. Furthermore,
additional metadata such as scores that measure the confidence in
correlation between certain sequences of events and the presence
of exfiltration are maintained and updated during analysis.

Figure 1: Architecture of DBMS-level Exfiltration Detection Mechanism

14

As part of this process, it is important to set up and maintain an
efficient structure for the event log repository, as well as to devise
fast techniques for indexing and querying the information related
to DBMS events. In addition, it is important to investigate the
aspects related to event correlation analysis and mechanisms for
raising alarm flags.

The SQL feature analysis component is an important part of the
model, and consists of a thorough characterization of SQL
commands with respect to a number of parameters that are
relevant to the action list identified in Section 2. In developing
this component, it is important to consider criteria such as query
type (e.g., DDL-data definition language or DML-data
manipulation language), query result set count, query selectivity,
number of tables involved in a query, etc. Another important
aspect to investigate is the use of methods for detection of query
equivalence. This aspect is important to decide whether the cyber-
insider is decomposing a large data transfer into a larger number
of individual queries, in order to avoid detection. This is likely to
be executed in action 2-bulk transfer of dimension B – Retrieve
data from DBMS (please see Table 1). Therefore, identification
and observation of queries correlated over time (although issued
in separate sessions to avoid detection) is very important.

As a result of the SQL analysis, a number of parameters and
criteria, as well as associated thresholds will be obtained and fed
as input to the analysis phase. The objective of the analysis is to
evaluate with the help of a training dataset to what extent certain
parameters, parameter value ranges and combinations thereof are
highly accurate in detecting exfiltration. For instance, query
selectivity may not necessarily be a clear indicator of exfiltration
by itself. If a query retrieves all the tuples in a table, it may be an
indication that an insider is trying to exfiltrate large amounts of
data, but it may also mean that some legitimate backup is being
performed to another system. Additional information such as the
role of the user executing the query may be needed to make the
correct decision of raising an alarm or not.

We envision two types of event information analysis that should
be performed to achieve accurate detection, each of them
supported by a distinct module:

� Batch Analysis. This module executes search heuristics
in the space of user actions and parameter values in order to
find combinations of actions and settings of parameter
thresholds that yield high accuracy for detection. Note that,
there is a feedback loop between the batch analysis module
and the index of events: as the batch analysis module
evaluates the detection accuracy for various event groupings
and parameter threshold settings, the output of the evaluation
is reflected in the score assignment within the index
structure.

The other input to the batch analysis module is the set of
access profiles and associated parameters that are obtained as
an outcome of the SQL features obtained in the SQL analysis
of actions identified in Section 2. The access profiles are
used to guide the heuristic search for tuning the detection
mechanisms, and the initial parameter settings from the SQL
analysis step are continuously updated to reflect the settings
corresponding to the most accurate combinations found so
far.
� Interactive Analysis. Often, it may not be feasible or
efficient to perform batch analysis in order to identify trends
and correlations in detection accuracy over a large space of
actions and parameters. This issue can be addressed by
creating a tool for interactive visualization of detection
accuracy over sub-sets of actions and parameters. This step
will allow a human operator to better understand the
correlations among actions and create efficient filters that
increase detection accuracy. Such a tool would be helpful to
better understand the characteristic features of exfiltration
missions in general, and may be used as a standalone product
as well.

4. MECHANISMS FOR PREVENTION OF
DATA EXFILTRATION

So far, we have discussed an architecture for detection of data
exfiltration based on anomaly detection at the level of DBMS
activities. Data mining and pattern-matching were employed to
create baseline usage profiles and to determine whether an

Figure 2: Framework for Event Processing and Exfiltration Mission Detection

Batch Analysis
Interactive Analysis

DBMS
System

DBMS Event
Log (Raw)

