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ABSTRACT
Multi-receiver Identity-Based Key Encapsulation Mecha-
nism (mIB-KEM) allows a sender to distribute messages for
a set of receivers using the receiver’s identity as a public key.
Recently, Chatterjee and Sarkar [12] suggested a new mIB-
KEM which has sublinear-size ciphertexts and private keys
simultaneously. They demonstrated that their scheme is se-
cure against chosen plaintext (or ciphertext) attacks without
random oracles. In this paper, we show that their scheme is
not secure in that a revoked user can easily decrypt cipher-
texts. We next propose a new mIB-KEM which overcomes
the security flaw identified in the construction of Chatterjee
and Sarkar.

Categories and Subject Descriptors
E.3 [Data Encryption]: Code breaking, Public key cryp-
tosystems

General Terms
Security

Keywords
Multi-receiver Identity-Based Key Encapsulation

1. INTRODUCTION
To distribute a message to some set S of users, the trivial

method is to encrypt the message using each user’s public
key. As expected, ciphertext size in this setting increases
linearly with |S|. This results in too much ciphertext size
when S becomes a large set of receivers. Thus, this method
is less attractive, except for the case where S is small. An
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alternative method is to encrypt a message encryption key
which is used to encrypt the message under a symmetric
key cipher. This is called a hybrid (KEM-DEM) encryption
paradigm. This is efficient, in particular, for such applica-
tions as the sender wants to broadcast a same message. In
this paper, we mainly focus on the hybrid paradigm.

In an identity-based setting [19], a sender is able to dis-
tribute a message for a set S of receivers using the receiver’s
identity as a public key. As usual, a Key Generation Center
(KGC) issues a private key for a user identity, and public
parameters for the identity-based system are shared with
all users. Regarding the KEM-DEM encryption in multi-
receiver setting, we can easily consider a trivial solution
by concatenating ciphertexts for all receivers. One may at-
tempt to do this with the previous Identity-Based Encryp-
tion (IBE) schemes [6, 13, 4, 5, 20, 16], where the Hierar-
chical IBE (HIBE) schemes [4, 5] are considered as 1-level
IBE schemes. However, the IBE schemes [4, 5, 16] are not
suitable for the simple solution.

For example, consider the Gentry IBE scheme [16] for
a multi-receiver Identity-Based Key Encapsulation Mecha-
nism (mIB-KEM). Assume a sender intends to broadcast a
message to a set S = {ID1, . . . , IDk}. With elements g, h,
and g1 in the public parameters, ciphertext for the set S will
be of the form (gs

1g
−s·ID1 , . . . , gs

1g
−s·IDk , e(g, g)s) for same

randomness s, and then the message encryption key cor-
responding to this ciphertext will become e(g, h)−s. Since
information about S is broadcast together with the cipher-
text, a revoked user with identity ID′ (i.e., outside of S) can

compute g−s as (gs
1g
−s·ID1/gs

1g
−s·IDk )1/(ID1−IDk) and obtain

gs
1. Thus, he can reconstruct gs

1g
−s·ID′ and decrypt the ci-

phertext successfully. This observation can be applied to
other mIB-KEMs based on the IBE schemes [4, 5] in the
similar manner.

In this paper we show that a mIB-KEM suggested by
Chatterjee and Sarkar [12] is not secure. We will show how a
revoked user can easily decrypt ciphertext in [12]. Our secu-
rity analysis is similar to that mentioned immediately above.
Next, we suggest an improvement that overcomes the secu-
rity flaw identified in [12]. In our construction, we partition
an identity space into subsets using two publicly computable
surjective functions, and we add to public parameters ran-
dom elements which are representative of the subsets. These
random values play the role of preventing such an attack
above from occurring. The proposed mIB-KEM is secure
against chosen plaintext attacks in the selective-ID model,
and is extended to achieve chosen ciphertext security by us-
ing a hash-based method [9]. With appropriate parametriza-
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tion, our scheme could have sublinear-size ciphertexts and
private keys. We prove the security of our scheme without
random oracles under the decision Bilinear Diffie-Hellman
Exponent (BDHE) assumption, which was already used to
prove security in [5, 7].

