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ABSTRACT
Network intrusions become a signification threat to network
servers and its availability. A simple intrusion can suspend
the organization’s network services and can lead to a finan-
cial disaster. In this paper, we propose a framework called
TimeVM to mitigate, or even eliminate, the infection of a
network intrusion on-line as fast as possible. The frame-
work is based on the virtual machine technology and traffic-
replay-based recovery. TimeVM gives the illusion of “time
machine”. TimeVM logs only the network traffic to a server
and replays the logged traffic to multiple “shadow” virtual
machines (Shadow VM) after different time delays (time
lags). Consequently, each Shadow VM will represent the
server at different time in history. When attack/infection
is detected, TimeVM enables navigating through the traf-
fic history (logs), picking uninfected Shadow VM, removing
the attack traffic, and then fast-replaying the entire traffic
history to this Shadow VM. As a result, a typical up-to-date
uninfected version of the original system can be constructed.

The paper shows the implementation details for TimeVM.
It also addresses many practical challenges related to how
to configure and deploy TimeVM in a system in order to
minimize the recovery time. We present analytical frame-
work and extensive evaluation to validate our approach in
different environments.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Invasive software; D.4.8
[Operating System]: Performance—modeling and predic-
tion

General Terms
Design, security, virtual machine, traffic replay, performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’09, March 10–12, 2009, Sydney, NSW, Australia.
Copyright 2009 ACM 978-1-60558-394-5/09/03 ...$5.00.

Keywords
intrusion, mitigation, replay, recovery

1. INTRODUCTION
A simple intrusion can cause an organization to suspend

its network activities and subsequently lead to a financial
disaster. To increase system availability, many organiza-
tions deploy firewalls and intrusion detection systems (IDS)
for the purpose of blocking or detecting attacks [13]. How-
ever, due to the existence of novel attacks, unknown vul-
nerabilities, or misconfiguration in firewall or IDS devices,
the possibility of successful attack and hence system un-
availability is significantly high. Therefore, a quick response
to eliminate - or even mitigate - the attack’s infection and
recover the system is necessary for all critical services.

To achieve the above goal, log-replay technique can be
used. In which, a snapshot of the current system state is
captured at specific times, and the system events and states
are recorded in a log file. A replay process uses the snapshot
along with the information logged to replay the sequence
of states/events a system passed through during execution.
Once the replay process is done, the system is recovered.

Log-replay-based recovery can be utilized to improve the
network service availability. Upon detecting the attack and
discovering its sources, one can roll-back the system execu-
tion to an earlier point and extract the cause of infection.
This technique has a great merit that it does not require a
complete awareness of the attack, such as zero-day attack.

Several researchers have focused on log-replay-based re-
covery [11, 8, 15, 18, 21]. However, these works are limited
because they were designed for debugging or software failure.
Another problem with most of these techniques is that they
require OS modifications or a specific hardware platform in
order to log all system events in kernel [6] and process lev-
els [10, 7, 9]. This is not only complex and expensive, but
it also requires very large log files.

Log-replay-based recovery is usually implemented in vir-
tual machines. Virtualization has been used extensively in
the area of fault-tolerance, security, and system recovery.
This is because virtualization has several advantages that
make it better suited for providing reliability and security [3,
20]. One advantage is that virtualization provides a strong
isolation between virtual machines. If an operating system
has been compromised by an attack, the whole processes are
then compromised. However, with virtualization, if a virtual
machine (VM) has been compromised, other VMs that run
other applications will continue to run without any serious
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threat. Another advantage is that it is much easier to ma-
nipulate the state of a virtual machine than the state of a
physical machine. The state of the virtual machine can be
saved, cloned, encrypted, migrated, and restored, none of
which is easy to do with physical machines.

In this paper, we propose an approach for log-replay-based
recovery called TimeVM. TimeVM consists of a set of identi-
cal virtual machines. Also, rather than logging system stats
and events, TimeVM logs only the network traffic. The traf-
fic logged is sent (as a replay) to these virtual machines in
different time window. This means that these machines rep-
resent multiple historical snapshots of the original virtual
machine at different times in the past. If the original ma-
chine has been contaminated, there is at least one virtual
machine in the history that is not contaminated yet. The
steps of system recovery are performed as follows. (i) Rolling
back by selecting a clean virtual machine, (ii) extracting the
infected traffic, and (iii) rolling forward by replaying the en-
tire traffic to the selected virtual machine. As a result, a
typical up-to-date uninfected version of the original system
has been constructed.

There are several challenges in designing and configuring
TimeVM. The first challenge is how to replay the network
traffic successfully. The second challenge is how to determine
the suitable number of virtual machines we need and how
to space them such that the recovery time is minimum. We
formulate this issue as an optimization problem and we use
an available evolutionary algorithm to solve it. TimeVM
can be deployed for many network servers such as HTTP
web server, SMTP server, Telnet Server, etc.

The rest of the paper is organized as follows. Section 2
summarizes some of the previous works on log-replay-based
recovery along with some other techniques for improving the
availability of network services. Section 3 gives a high level
overview of TimeVM. The analytical model and formulation
of recovery time optimization problem is presented in section
4. In section 5, we give a detailed view on TimeVM imple-
mentation. In section 6, we evaluate our framework using
different configuration. Finally, we conclude in section 7.

2. RELATED WORK
In literature, there are several techniques in software fail-

ure and attack mitigation in order to provide high system
availability. We first discuss those techniques that are re-
lated on log-replay-based recovery and then we discuss other
techniques that improve the availability of network services.