Index of Event
Sequences and
Combinations Event Grouping and

Parameter Threshold
Evaluation

Access Profiles and
Parameters

SQL Analysis

Interactive
Visualization and

Analysis

15

ongoing activity shows signs of malicious behavior or not.
However, such an approach is statistical in nature, and cannot
deterministically detect without false positives and negatives
whether exfiltration takes place. In this section, we look at two
alternative approaches that aim at preventing data exfiltration.
First, in Section 4.1 we discuss a technique for embedding
provenance within data in the form of difficult-to-remove
watermarks that are undetectable by attackers. Confidential data
are marked appropriately and border gateways can check whether
data are allowed to leave the organization. Second, in Section 4.2
we overview a virtualization-based architecture that creates
separate, isolated segments of the organization network, namely
one trusted and one non-trusted segment. Data that attempt to pass
from the trusted segment to the non-trusted one (which includes
outside networks and the Internet) are required to have explicit
credentials that are checked by an authorization gateway situated
at the border of the trusted network. Any data that are not
explicitly authorized are not allowed to leave the trusted domain,
hence exfiltration is not possible. To address cyber-insider threats,
a threshold-based credential generation mechanism can be
employed, whereby a number of independent principals are
required for a transfer to be permitted.

4.1 Tracking Lineage with Watermark-
based Provenance Embedding Techniques

One important aspect in detecting malicious insiders is to track
closely their activities. Earlier in Section 3, we have discussed the
importance of monitoring and logging network events. However,
tracking individual, disparate events may not always give a clear
indication of malicious activity. In addition, in order to correlate
multiple events, it is often required to track data items, and to
know what were the actions and tasks that lead to the generation
of those data items.

Consider that an insider plants malware in one of the organization
machines. In turn, the malware will affect certain files, either
locally on the same machine, or remotely on other machines on
the organization network. Since insiders may try to cover their
tracks before staging an attack, the malware may travel across
several hosts before starting to execute the attack proper.
Provenance and lineage techniques can help in the early
identification of malware propagation, and trigger alarms that
some malicious activity may be in progress. Thus, secure
collection and processing of provenance information can help
greatly in defending against data exfiltration attacks.

Tracking data and event lineage may be achieved using additional
tags that can be attached at various layers of abstraction (e.g.,
inside each network packet). On the other hand, such explicit tags
may be visible to the attacker, and alert the insider that his or her
actions are being monitored. The cyber-insider may thus react by
either delaying the attack, or attempting to circumvent the
provenance tracking mechanism. Therefore, it is desirable to
devise tracking mechanisms that are transparent and resilient to
removal, in the form of watermarks.

A watermark embedded in the network packets can serve the
purpose of tracking malicious activities in a stealthy fashion.
Furthermore, unauthorized possession of data by malicious
insiders may also be achieved with watermarks. Consider that an
insider gathers sensitive data from within the organization and
stores them on a compromised staging machine or server with the
purpose of exfiltrating them at a later time. If data are

watermarked, then a simple scanning software function can detect
the presence of such data (e.g., a plug-in for an anti-virus tool may
achieve this functionality). Possession of unauthorized data will
signal that an insider attack is in progress.

The embedded provenance information can serve as a criterion of
filtering data transfers at the organizational boundary gateway.
For instance, a trusted border router that knows the secret
transformation and/or transformation keys used to embed
provenance can check the lineage information within the data and
determine whether any confidential data were at the origin of the
generation of the current packet that is scheduled to leave the
organization. If the presence of the confidential data is detected,
then the packet will be dropped and an alarm will be raised
indicating attempted exfiltration by a malicious cyber-insider. The
provenance data can further be used for forensics purposes, to
narrow down the identity and/or source in the network where the
confidential data leak originated.

4.2 A Virtualization-based Mechanism for
Prevention of Data Exfiltration

Most often, getting access to important confidential data is the
main motivation of insiders who are spending considerable
amounts of time and resources to plan and execute sophisticated
attacks against carefully selected targets. Even if attackers are able
to compromise certain parts of the organizational network, the
damage inflicted may not be significant, unless critical
information about the organization is leaked. Such information
may include military secrets, specifications of proprietary
technologies, confidential business strategy details, etc.