Related Works. Since the first practical constructions of
the IBE primitives [13, 6] appeared, many research has been
done to create secure mIB-KEMs [14, 2, 3, 11, 12, 1, 18].
Until now, all of the proposed mIB-KEMs made use of ef-
ficiently computable bilinear maps (i.e., pairing) on elliptic
curve.

The first mIB-KEM [14] was suggested by Du et al. [14],
based on the Boneh-Franklin IBE scheme [6]. Their con-
struction obtained O(|S|) ciphertexts and O(1) private keys
for a receiver set S, but formal security proof was not pro-
vided. Later, the mIB-KEMs [2, 3] were suggested with for-
mal security proofs using random oracle heuristics. These
schemes also achieved O(|S|) ciphertexts and O(1) private
keys. Recently, Sakai and Furukawa [18] proposed a new
mIB-KEM which uses a exponent inversion paradigm. At
first sight, their construction appears to achieve O(1) cipher-
texts and O(1) private keys, but the decryption algorithm
requires |S| elements in the public parameters. It means
that sender needs to transmit the |S| elements for decryp-
tion together with ciphertext, or each user requires to store
all the elements in the public parameters (although the el-
ements could be stored in any public device). This leads
their scheme [18] to obtain O(|S|) ciphertexts or O(n) pri-
vate keys, where n is the total number of users.

To suggest a secure mIB-KEM without random oracles,
the constructions [11, 12, 1] employed the structure of key
delegation in HIBE schemes [20, 4, 5]. In [11], Chatterjee et
al. presented a mIB-KEM that has O(|S|) ciphertexts and
O(1) private keys, with the security proof in the selective-ID
security model. Later, Chatterjee and Sarkar [12] proposed
a mIB-KEM (secure in the selective-ID model) that uses a
publicly computable surjective function to reduce an iden-
tity space to a set {1, . . . , N}. The authors demonstrated
that their scheme [12] could obtain sublinear-size cipher-
texts and private keys at the same time (unfortunately, this
scheme has a security flaw although it achieves good per-
formance). Same authors [12] presented another mIB-KEM
secure in the full model, but the security reduction has suf-
fered from an exponential security degradation. Recently,
Abdalla et at. [1] examined a different variant of delegation
structures in HIBE schemes [17, 5] and used the variant
to introduce so-called “wicked IBE” which yields an mIB-
KEM. However, the resulting instantiations of mIB-KEM
do not provide sublinear-size ciphertexts and private keys,
simultaneously.

2. PRELIMINARIES

2.1 Multi-receiver Identity-Based Key Encap-
sulation Mechanism

We describe the definition of multi-receiver Identity-Based
Key Encapsulation Mechanism (mIB-KEM) [12] as below.

Setup(1k, n) takes as input a security parameter 1k and the
number of total users n. and outputs the public parameters
PP and the master key MK.

KeyGen(ID, MK, PP) takes an identity ID ∈ ID, the master

key MK, and the public parameters PP as input. It outputs
a private key dID for ID.

Encapsulate(S, PP) takes a set S of identities and the pub-
lic parameters PP as input, and outputs a pair (Hdr, K)
where Hdr is the header and K ∈ K is a message encryption
key, often called the broadcast ciphertext.

Let M be a message to be broadcast to the set S and let
CM be the encryption of M under the symmetric key K. A
broadcast massage is (S, Hdr, CM ), where the pair (S, Hdr)
is often called the full header and CM is often called the
broadcast body.

Decapsulate(dID, S, Hdr, PP) takes as input the private key
dID for ID, a receiver set S, a header Hdr, and the public
parameters PP. If ID ∈ S, the algorithm outputs the message
encryption key K ∈ K, which is used to decrypt CM and
obtain the message M .

For correctness, we require that for a receiver set S and ID ∈
S, if (PP, MK)

R← Setup(1k, n), dID ← KeyGen(ID, MK, PP),

and (Hdr, K)
R← Encapsulate(S, PP), then we have that

Decapsulate(dID, S, Hdr, PP) = K.