Instant Replay [11] is a general replay for parallel pro-
grams. It logs the relative order of significant events as they
occur without logging the data associated with such events.
In the same track, Flashback [18] is a lightweight operating
system that provides fine-grained replay capability at the
application level. It uses shadow processes to roll back in-
memory state of a process at specific execution point, and log
a process’ interactions with system to support deterministic
replay. The purpose of Flashback is to help debug software.
Both techniques are limited on the application level.

Flight Data Recorder (FDR) [21] is an offline full-system
recovery that replays the last one second of execution before
a crash. FDR continuously logs all the inputs coming into
the system, such as I/O, interrupts, DMA transfers. This
approach is not suitable for long-run system, such as network
servers.

BugNet [15] focuses on replaying only user programs and

shared libraries to find application level bugs. It logs the
register file contents at any point in time, and the load values
that occur after that point. This allows BugNet to collect
enough information to perform deterministic of program’s
execution, without having to replay what goes on during
interrupts and system calls. The disadvantage of BugNet is
that it is limited on application level.

Revirt [8] is a logging and replay system that runs on a
VM. If an attack is detected, Revirt can replay the whole
system for analyzing the intrusion. Revirt is implemented
in a specified virtual machine called UMLinux.

ExecRecorder [7] is a full-system replay for post-attack
analysis and recovery. It has the capability to replay the exe-
cution of an entire system by checkpointing the system state
and logging architectural nondeterministic events. However,
ExecRecorder is implemented only in a uniprocessor system.
Moreover, the log file size varies from one system to another.
In our approach, the log file depends on the traffic load.
TimeVM does not log the payload of its packet. It only logs
the payload of client packets. This makes our log file very
small compared to other techniques.

Dunlap et al. published a new system called SMP-Revirt
[9]. SMP-Revirt is also a full system log and replay on multi-
processor virtual machine that is capable to run on commod-
ity hardware. It utilizes hardware page protections to detect
races between virtual CPUs. Although SMP-Revirt system
can recover the entire system, it requires a huge amount of
storage space. As they reported, 300GB disk can be filled
in few days.

TCP or connection migration is another dimension to pro-
vide high availability for network services. Snoeren et al.
[17] uses TCP migration options to record the TCP state
for connection resumption. Their approach inserts a HTTP-
aware module between the application and the transport lay-
ers to log the inter-layer interactions. The disadvantage of
this approach is that it requires a modification to the TCP
implementations. Migratory TCP [19] and Ray et al. [16]
allow online connections to be migrated from one server to
another server. When a server is under an attack, the migra-
tion process is triggered, which causes the client to reconnect
to a replica server. The drawback of these two techniques is
that it requires an extension protocol in both sides.

3. TIMEVM ARCHITECTURE

3.1 System Overview
In this section, we give a high level view of our proposed

framework architecture. Before describing TimeVM compo-
nents, we first need to describe the idea behind it. TimeVM
is based on virtual machine technology and log-replay-based
recovery. It can be used to provide high availability for net-
work services, such as HTTP, FTP, SMTP, etc. TimeVM
requires that the network services should be installed on a
virtual machine. This virtual machine will be cloned into
several virtual machines. Moreover, TimeVM records all
traffic between the original VM and clients, and keeps it in
a special file called traffic log. The recorded traffic will be
sent by several replay processes to the cloned virtual ma-
chines in different times. In other words, each cloned VM
receives the same traffic that was received by the original
VM but after a predefined time period called time lag.

Now, If an attack occurred to the original virtual machine
and it has been detected and discovered after a time say T ,
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Figure 1: Framework Architecture

then TimeVM will perform the following actions. It trig-
gers all replay processes that are configured with a time lag
greater than T to accelerate the process of packet replaying.
It invokes a cleanup process to remove all virtual machines
that have a time lag less than T . When all recorded traffic
have been replayed, TimeVM reconfigures the system such
that the nearest cloned VM becomes the original VM, the
next nearest cloned VM becomes the first cloned VM, and
so forth. Finally, TimeVM creates new virtual machines (as
a duplication of the new original VM) to substitute the re-
moved ones and configures them with an appropriate time
lag. It is worth to mention that the information about the
source of the attack (such as IP address and/or port num-
ber) will be provided to the replay processes so as to prevent
sending the infected traffic back again to the cloned VM’s.

Figure 1 illustrates the main components of TimeVM. The
framework is composed of a gateway server and several vir-
tual machines. One virtual machine will be used to represent
the original VM. We will call this virtual machine the Live
VM. Other virtual machines that are a duplication of the
Live VM are called the Shadow VMs. Note that all these
virtual machines - the Live VM and the Shadow VMs - are
hidden from the outside world. Clients cannot connect to
the Live VM directly; instead they can only connect to the
gateway server. In other words, when a client sends a re-
quest to the gateway server, the server in turn forwards the
request to the Live VM. When the server receives back the
response of the Live VM, it will deliver it to that partic-
ular client. The client will see that the request has been
processed by the gateway server and not by the Live VM.

The gateway server is a Linux server and it runs three
processes: TimeVM Manager, Network Distributor Daemon
(NetDd) and Replay process. TimeVM Manager is respon-
sible to manage and control NetDd and Replay processes.
It is also responsible to communicate with each virtual ma-
chine in the system. NetDd is responsible to log and redirect
the traffic between the Live VM and clients. It is acting as
a transparent NAT server. Replay process is responsible
to send/replay the logged traffic to a Shadow VM. There
are several replay processes and each one is associated with
a single Shadow VM. The implementation details of these
processes will be given in section 5.