In practice, full protection against cyber-insider attacks may be an
unfeasible goal, due to the complexity of organization-level
networks that often include a large variety of applications,
protocols, services, etc. This heterogeneity provides adversaries
with a broad spectrum of attack vectors, which complicates the
task of defending such networks. Therefore, it is important to
address the outcome when some of these attacks may succeed, and
in these scenarios it is essential to limit the ability to exfiltrate
confidential data. In the following, we will discuss an effective
mechanism that prevents such data leakage.

One of the reasons why conventional firewalls and ADSs are not
able to defend against data exfiltration is the fact that
sophisticated cyber-insiders may choose among many available
venues to transfer data beyond organizational boundaries. Often,
exfiltrated data are piggybacked on top of conventional traffic,
such as web, email or instant messaging. Figure 3 shows the result
of a study [2] that measures the breakdown of attacks involving

Figure 3: Breakdown of Data Exfiltration Attacks
per Transport Mechanism Used

16

data exfiltration with respect to the network protocols and services
used for transport. Note that, due to the flexibility available to
attackers, traditional filtering/blocking approaches are not
feasible. If attackers use the same channel of communication that
is used by legitimate applications, then filtering will block non-
malicious traffic as well. Deep-packet inspection is also not
suitable, as attackers often use encoding or encryption before
shipping data off-site. Thus, packet inspection tools that check for
tokens that may indicate sensitive packet contents are easily
circumvented.

Rather than using general-purpose filters, a more effective
approach is a mechanism based on credentials associated with the
data. Data items that are sensitive are marked correspondingly,
and require explicit authorization to depart the organization
network. Specifically, we envision a “confine-and-mark”
approach for protection against exfiltration of sensitive data. The
architecture of this approach is presented in Figure 4. The
confine-and-mark approach tackles the exfiltration problem from
two angles:

1. Restrict the segment(s) of the network from which

sensitive data can be accessed

2. Label sensitive data with cryptographic authorization

tokens, such that only data that have been approved for

transfer can leave the protected network

In summary, the two steps in the confine-and-mark approach work
as follows:

� Confine Step. Confinement of sensitive data is achieved
through a combination of network segmentation and
virtualization. Segmentation physically prevents sensitive
data from being sent to certain machines with low levels of
trust, whereas virtualization employs trusted virtual
machine monitors (VMM) that restrict access to sensitive
data only to trusted applications. The enforcement of
separation within the same physical machine can be done
using encryption, e.g., the Overshadow-style [3] approach.
� Mark step. Sensitive information is marked
accordingly, and the markup is transferred from one type

of data representation to another. For instance, if a file on
disk is marked confidential, all data packets that are
generated as a result of transferring the file must also
contain the proper label, and must be given special
authorization credentials to leave the network. It is
important to investigate authorization policy semantics
and enforcement for access to sensitive data. To control
the flow of sensitive data, cryptographic tokens should be
used, such that the integrity and confidentiality of the
markup can be ensured. To enforce transfer authorization
policies, it is necessary to develop mechanisms based on
application-level authorization gateways that will filter all
traffic originating at trusted machines/network segments.
Therefore, a trade-off emerges between the size of the
trusted segment and performance: the more trusted
machines, the more costly the transfer authorization step.
On the other hand, if the sensitive data flow is restricted to
few machines, most (non-sensitive) traffic will not need to
be routed through the gateway. The authorization checks
in this model can be enforced at lower OSI stack layers as
well, not only at the application layer. For instance, this
can be done by labeling and checking authorization for
individual network packets, or at the level of user-initiated
sessions.