Next, to describe the chosen ciphertext security for mIB-
KEM, we define the following game between an attacker A
and a challenger C as in [12]. Both A and C are provided
with n, the total number of users, as input.

Init: A outputs a set S∗ of identities that it intends to
attack.

Setup: C runs Setup(1k, n) to obtain the public parameters
PP and the master key MK. It gives A the public parameters
PP.

Phase 1: A adaptively issues queries q1, . . . , qm where each
is one of

1. Private key query on ID where ID /∈ S∗. C runs algo-
rithm KeyGen(ID, MK, PP) to obtain a private key dID.
It returns dID to A.

2. Decryption query on (ID, S, Hdr) where S ⊆ S∗ and
ID ∈ S. C responds with Decapsulate(dID, S, Hdr, PP).

Challenge: C runs algorithm Encapsulate(S∗, PP) to ob-
tain (Hdr∗, K) where K ∈ K. Next, the challenger picks a
random b ∈ {0, 1}. If b = 1, it sets K∗ = K. Otherwise, it
sets K∗ to a random string of length equal to |K|. C gives
a challenge ciphertext (Hdr∗, K∗) to A.

Phase 2: A adaptively issues private key and decryption
queries qm+1, . . . , qq where each one is:

1. Private key query on ID where ID /∈ S∗. C responds as
in phase 1.

2. Decryption query on (ID, S, Hdr) where S ⊆ S∗ and
ID ∈ S. The other restriction is that Hdr 6= Hdr∗. C
responds as in phase 1.

Guess: A outputs a guess b′ ∈ {0, 1}. A wins if b′ = b.

This game above models an attack where all users not in
the set S∗ collude to try and expose a broadcast message
intended only for users in S∗. The attacker in this model
is static as in [7]. That is, it chooses S∗ and obtains the
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keys for identities outside of S∗, before it sees the public
parameters PP. For short, we call this ‘sID security model’.
The advantage of A in breaking a mIB-KEM is defined as

AdvmIB-KEM
A,n = |Pr[b = b′]− 1/2|

where n is given to both the C and A as input.

DEFINITION 1. A mIB-KEM is said to be (t, ε, n, qID, qD)-
CCA-secure in the sID security model if for all t-time attack-
ers A who make qID private key queries and qD decryption
queries, we have that AdvmIB-KEM

A,n < ε.

The game above can be used to define chosen plaintext
security for a mIB-KEM if the attacker is not permitted
to issue decryption queries. We say that a mIB-KEM is
(t, ε, n, qID)-CPA-secure in the sID security model if it is
(t, ε, n, qID, 0)-CCA-secure.

2.2 Bilinear Pairing and Complexity Assump-
tion

We briefly summarize the bilinear pairings and define the
(b + 1)-Bilinear Diffie-Hellman Exponent (BDHE) assump-
tion.

Bilinear Pairing: We follow the notation in [6, 4]. Let G
and GT be two (multiplicative) cyclic groups of prime order
p. We assume that g is a generator of G. Let e : G×G→ GT

be a function that has the following properties: 1) Bilinear:
for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2) Non-degenerate: e(g, g) 6= 1. 3) Computable: there is an
efficient algorithm to compute the map e.

Then, we say that G is a bilinear group and the map e is
a bilinear pairing in G. Note that e(, ) is symmetric since
e(ga, gb) = e(g, g)ab = e(gb, ga).

Bilinear Diffie-Hellman Exponent Assumption: The
(b + 1)-BDHE problem in G is defined as follows: given

a (2b + 2)-tuple (z, g, gα, . . . , gαb

, gαb+2
, . . . , gα2b

) ∈ G2b+2

as input, compute e(z, g)αb+1 ∈ GT . An algorithm A has
advantage ε in solving (b + 1)-BDHE in G if

Pr[A(z, g, gα, . . . , gαb

, gαb+2
, . . . , gα2b

) = e(z, g)αb+1
] ≥ ε

where the probability is over the random choice of α in Zp,
the random choice of z ∈ G, and the random bits of A.