NetDd and Replay processes share a common file, which
is the traffic log. The format of the log file is quite similar to
the libpcap file format in the sense that each packet has two
records: the packet header and the packet data as shown in
Figure 2. The packet header consists of the following fields:

Timestamp = 0 Length = 62 Source = CLIENT Data Timestamp = 1 Length = 88 Source = SERVER Data Timestamp = 43 Length = 122 Source = CLIENT Data
Figure 2: Log file format

packet timestamp, packet length, and packet source. Packet
timestamp records the time when this packet is captured,
and it plays a very important role when packets are replayed.
Packet length represents the total length of the packet data.
Packet source indicates whether this packet comes from a
client or from the Live VM. We need this field because it
facilitates the work of the replay process. From Figure 2,
SERVER means that the source IP address is belonging to the
Live VM, and CLIENT means that the source IP address is
belonging to a client machine.

The content of packet data depends on the packet source.
If the packet comes from a client then the packet data will
consist of the following information: IP header, protocol
header (such as TCP, ICMP), and payload. However, if
the packet comes from the Live VM, then the packet data
will consist only of IP header and protocol header. The
information in IP and protocol headers is sufficient for replay
process to replay the server traffic. One advantage of not
logging the server responses is that it reduces the traffic log
dramatically.

3.2 Identifying Attacks
Every virtual machine is set up with a host-based IDS

along with DACODA [6]. We use a host-based IDS, such
as Minos [5], to raise an alert when an infection has oc-
curred. Note that the IDS is running in the LiveVM only.
We use DACODA to perform further investigation for each
single byte received by a network interface. DACODA has
the ability to generate a new signature for zero-day worms.
It also has the ability to generate a report such as where
the infection comes from. Therefore, our system relies on
DACODA in discovering and identifying the bogus traffic
received by the LiveVM. The only limitation of DACODA
is performance. Therefore, we must limit its running time
as explained next.

At the time that the IDS generates an alert, TimeVM in-
vokes DACODA at every Shadow VM’s and then waits for
a response. Please notice that receiving a response from a
Shadow VM (let say Shadow VM number k) means that all
Shodow VM’s from 1 up to k are already infected, and all
Shadow VM’s from k + 1 up to N , where N is the total
number of Shadow VM’s, are not infected yet. Therefore,
upon receiving a response, TimeVM suspends DACODA for
the cleaned Shadow VM’s, and then it triggers the replay
processes that are belonging to these cleaned ones to switch
to fast replay mode. The information obtained from DA-
CODA will be provided to these replay processes in order to
prevent infected traffic from being replayed back.

4. OPTIMIZING RECOVERY TIME
The major goal of our framework is to provide fast miti-

gation and recovery when an infection is identified by using
an IDS along with DACODA. Infection identification cannot
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happen instantly. Many attacks may involve more than one
packet or more than one network session that it makes diffi-
cult for an IDS to detect them at the early stage. Moreover,
DACODA requires an amount of time to report where the
infection comes from. As a result, it is potential that several
Shadow VM’s might be infected either.

To optimize the recovery time, we need to configure the
time lag for each replay process and the number of Shadow
VM’s in the system properly. These two values are highly
dependable on the time required by the IDS and DACODA
to detect and discover an infection. For example, if the infec-
tion can be detected in a very short period of time then it is
reasonable to have only two Shadow VM’s (because the first
Shadow VM will be used to discover the infection and the
second one will be used to replace the Live VM) with small
values of time lag. If the detection time is random, then we
need to set up a number of Shadow VM’s. Therefore, we
need to know how many Shadow machines are needed and
how to space them in time such that the average recovery
time is minimum.

Before representing our analytical results, we need to de-
fine some notations. Let λ be the mean packet arrival rate
at the system. Let λa be the mean arrival rate at a Shadow
VM when its replay process is running in fast mode. Let
TTD (Time To Discover) be the time required by an IDS
and DACODA to discover an infection. Let Tfm be the time
taken by a replay process to be in fast mode. Let R be the
time required for the whole system to recover. Notice that
R is a sum of two quantities of time: (1) the time required
by IDS subsystem to discover an infection, and (2) the time
required by a selected replay process to finish packets’ re-
playing, i.e., R = TTD + Tfm.

4.1 Optimizing R for two Shadow Machines
Let us assume that TimeVM consists of two Shadow VM’s

such that the first Shadow VM will discover an infection.
Therefore, the selected Shadow VM will be the second Shadow
VM. Let us denote that the time lag of the first and the sec-
ond Shadow VM as T 1

lag and T 2
lag respectively. Now we need

to find out what the value of R is. As shown in Figure 3,
an infection has been detected at time t2 and it has been
discovered at time t3. After time t3, the replay process that
is associated with the selected Shadow VM is triggered to
switch to fast replay mode. Actually, there is a fraction of
time required to trigger the replay process, but we are going
to ignore it here. The replay process keeps replaying packets
till it reaches time t, at which the Live VM and the selected
Shadow VM are running at the same time. At this moment,
the system is recovered.

The time quantity of Tfm depends at which rate the replay
process replays the traffic. Since the traffic may compose of
encrypted packets along with non-encrypted packets, there-
fore the replay rate depends on the amount of encrypted
packets in the traffic log and the time required by TimeVM
to decrypt/encrypt the packets.