The confine-and-mark approach raises several challenging
research problem in multiple areas, including formal modeling,
cryptography, networking and systems:

� Modeling and Specification of Lineage Information.
The set of sensitive data items is not static. Instead, it
evolves dynamically: every time computations are
performed on the data, the results are also sensitive, and
need to be protected. Tracking the data flow and ensuring
that sensitive data items are properly marked is not a
trivial task. In addition, a challenging goal is to devise
mechanisms that not only preserve the lineage of the data,
but also automatically extend the cryptographic
authentication and authorization tokens to derived results.
This way, there is no need to individually authorize
derived data items, improving system usability and

Figure 4: “Mark-and-Confine” Approach to Protect against Data Exfiltration

17

increasing transfer throughput. To ensure correctness, it is
important to derive formal models for automatic extension
of cryptographic tokens to derived data items.
� Authentication and Authorization. Each transfer of
sensitive data must be authorized by a subject (either an
individual or a system service) whose identity needs to be
verified. Therefore, secure authentication and
authorization must be implemented at the security gateway
level. Another important aspect is that of continuous
mechanisms for authentication and authorization. To
ensure that attackers do not attempt to re-use transfer
credentials, the security gateway may choose to request a
re-authentication of transfer after a certain timeout expires.
This can be repeated per-data-flow, or even within the
same flow, when security requirements are high.

Note that, since the main threat considered is that of
attacks originating at cyber-insiders, it is important to take
into account the situation where an individual that
possesses the proper credentials attempts to exfiltrate
confidential data (e.g., a high ranking executive, or a
system administrator with full access to the database). To
address such cases, it is important to devise threshold-
based mechanisms for authorization, whereby a number of
distinct principals (and their associated credentials) are
required to authorize a transfer. This way, no one single
principal can perform an attack.

Another important aspect is that of cryptographic key
management. Since our objective is to protect against
sophisticated cyber-insiders, and we assume that certain
security breaches may occur, storing cryptographic keys
within the reach of operating systems is not a feasible
approach. Instead, it may be necessary to investigate
secure key management techniques based on hardware
tokens. Even if cyber-insiders gain complete control over a
machine’s operating system, they can still not gain access
to the encryption keys. Of course, physical protection layer
controls must also be used for increased security.

� Systems issues. Virtual machines are a key component
of the proposed protection design. Virtualization ensures
that sensitive data are confined to trusted transfer paths,
and that it is not possible for the cyber-insiders to
exfiltrate data on alternate paths that are not subject to
authorization checks. However, the separation between the
trusted and the un-trusted domains must be carefully
planned, and take into account issues such as in-memory
protection of data, trusted storage, etc. Furthermore, the
use of virtualization as well as the application gateway
component results in additional overhead that may
considerably impact performance. Therefore, performance
optimization will play a key role in making the confine-
and-mark approach suitable for real-life scenarios.

� Network issues. The embedding of authorization tokens
in network packets must be done in a transparent fashion,
such that the impact on the existing network and routing
infrastructure is not significant. Most network devices do
not support any authentication or authorization
mechanisms, therefore the design of protocols to handle
modified packets must be done to allow transparent
handling of embedded security information.

5. RELATED WORK

Insider threat has been widely acknowledged [1, 7, 11, 12] as a
very serious and difficult to address cyber-security concern. There
are several factors that make insider threats very effective, such as
knowledge of the organization network, possession of valid
credentials, and the benefit of trust. Data exfiltration has been
recently recognized as an important research problem, and studied
in several contexts. In [4], it is shown how data can be exfiltrated
by embedding sensitive information in conventional browser
HTTP requests. In [5], the authors study exfiltration through
covert channels. For instance, the rate of sending packets to a
destination can be tuned such that the frequency or inter-arrival
time of packets corresponds to an encoding of the data. The work
in [6] proposes a framework for detection of data exfiltration by
deploying a transparent network bridge at the edge of the network.
The detection technique relies on statistical and signal processing
methods.

Protection of data in the presence of untrusted users or software
has been addressed in [3] where a virtual machine monitor is
deployed to separate sensitive data and applications from other
malicious or untrusted software, e.g., malware, compromised
operating system, etc. The mechanism for protection against data
exfiltration discussed in Section 4 also relies on virtualization, but
deals with more comprehensive challenges related to data lineage
and explicit authorization of transfers.