Let gi = g(αi) and let −→g α,b = (g1, . . . , gb, gb+2, . . . , g2b).
Similarly, we say that an algorithm B that outputs b ∈ {0, 1}
has advantage ε in solving the decision (b + 1)-BDHE prob-
lem in G if

|Pr[B(z, g,−→g α,b, e(z, gb+1)) = 0]−
Pr[B(z, g,−→g α,b, T ) = 0]| ≥ ε

where the probability is over the random choice of α in Zp,
the random choice of z ∈ G, the random choice of T ∈ GT ,
and the random bits of B.

DEFINITION 2. We say that the (decision) (t, ε, b + 1)-
BDHE assumption holds in G if no t-time algorithm has
advantage at least ε in solving the (decision) (b + 1)-BDHE
problem in G.

3. CRYPTANALYSIS OF THE CHATTER-
JEE AND SARKAR’S MIB-KEM

We review the mIB-KEM suggested by Chatterjee and
Sarkar [12], and analyze the security flaws in their scheme.

3.1 Review of the Chatterjee and Sarkar’s
mIB-KEM

Let G and GT be groups of prime order p, and let e :
G×G→ GT be the bilinear map.

Setup(1k, n): The algorithm picks a random generator
g ∈ G. It selects a random α ∈ Z∗p and sets g1 = gα.
It picks random elements g2, g3 ∈ G and a random vector
~U = (u1, . . . , ua) with entries in G. The public parameters
PP (with the description of (G, GT , e, p)) and the master
key MK are given by

PP = (g, g1, g2, g3, ~U, H), MK = gα
2

where H is a publicly computable surjective function such
that H : Z∗p → {1, . . . , a}.
KeyGen(ID, MK, PP): Given an identity ID ∈ Z∗p, the al-
gorithm computes H(ID) = v where 1 ≤ v ≤ a. It picks a
random r ∈ Zp and output

dID = ( gα
2 · (g3 · uID

v )r, gr,

ur
1, . . . , ur

v−1, ur
v+1, . . . , ur

a ) ∈ Ga+1.

Encapsulate(S, PP): A sender chooses a random s ∈ Zp

and sets K = e(g1, g2)
s ∈ GT . Next, the sender partitions

the set S into subsets in the following manner.
Let H(S) = {j1, . . . , jk} be the set of distinct indices ob-

tained by applying the function H to the elements in S. For
i = 1, . . . , k, let {si,1, . . . , si,τi} be the subset of all elements
in S which map to ji. Let τ = max1≤i≤k(τi). We view S
as a k × τ matrix having entries si,j where 1 ≤ i ≤ k and
1 ≤ j ≤ τi. For 1 ≤ j ≤ τ , define the set Sj to be the
j-th column of this matrix. Then S is a disjoint union of
S1, . . . , Sτ and for all j, we have |Sj | = |H(Sj)| (it means H
is injective on Sj).
Then, the sender sets the header as

Hdr = ( (g3 ·ΠID∈S1(uH(ID))
ID)s, . . . ,

(g3 ·ΠID∈Sτ (uH(ID))
ID)s, gs ) ∈ Gτ+1.

The sender broadcasts (S1, . . . , Sτ , Hdr, CM ), where CM is
an encrypted message under the K using a symmetric key
cipher.

Decapsulate(dID, S, Hdr): Let Hdr = (A1, . . . , Aτ , B). As-
sume a receiver with identity ID belongs to the subset Sj and
H(ID) = v. To decrypt the Hdr, it is sufficient for him to
obtain (Sj , Aj , B) where ID ∈ Sj . The receiver decrypts the
Hdr using his private key dID = (dID,1, dID,2, kID,1, . . . , kID,v−1,
kID,v+1, . . . , kID,a) as follows:

K = e(dID,1 ·Π ID′∈Sj
ID′ 6=ID

(kID,H(ID′))
ID′ , B) / e(Aj , dID,2).

Correctness of the decapsulation above, which we omit
here, can be showed by the similar calculation to that of
Section 4.1.