To estimate the replay rate, we use a Markov chain to
model the encryption overhead, as illustrated in Figure 4.
We define α as the percentage of having encrypted packets
in the traffic log. A transition from state i to itself with a
probability of (1−α) means that a non-encrypted packet will
be replayed. A transition from state i to state i + 1 means
an encrypted packet will be replayed. The encrypted packet
will be re-encrypted with an average service time of 1/υ.

0 1 2 N

� � �� ���� � ���� � ���� � ����
. . .

Figure 4: Markov chain to estimate the overhead of
packet’s re-encryption

The service time solely depends on the packet length and
the CPU power. Suppose that the packet length follows ex-
ponential distribution and the CPU power is constant, then
the mean service time to encrypt a packet will be exponen-
tially distributed. Taking this assumption into considera-
tion, the replay rate (with encryption/decryption), denoted
as λe, can be obtained by computing the system throughput.
Thus,

λe = υ

(
1− 1− αλ

υ

1− (αλ
υ

)N+1

)

Hence, the general formula for packet’s replay rate is

λ =

{
λ if α = 0
λe Otherwise

(1)

To obtain Tfm, we utilize the fact that the number of
packets processed by the Live VM at time t is equal to the
number of packets processed by the second Shadow VM. By
using Little theorem [12], we have

λ× t = λ× (t− T 2
lag − Tfm) + λa × Tfm

Then,

Tfm =
λ× T 2

lag

λa − λ
(2)

Therefore, R can be expressed as

R =
λ T 2

lag

λa − λ
+ TTD (3)

It is clear from equation (3) that the system recovery time
increases as T 2

lag increases if we fixed TTD. However, in real
practice, it is difficult to determine TTD. Also, TTD is di-
rectly influenced by T 1

lag. Let us assume that TTD = {d ∈
<+ ∪ {0}} is a random variable that follows a certain dis-
tribution f(d) with the mean E(TTD). Then, the expected
recovery time is given by

E(R) =
λ T 2

lag

λa − λ
+ E(TTD) (4)

Notice that the system can successfully mitigate or elim-
inate an infected traffic only if T 2

lag is greater than d. To

setup the value of T 2
lag, there are two factors that determine

its value. The first factor is the probability, ρ, that the sys-
tem can certainly be recovered. For example, if ρ = 0.90,
it means that 90% of detected attacks can be mitigated or
eliminated by using TimeVM. This probability can be ex-
pressed as Pr{d < T 2

lag} = ρ. We will call ρ a confident
factor. The second factor is the maximum storage space,
Smax, required to store the traffic. Smax can be expressed
as Smax = λ× T 2

lag ×m where m is the average packet size,
and it should not exceed the maximum space available in the
system. If the system has enough space to store large files,

138



t
0

infection 

occurred
infection 

discovered
System 

recovered

t
1

t
2

t
3

Live VM

Shadow VM

Normal 

replaying 

started

T
lag

Fast 

replaying 

started

t

R

T
fm

TTD

infection 

detected

Figure 3: Timelines for the Live VM and the Shadow VM

then we setup T 2
lag based on the first factor. Otherwise, we

setup T 2
lag based on the available space in the system.

It is worth to mention that if the IDS is capable of de-
tecting an infection instantly, it will be sufficient to deploy
only two Shadow VM’s. TTD, in this case, is only deter-
mined by the time required by DACODA to discover the
infection, which can be expressed as function of T 1

lag, i.e.,

TTD = h(T 1
lag. Thus, our objective is to set T 1

lag and T 2
lag

to its minimum possible values in order to have optimized
recovery time. Let us denote the minimum possible value is
Tmin.

Tmin can be set by measuring the time required by the
IDS to inform TimeVM manager and the time required by
TimeVM manager to invoke DACODA. Using Equation 4,
the recovery time is given by

E(R) =
2λ Tmin

λa − λ
+ h(Tmin) (5)

4.2 Optimizing R for Multiple Shadow Machines
In the previous section, T 2

lag could be very large in order
to improve the reliability of the system. This implies that
the expected recovery time will also be large. To reduce it,
we need to setup several Shadow VMs in the system. Let N
be the number of Shadow VMs, let T i

lag be the time lag of

the ith Shadow VM number, and let R(i) be the expected
recovery time if the ith Shadow VM was selected, and is
expressed as

R(i) =
λ T i

lag

λa − λ
+ E(TTD)

The probability that the ith Shadow VM is selected, de-
noted by p(i), can be expressed as

p(i) = Pr{T i−1
lag < d < T i

lag} =

∫ T i
lag

T i−1
lag

f(t) dt

where p(1) = 0. Therefore, the average expected recovery
time for the N Shadow VMs can be expressed as

E(R) =

N∑
i=1

p(i)×R(i)

=
λ

λa − λ

N∑
i=2

(
T i

lag

∫ T i
lag

T i−1
lag

f(t) dt

)

+ E(TTD) (6)

Deploying a Shadow VM is associated with a cost c. This
cost is expressed in terms of resource consumption and band-

width usage. Let C represents the maximum cost allowed
in the system, then the maximum number of Shadow VMs
that can be deployed is constrained by C/c.

Another reason that we should deploy multiple Shadow
machines is that the value of TTD is random. Therefore,
we need to find out how many virtual machines are needed
and how to distribute them on the time space such that the
average recovery time is minimum. In other words, we need
to find the values of N, T 1

lag, T 2
lag, ..., T N

lag such that E(R)
takes the minimum value.