Several approaches dealing with intrusion detection (ID) for
operating systems and networks have been developed in [13-18].
However, they are not adequate for data exfiltration due to their
limited ability to assess what are the contents of network packets
or OS-level messages. Also, they do not work at a sufficiently
fined-grained level that allows for accurate identification of
exfiltration missions, and they do not focus on cyber-insiders.

An abstract and high-level architecture of a DBMS incorporating
an intrusion detection (ID) component has been recently proposed
in [10]. However, this work mainly focuses on discussing generic
solutions rather than proposing concrete algorithmic approaches.
In [16] a method for ID is described which is applicable only to
real-time applications, such as a programmed stock trading that
interacts with a database. The key idea pursued in this work is to
exploit the real-time properties of data for performing the ID task.

Anomaly detection techniques for detecting attacks on web
applications have been discussed by Vigna et al. [19]. A learning
based approach to the detection of SQL attacks is proposed by
Valeur et al. [20]. The motivation of that work is similar to the
approach we described in Section 3. Their methodologies,
however, focus on detection of attacks against back-end databases
used by web-based applications. Thus, their ID architecture and
algorithms are tailored for that context. Our work, on the other
hand, focuses on a general purpose approach towards detection of
anomalous access patterns in a database as represented by SQL
queries submitted to the database.

DEMIDS is a misuse-detection system, tailored for relational
database systems [8]. It uses audit log data to derive profiles
describing typical patterns of accesses by database users. Essential
to such an approach is the assumption that the access pattern of
users typically forms a working scope which comprises sets of
attributes that are usually referenced together with some values.
The idea of working scopes is captured by mining frequent
itemsets which are sets of features with certain values. Based on

18

the data structures and integrity constraints encoded in the system
catalogs and the user behavior recorded in the audit logs,
DEMIDS describes distance measures that capture the closeness
of a set of attributes with respect to the working scopes. These
distance measures are then used to guide the search for frequent
itemsets in the audit logs. Misuse of data, such as tampering with
the data integrity, is detected by comparing the derived profiles
against the organization’s security policies or new audit
information gathered about the users. The goal of the DEMIDS
system is two-fold. The first goal is detection of malicious insider
behavior. Since a profile created by the DEMIDS system is based
on frequent sets of attributes referenced by user queries, the
approach is able to detect an event when a SQL query submitted
by an insider does not conform to the attributes in the user profile.
The second goal is to serve as a tool for security re-engineering of
an organization. The profiles derived in the training stage can
help to refine/verify existing security policies or create new
policies. The main drawback of the approach presented in [8] is a
lack of implementation and experimentation. The approach has
only been described theoretically, and no empirical evidence has
been presented of its performance as a detection mechanism. The
approaches in [7,11,12] are currently the state-of-the-art in
DBMS-layer intrusion detection, and their architecture is similar
to the one discussed in Section 3.

6. CONCLUSION
Cyber-insider attacks are very effective and often highly
damaging, due to their knowledge about the organization and their
ability to exfiltrate confidential data. Insiders reside within the
trust domain of an organization, they are not subject to the same
security controls that keep external attackers at bay, and they have
valid credentials to access systems and services within the
organization. In this paper, we have identified dimensions of
activities that are indicative of data exfiltration by insiders, and
we argued that a DBMS-layer architecture for exfiltration
detection is the most suitable approach to defend against this
threat. We outlined mechanisms based on pattern matching that
create baseline profiles for database users and detect anomalies
that are indicative of malicious behavior. Finally, we have
discussed a possible mechanism for prevention of exfiltration
using provenance tracking and virtualization. Note that, although
we have presented these approaches independently, in practice
they can all be combined to achieve stronger protection from
insider threats. An interesting direction for future research is to
devise highly accurate detection tools and secure provenance
techniques that can effectively protect against exfiltration while
keeping the system overhead low, in order not to slow down
legitimate data accesses and transfers.