3.2 Security Analysis
We describe how a revoked user can decrypt the Hdr suc-

cessfully. Let ID′ be the identity of a revoked user. Let
S1, S2 be the subsets of receivers such that ID1 ∈ S1 and
ID2 ∈ S2. From the partition of the receiver set, we can
assume the case where H(ID1) = H(ID2) = H(ID′) = v, be-
cause the function H : Z∗p → {1, . . . , a} is surjective. Then,
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the A1 and A2 elements in the Hdr = (A1, A2, . . . , Aτ , B)
are constructed as

A1 = (g3 · · ·uID1
v · · · )s, A2 = (g3 · · ·uID2

v · · · )s

for some (unknown) s ∈ Zp. Let l = (ID1−ID′)/(ID′−ID2) ∈
Z∗p, which is computable since ID′ 6= ID1 and ID′ 6= ID2. The

revoked user then computes A′ = (A1A
l
2)

1/(l+1) where (l+1)
would become zero with negligible probability. Observe that

A′ = (g3 · · ·uID1
v · gl

3 · · ·uID2·l
v · · · )s/(l+1)

= (gl+1
3 · · ·uID1+ID2·l

v · · · )s/(l+1)

= (g3 · · ·u(ID1+ID2·l)/(l+1)
v · · · )s

= (g3 · · ·uID′
v · · · )s.

Since the set information about S1 and S2 is transmitted
along with the Hdr, the revoked user can easily know the
exponential value of each uk for k = 1, . . . , v−1, v +1, . . . , a
(if necessary). Recall that the private key for the revoked
user ID′ is

dID′ = ( gα
2 · (g3 · uID′

v )r, gr, ur
1, . . . , ur

v−1, ur
v+1, . . . , ur

a )

which can be used to decrypt the Hdr using the elements
(A′, B), where B is the element in the Hdr.

We consider the simpler case where H(ID1) = H(ID′) = v.
Then, the A1 and A2 elements are computed as

A1 = (g3 · · ·uID1
v · · · )s, A2 = (g3 · · ·uID3

v−1 · uID4
v+1 · · · )s

for some identities ID3, ID4 ∈ S2. (Here, the A2 could be
constructed differently, but the important point is that S2

does not include an identity ID ∈ Z∗p such that H(ID) =
H(ID′) = v.) In this case, let l′ = (ID1 − ID′)/ID′ ∈ Zp.

The revoked user computes A′′ = (A1A
l′
2 )1/(l′+1). By the

similar calculation to that above, we can see that A′′ =

(g3 · · ·uID′
v · · · )s for some unknown s ∈ Zp. This allows the

revoked user to decrypt the Hdr successfully.
In [12], the authors focused only on the impossibility of re-

voked users for building a private key suitable for decryption.
However, the observation above shows that a revoked user
could generate a valid component of the Hdr, and success-
fully recover the message encryption key, given that there is
some possible collision of the function H. As shown in the
above analysis, this is because the same element g3 is used
for all the partitioned subsets. Thus, in order to avoid such
an attack, one natural solution is to use different elements
for each subset. We will present this solution in the next
section.

Chatterjee and Sarkar [12] suggested a CCA-secure mIB-
KEM which is based on the CPA-secure scheme. Unfortu-
nately, we can show the resulting scheme is also insecure
against the attacks described above in the same manner.

4. CPA-SECURE MIB-KEM
In this section we present a new CPA-secure mIB-KEM

which overcomes the security leak identified in the previous
section. The crux of our method is to use different elements
associated with subsets of receivers, which can prevent such
attacks from occurring. To relate an identity to one of these
additional elements, we need another publicly computable
surjective function, denoted by H1 here.

As opposed to the previous scheme [12], our construction
imposes a priori maximum number n of receivers as the in-
put of Setup algorithm. For now, we assume identities are

elements of Z∗p, but as noted in [4] we can extend the domain
to all of {0, 1}∗ by hashing each identity ID using a collision
resistant hash function H : {0, 1}∗ → Z∗p. Note that De-

capsulate algorithm below does not require any elements
of public parameters as input.

4.1 Scheme
Let G and GT be groups of prime order p, and let e :

G×G→ GT be the bilinear map.