This is an optimization problem with N + 1 variables.
To reduce the number of unknown variables, we can con-
figure N to take its maximum value which is C/c. Also,
T N

lag is determined by the confident factor ρ and the maxi-
mum storage available,Smax. The problem now can be for-
malized as follow. Given λ, λa, N , T N

lag, and the distribu-
tion function f(d), we need to find out the vector {T ∗lag} =

{T 1
lag, T 2

lag, ..., T
(N−1)
lag } which minimizes the objective func-

tion

minimize

N∑
i=1

p(i)×R(i)

subject to the following constraint

T 1
lag < T 2

lag < · · · < T N
lag

There are several techniques in literature to solve the
above optimization problem [4]. We used optimization tool-
box in Matlab software to obtain the vector {T ∗lag} for dif-
ferent distribution functions of TTD. We report the results
on section 6.

5. TIMEVM IMPLEMENTATION
In this section, we give detailed description for the core

components of TimeVM: TimeVM Manager, NetDd and Re-
play process.

5.1 TimeVM Manager
TimeVM Manager is responsible to manage and control

NetDd and Replay processes. It provides a command-line
interface for system administrator to configure TimeVM and
virtual machines in the system.

TimeVM manager reads a configuration file that defines
the IP addresses of Live VM and Shadow VMs, the number
of interfaces in the Linux gateway server, and the maximum
number of shadow virtual machines in the system. Then it
performs the following tasks:
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Figure 5: NetDd Modules

• It registers the IP addresses of the Live VM and all
shadow machines to NetDd.

• It configures the iptables of the Linux server to prevent
all TCP traffic from being processed by the protocol
stack routines except for those packets that are gen-
erated by the Shadow VMs because it will be used by
replay processes to perform traffic replay. Please note
that other types of traffic, such as UDP, will also be
handled by the upper layers of the Linux server. In our
current implementation, we handled only TCP pack-
ets.

• It displays a shell prompt to allow system administra-
tor to perform some administrative tasks like shutting
down a virtual machine, creating a new virtual ma-
chine, configuring time-lag for a specific virtual ma-
chine, etc. Furthermore, it enables system administra-
tor to execute Unix/Linux commands.

In future work, we will improve TimeVM so that a limited
number of traffic will be handled by the gateway server. As
a result, this will enhance the security level of the Linux
server. This is very important because Linux server stores
very sensitive information such as traffic log and a set of
private keys used by certain functions/routines to handle
SSL replaying.

5.2 Network Distributor Daemon (NetDd)
NetDd is responsible to redirect an incoming packet to its

appropriate destination. It is acting like a transparent NAT
server. Traffic comes from clients will be redirected to the
IP address of the Live VM and the traffic comes from the
Live VM will be redirected back to the clients.

As shown in Figure 5, NetDd is composed of three mod-
ules. The following is a description of each module:

• Splitter Module: This module is responsible to sniff
incoming packets and check the source IP address of
these packets. If the source IP address of an incoming
packet is belonging to the IP address of a Shadow VM,
then the module will ignore it since this packet will be
handled by the protocol stack routines. Otherwise, the
splitter module will forward the received packet to the
translator module.

• Translator Module: This module is used to keep
track of all TCP connections between clients and the

Live VM. Each connection is stored in a session. A ses-
sion is a data structure that stores session key, client
state, server state, client’s MAC address, cycle num-
ber, and a pointer to a function handler. Client state
is the TCP state (such as SYN_SENT, CLOSE_WAIT, etc)
with respect to a client. Server state is the TCP state
with respect to the Live VM. These states determine
the life time of a session. Cycle number will be ex-
plained later. The function handler is used to imple-
ment an additional processing for a current received
packet.

The module goes into the following steps when it re-
ceives a packet as illustrated in Algorithm 1. First,
the module checks if the packet is an IP packet or
not. If it is not, the module will ignore it and wait for
the next packet. Second, it checks the packet proto-
col, and again if the protocol is not a TCP then the
packet will be ignored because, with our current imple-
mentation, we focused only on handling TCP traffic.
Third, the module constructs a 64-bit hash key based
on the source IP address field in the IP header. If the
source IP address is the IP address of the Live VM
then the hash key will consist of a destination address
followed by a destination port number followed by a
source port number. Otherwise, the hash key will con-
sist of a source IP address followed by a source port
number followed by a destination port number. Forth,
the module looks for the key in a TCP lookup table. If
the key is found, the session’s state and its information
will be updated accordingly. If the key is not found,
the module checks if the packet is a SYN packet. If
it is a SYN packet then a new session will be created.
Otherwise, the packet will be dropped.

It is worth to mention that the module maintains two
global variables: a counter to count the number of
sessions that have been created without a completed
three-way handshaking and a cycle number that takes
two values 0 and 1. This means that the counter is
incremented when a new session was created, and is
decremented when the session has completed three-
way handshaking normally or by RST packet. When
this counter reaches a predefined threshold (in our im-
plementation, we set it to 50), it triggers a timer and
increments the cycle number by 1 (modulus two ad-
dition). When the timer expires, it invokes a garbage
collector to delete all sessions that have not yet estab-
lished a connection and have a cycle number not equiv-
alent to the current cycle number. The later condition
prevents the garbage collector to delete the newly cre-
ated sessions.