7. REFERENCES
[1] J. Leyden, “Geeks, squatters and saboteurs threaten corporate

security”,
http://www.theregister.co.uk/2005/12/15/mcafee_internal_se
curity_survey/

[2] N. J. Percoco, “Data exfiltration: how data gets out”,
Spiderlabs report. Available online at
http://www.csoonline.com/article/570813/data-exfiltration-
how-data-gets-out

[3] X. Chen et al, “Overshadow: A Virtualization-Based
Approach to Retrofitting Protection in Commodity Operating

Systems”, In Proc. Of Intl. Conf. on Architectural Support
for Programming Languages and OS (ASPLOS '08)

[4] K. Born, “Browser-Based Covert Data Exfiltration”, In
Proceedings of the 9th Annual Security Conference, Las
Vegas, NV, April 7-8, 2010

[5] A. Giani, V. H. Berk, G. V. Cybenko, “Data exfiltration and
covert channels”, In Proc. of Sensors, Command, Control,
Communications, and Intelligence (C3I) Technologies for
Homeland Security and Homeland Defense, 2006

[6] Y. Liu, C. Corbett, K. Chiang, R. Archibald, B. Mukherjee,
D. Ghosal, “SIDD: A Framework for Detecting Sensitive
Data Exfiltration by an Insider Attack,” In Proc. of Hawaii
International Conference on System Sciences, Jan., 2009.

[7] A. Kamra, E. Terzi and E. Bertino, “Detecting Anomalous
Access Patterns in Relational Databases”, Very Large Data
Bases Journal (VLDBJ), 2008.

[8] C. Chung, M. Gertz and K. Levitt, “DEMIDS: a misuse
detection system for database systems”, in Integrity and
Internal Control in Information Systems: Strategic Views on
the Need for Control, IFIP TC11 WG11.5, 2000.

[9] S. Wenhui and T. Tan, “A novel intrusion detection model
for securing web-based database systems”, In Proc. of the
Annual Computer Security Applications Conference
(ACSAC), 2002.

[10] P. Liu, “Architectures for intrusion-tolerant database
systems”, In Proc. of the Annual Computer Security
Applications Conference (ACSAC), 2002.

[11] A. Kamra, E. Bertino: “Privilege States Based Access
Control for Fine-Grained Intrusion Response”. RAID 2010:
402-421

[12] A. Kamra, E. Bertino: “Design and Implementation of an
Intrusion Response System for Relational Databases”. IEEE
Trans. on Knowledge and Data Engineering (TKDE), 2010

[13] S. Axelsson, “Intrusion detection systems: A survey and
taxonomy,” Tech. Rep. 99-15, Chalmers Univ., Mar. 2000.

[14] K. H. A. Hoglund and A. Sorvari, “A computer host-based
user anomaly detection using the self-organizing map,” in
Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks (IJCNN), 2000.

[15] T. Lane and C. E. Brodley, “Temporal sequence learning
and data reduction for anomaly detection,” ACM
Transactions on Information and System Security (TISSEC),
vol. 2, no. 3, pp. 295–331, 1999.

[16] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. Neumann,
H. Javitz, A. Valdes, and T. Garvey, “A real - time intrusion
detection expert system (ides)”, Technical Report, Computer
Science Laboratory, SRI International, 1992.

[17] R. Talpade, G. Kim, and S. Khurana, “Nomad: Traffic-
based network monitoring framework for anomaly
detection,” in Proceedings of the 4th IEEE Symposium on
Computers and Communications (ISCC), 1998.

[18] V. Lee, J. Stankovic, and S. Son, “Intrusion detection in
real-time databases via time signatures,” in Proceedings of
the IEEE Real-Time Technology and Applications
Symposium (RTAS), 2000.

[19] C. Kruegel and G. Vigna, “Anomaly detection of web-based
attacks,” in Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2003.

[20] F. Valeur, D. Mutz, and G. Vigna, “A learning-based
approach to the detection of sql attacks,” in Proc. of Intl.
Conference on detection of intrusions and malware, and
vulnerability assessment (DIMVA), 2003

19