• Dispatcher Module: The Dispatcher module is re-
sponsible to modify, log, and send the packets to the
appropriate interface. As a design issue, there are two
ways to send a client packet to the Live VM or the Live
VM packet back to the client. The first way is to cre-
ate two sockets per connection: one socket between a
client and NetDd, and another socket between NetDd
and the Live VM. This means that NetDd is acting as
a proxy server. The second way is to use libpcap to
receive and send packets after modifying some parts
of a packet header. Since the first approach is very
expensive, we have adopted the second approach.
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Algorithm 1 Translator (INPUT: data as PACKET)

if data is not IP or TCP packet then
return

end if
if source(data) == CLIENT then

key = genkey(data.srcIP, data.srcPort, data.destPort)
else

key = genkey(data.destIP, data.destPort, data.srcPort)
end if
session = lookup(session table, key)
if session is null then

if data.flag has SYN flag then
create session(session)
store session information
insert session(session table, session, key)

end if
else

update session information
end if

Figure 6: Packet forwarding

Figure 6 shows how a packet is exchanged between a
client, NetDd, and the Live VM. When NetDd receives
a packet from a client, it modifies the followings:

– It replaces the destination MAC address by the
MAC address of the Live VM

– It replaces the source MAC address by the MAC
address of the TimeVM (the MAC address of the
Linux server)

– It replaces the destination IP address by the IP
address of the Live VM.

When NetDd receives back the response of the Live
VM, it modifies the followings:

– It replaces the destination MAC address by the
MAC address of the client. We stored the client
MAC address in the session data structure.

– It replaces the source MAC address by the MAC
address of TimeVM (the MAC address of the Linux
server)

– It replaces the source IP address by the IP address
of TimeVM.

There is a little bit overhead in this approach. Mod-
ifying the fields of IP header requires re-calculating
the checksum. We measured the modification and re-
calculation overhead by running two experiments. In
the first experiments, we let a client host to connect
directly to the Live VM. In the second one, the client
connects to the TimeVM server first. As shown in ta-
ble 1, the first column represents the timestamps when
we sent an HTTP request directly to the Live VM

N timestamp w/o NetDd timestamp w/ NetDd
1 13.751163 17.473093
2 13.751433 17.486035
3 13.751439 17.486086
4 13.751556 17.486241
5 13.763961 17.488031
6 13.764077 17.489360
7 13.764103 17.489973

Table 1: Forwarding overhead due to packet modi-
fication and checksum calculation

without the interference of NetDd. The second col-
umn represents the timestamps for the second exper-
iment. The timestamps are collected by using wire-

shark program at the client host. We conclude that
the forwarding overhead is almost negligible.

5.3 Replay Processes
In this section, we describe the most critical function of

TimeVM which is traffic replay. Traffic replay is performed
by replay processes. Each process is associated with a single
Shadow VM as shown in Figure 1, and is configured with
a time lag that indicates the distance in time between the
Live VM and its associated Shadow VM.

In normal replay mode, a replay process should always
preserve the time difference between the current system time
and the current replayed packet time to amount equals to
its time lag. One way to do that is to implement a polling
mechanism that continuously invokes gettimeofday() system
call until the difference between the packet time and current
system time is less than or equal to time lag. Although this
approach provides a high degree of accuracy, it consumes a
lot of CPU time. Another approach is to use usleep() sys-
tem call. We implemented the second approach as follows.
Initially, each replay waits until it reads the first packet.
Then, it goes to sleep for amount of time equals to its time
lag. After that, it starts to replay the first packet. Be-
fore replaying the next packet, the replay process calculates
silent time which is the time difference between the next
packet’s timestamp and the previous packet’s timestamp. If
silent time is greater than two times a threshold, the replay
process goes to sleep for amount of time equals to silent time
minus threshold. Otherwise, the replay process continues to
replay the next packet. The value of threshold represents the
amount of time required for the operating system to execute
usleep() system call. Using lmbench [14], usleep() overhead
is approximately 12.50µs in a Pentium 4 machine 1.6 GHz
with 512MB RAM, running Linux version 2.6.18.

In fast replay mode, the value of silent time will be short-
ened by a predefined factor value. The factor is defined as
a multiple of 2. Although, shortening silent time eventually
increases the rate of replayed packets per second, it requires
some considerations. First, it should not affect the behavior
of the network service. In other words, the server’s response
in normal replay mode and the server’s response in fast re-
play mode (for the same set of packets) should be identical.
Second, it should not overload the network service capacity.

Replaying packets correctly is a very complex task. In
our early stage of the implementation, we used libpcap and
libnet libraries to handle and manipulate packets. But then
we have faced many complex design issues such as main-
taining the receiver window size (defined during three-way
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handshaking in a TCP session), handling TCP options, etc.
Therefore, we changed our implementation path to use sock-
ets instead of libpcap and libnet libraries. This is why we
configured TimeVM to allow Shadow VM’s packets to be
processed by higher layers. Using sockets to handle packets
implied to other complications in our design: how to handle
different types of sessions (explained in the next paragraph),
how to send packet payloads in-order if they received and
logged out-of-order, and how to handle packet fragmenta-
tion.

Due to the nature of TCP protocol and variety of pro-
tocols building on top of TCP such as SSL and FTP, the
replay process should be protocol-aware in order to prop-
erly replay TCP traffic. We have classified three types of
sessions: (1) sessions with a static service number such as
HTTP session, (2) sessions with multiple service numbers
like FTP session, and (3) sessions with encrypted payloads
such as SSL sessions. The functionality of each session is
defined as plug-in for replay process. This allows us to ex-
tend our replay process to accommodate other application
protocols.

To handle SSL sessions, we adopted the code written at
[1]. The private keys that was stored in Live VM will also
be stored in the Linux Server. These keys are needed in
order to properly decrypt the encrypted traffic. To reduce
the overhead of decryption process, we log a payload after
decrypting it. A replay process needs only to re-encrypt the
payload when it replays SSL sessions. In our current im-
plementation on replaying SSL, we did not implement client
authentication. Client authentication is useful if the server
wanted to restrict access to some services to only certain
authorized clients. One way to handle this limitation is to
define a global trusted user locally in Linux server. The
drawback is that it requires to modify application to accept
that defined global user.

A TCP session is uniquely identified by one of two keys:
the hash key as we described in section 5.2 and Session Iden-
tifier (SID). SID is a sequence number of integers that is al-
ways incremented whenever a new session is created. Please
note that the data structure of a TCP session is not simi-
lar as the data structure of NetDd’s session. In SSL, SID
represents session ID defined during SSL handshaking. It is
used when SSL protocol generates a new session and new
cryptographic keys.

In order to replay packets in-order, each session maintains
two variables: “exp seq num” and “leftover”. exp seq num
represents the expected sequence number of the next“client’s”
packet, and leftover is a counter that keeps track the number
of packets stored in a hash table called “unordered table”.
Now, when the replay process reads the next packet, it
checks to see if the sequence number defined in the TCP
header is matching the expected sequence number exp seq num.
If they do not match, the packet will be stored in unordered table
with a key constructed as the concatenation of SID and the
sequence number in the TCP header, and the leftover vari-
able will be incremented by one. Otherwise, the packet will
be replayed and sent to its associated Shadow VM. After re-
playing the packet, the replay updates the expected sequence
number (by adding the payload length to exp seq num) and
checks the value of leftover. If the value is greater than zero,
then the process searches the hash table. If the constructed
key [SID | expected sequence number] is found, the stored
packet will be replayed and deleted, and the value of left-

over will be decremented. The process keeps searching the
hash table until either the constructed key is not found or
leftover value becomes zero. Please note that, we do not
need to keep track of the expected sequence number for the
server packets since these packets are dropped. Algorithm 2
shows only the part that replaying a client packet.

Algorithm 2 Replay (INPUT: data as PACKET)

if source(data) == CLIENT then
key = genkey(data.srcIP, data.srcPort, data.destPort)
session = lookup(tcp session table, key)
if session is null then

if data.flag is SYN then
session = create new node()
store session information such as exp seq num, leftover
insert session(tcp session table, session, key)

end if
else

compute payload size
if payload size > 0 then

if data.seqnum == session.exp seq num then
replay data and update session.exp seq num
update TCP state in TCP session
while session.leftover > 0 do

key2 = concat(session.sid, session.exp seq num)
if data = lookup(unordered table, key2) != null
then

replay data and update session.exp seq num
session.leftover = session.leftover - 1

end if
end while

else
key2 = concat(session.sid, data.seqnum)
store data in unordered table with key2

end if
else

update TCP state
end if

end if
end if

Handling IP fragmentation is another complex problem.
In our current implementation, we assumed that there is no
IP fragmentation. The Translator module in NetDd drops
any fragmented packet. We put IP fragmentation as a future
work.

6. EVALUATION AND
NUMERICAL RESULTS

In this section, we report some numerical results of our
analytical model. The purpose is to study the feasibility of
deploying TimeVM in real practice. We first examine the
impact of increasing packets’ replay rate during fast replay
mode on the system recovery time. For this case, we fix N
to two shadow VM’s, Tmin to 2 seconds, and TTD to 10
seconds, i.e., h(t) = 5t. Equation 4 can be rewritten as

E(R) =
2Tmin

π − 1
+ 5× Tmin (7)

where π = λa/λ. Here, π expresses the magnitude of rate
increase, and it is more convenient to study the effect of rate
increase than specifying explicit values for λ and λa. Figure
7 shows the relation between the expected recovery time and
the ratio π. As shown, there is a significant improvement
on the system recovery time as the ratio goes from 1 up to
2, then the recovery time improves slowly after 2.5. We can
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Figure 7: The impact of λa/λ on system recovery
time

conclude that we do not need to pump high volume of pack-
ets to the network in order to reduce the average recovery
time. Based on Figure 7, it is recommended to make the
ratio of π between 1.5 and 2.5. In our implementation, we
can adjust this ratio by tuning silent time value.

In real practice, increasing the ratio π could lead to a
disaster situation. If the Live VM is hosting a busy net-
work server, then increasing packets rate could overwhelm
the network servers on the Shadow VMs and lead to packets
dropping. As shown in [2], the system utilization of HTTP
server is linearly increasing as the number of requests per
second is increased. This means that if the server utiliza-
tion is 80%, then increasing the ratio from 1 to 1.25 will
eventually increase the server utilization to 100%. As a fu-
ture work, the value of π should be adjusted based on the
server utilization.

Second, we examine the effect of N on system recovery
time. As we mentioned before, if TTD is indeterministic,
then we need to deploy multiple shadow VMs to reduce the
system recovery time, and we assumed that TTD follows a
certain distribution. Remember that TTD is composed of
time to detect and time to discover. In literature, finding
a suitable distribution for TTD has shown to be difficult.
However, for the evaluation purpose, we consider two dis-
tributions that approximately simulate the real situations:
Exponential and Gamma distributions. We select exponen-
tial distribution to simulate the case that it is more likely
that TTD has a shorter time (i.e., closer to zero) and less
likely a longer time. We select Gamma distribution to simu-
late the case that TTD is more likely around a certain time.

Table 2 shows the value of {T ∗lag} for different values of
N when TTD follows an exponential distribution with the
mean value 10 seconds. Table 3 shows the values when TTD
follows a Gamma distribution with α = 5 and θ = 2. In both
cases, we fix the ratio of λa/λ to 1.5 and the confident factor
ρ to 0.95. As shown, there is a dramatic reduction in system
recovery time when we deploy three Shadow VM’s instead of
deploying two Shadow VM’s. Also, as the number of Shadow
VM’s increases the expected recovery time decreases. How-
ever, there is no significant decrement of E(R) when N is
increased from 5 to 6.

Figure 9 and 8 illustrate the values of E(R) with high
values of N (i.e., N ≥ 7), and with different values of π. It

N T 1
lag T 2

lag T 3
lag T 4

lag T 5
lag T 6

lag E(R)
2 10.73 30.0 41.65
3 6.42 15.41 30.0 35.56
4 4.56 10.33 18.15 30.0 32.87
5 3.53 7.77 13.04 19.98 30.0 31.36
6 2.88 6.22 10.17 15.04 21.3 30.0 30.4

Table 2: Tlag’s values and E(R) when TTD is expo-
nentially distributed

N T 1
lag T 2

lag T 3
lag T 4

lag T 5
lag T 6

lag E(R)
2 10.69 18.31 35.38
3 8.39 12.6 18.31 32.74
4 7.2 10.27 13.66 18.31 31.49
5 6.44 8.93 11.43 14.35 18.31 30.76
6 5.9 8.04 10.07 12.25 14.85 18.31 30.28

Table 3: Tlag’s values and E(R) when TTD is follow-
ing Gamma distribution

is obvious that E(R) is significantly reduced as we deploy
3 or 4 Shadow VMs. Then, we notice that E(R) is almost
a horizontal line after N = 5. This implies that adding
more than 5 virtual machines to the system may not be
worthy because the cost of adding one additional VM is more
than the gain (in terms of reducing the recovery time). The
two figures also illustrate the impact of increasing π on the
recovery time for different values of N . As we said before,
the recovery time is improved significantly when the ratio is
more than 1 and less than 2.5.

In the following paragraphs, we study the influence of con-
fident factor on our framework. Figure 10 shows the effect of
confident factor, ρ, on the storage requirement. As we can
notice, the average storage size increases smoothly when ρ
increases from 0.5 to 0.85. After this point, the average stor-
age starts to increase significantly and rapidly after 0.95.

Next, we examine the effect of confident factor on system
recovery time. Figure 11 depicts this effect on a system that
has 1, 2, 3, 5, or 7 Shadow VMs and TTD is exponentially
distributed with a mean value equals to 10 seconds. Figure
12 depicts the same effect for the same system configurations
but TTD follows a Gamma distribution with α = 5 and θ =
2 (the mean value is 10 seconds). As shown, the expected
recovery time increases as ρ increase. This is because, ρ
configures the time lag of the last Shadow VM. Low value
of ρ means that the difference in time between the Live VM
and the last Shadow VM is small. However, the probability
of unsuccessful recovery will be high. High value of ρ means
that the time lag of the last Shadow VM is high, and the
probability of unsuccessful recovery is low. Figure 11 and
12 also show that the impact of confident factor on expected
recovery time does not depend on the distribution of TTD.

7. CONCLUSION AND FUTURE WORK
We propose a framework called TimeVM to achieve an on-

line mitigation and recovery of network servers under-attack.
The framework is based on traffic-log-replay recovery and
virtualization technology. TimeVM consists of several vir-
tual machines running on different time lags. These ma-
chines represent multiple historical snapshots of the original
virtual machine at different times in the past. Whenever
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Figure 8: The impact of reliability factor ρ on system
recovery time
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Figure 9: The impact of reliability factor ρ on system
recovery time

the system detects an infection, it selects the first shadow
VM before the infection time, and then fast-replay the en-
tire traffic after removing the infection traffic from the logs.
This shadow VM will replace the contaminated VM as the
infection is mitigated.

The paper addresses the theoretical and implementation
challenges to respectively optimize the recovery time and
replay network traffic. One significant contribution of our
work is to achieve an online mitigation as fast as possi-
ble. This requires proper configuration of system param-
eters. Minimizing recovery time has been formulated as a
constrained nonlinear optimization problem. We used an
available evolutionary approach to solve this optimization
problem.

The evaluation results look very appealing in practice. We
show in section6 that replaying traffic as twice as fast as orig-
inal traffic speed is sufficient to obtain the minimum recovery
time. This offers a practical solution. The evaluation results
also show that it is sufficient to deploy a small number of
shadow VMs (i.e., not exceed 5 VMs) to achieve a very rea-
sonable recovery time in most cases. These results reveal
that TimeVM can be deployed easily and economically in
real systems.

We will continue to develop TimeVM to accommodate
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Figure 10: The impact of confident factor ρ on stor-
age capacity

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

Confident factor (ρ)

E
xp

ec
te

d 
re

co
ve

ry
 ti

m
e,

 E
(R

),
 in

 s
ec

on
ds



N = 2
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Figure 11: The impact of confident factor ρ on sys-
tem recovery time when TTD is exponentially dis-
tributed

different type of traffic such as UDP, ICMP, and multicast
traffic. Then, we build a complete prototype with different
types of exploitation to get some experiences with TimeVM.
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