Setup(1k, n): The algorithm picks a random generator g ∈
G. It selects a random α ∈ Z∗p and sets g1 = gα. It picks
random elements x0, x1, . . . , xa, y1, . . . , yb ∈ G. The public
parameters PP (with the description of (G, GT , e, p)) and
the master key MK are given by

PP = (g, g1, x0, x1, . . . , xa, y1, . . . , yb, H1, H2), MK = α

where H1 and H2 are publicly computable surjective func-
tions such that H1 : Z∗p → {1, . . . , a} and H2 : Z∗p →
{1, . . . , b}.
KeyGen(ID, MK, PP): Given an identity ID ∈ Z∗p, the algo-
rithm finds two values u, v (where 1 ≤ u ≤ a and 1 ≤ v ≤ b)
such that H1(ID) = u and H2(ID) = v. If there already
exists an identity ID′ ∈ Z∗p such that H1(ID

′) = u and
H2(ID

′) = v, the KGC aborts. Otherwise, it picks a ran-
dom r ∈ Zp and set the private key for ID as

dID = ( xα
0 · (xu · yID

v )r, gr,

yr
1 , . . . , yr

v−1, yr
v+1, . . . , yr

b ) ∈ Gb+1.

Encapsulate(S, PP): A sender chooses a random s ∈ Zp

and set K = e(x0, g1)
s ∈ GT . Wlog, we can assume the set

S is divided into subsets S1, . . . , Sa after computing H1(ID)
and H2(ID) for ID ∈ S. Then, for all ID ∈ Si, we have
H1(ID) = i. Set the header as

Hdr = ( (x1 ·ΠID∈S1(yH2(ID))
ID)s, . . . ,

(xa ·ΠID∈Sa(yH2(ID))
ID)s, gs ) ∈ Ga+1.

The algorithm outputs the pair (Hdr, K). Then, the sender
broadcasts (S, Hdr, CM ), where CM is an encrypted message
under the K using a symmetric key cipher.

Decapsulate(dID, S, Hdr): Assume a receiver with iden-
tity ID is assigned to index u, v such that H1(ID) = u and
H2(ID) = v. The receiver decrypts the Hdr using his private
key dID = (dID,1, dID,2, kID,1, . . . , kID,v−1, kID,v+1, . . . , kID,b).
Let Hdr = (A1, . . . , Aa, B). Then, output

K = e(dID,1 ·Π ID′∈Su
ID′ 6=ID

(kID,H2(ID′))
ID′ , B) / e(Au, dID,2).

Correctness: Assuming the Hdr is well-formed, the cor-
rectness of the decapsulation is checked as follows:

K = e(dID,1 ·Π ID′∈Su
ID′ 6=ID

(kID,H2(ID′))
ID′ , B) / e(Au, dID,2)

= e(xα
0 · (xu · yID

v )r ·Π ID′∈Su
ID′ 6=ID

(yr
H2(ID′))

ID′ , gs) /

e((xu ·ΠID′∈Su(yH2(ID′))
ID′)s, gr)

= e(xα
0 · (xu ·ΠID′∈Su(yH2(ID′))

ID′)r, gs) /

e((xu ·ΠID′∈Su(yH2(ID′))
ID′)s, gr)

= e(x0, g1)
s.

376



Remark: As stated in [12], the outputs of two surjective
functions H1 and H2 are expected to be uniformly dis-
tributed, so that the entire elements of xi and yj could be
used. However, H1 and H2 do not act as random oracles in
our security proofs.

4.2 Security
The CPA-security of the mIB-KEM above is proven under

the decision (b + 1)-BDHE assumption.

Theorem 1. Suppose that the decision (t, ε, b + 1)-BDHE
assumption holds in G. Then the previous mIB-KEM is
(t′, ε, n, qID)-CPA-secure in the sID security model for any
positive integers n, b and t′ < t − Θ(τbn), where τ is the
maximum time for an exponentiation in G.

Proof. Suppose there exists an adversary A which has
advantage ε in attacking the mIB-KEM. We want to build
an algorithm B that uses A to solve the decision (b + 1)-
BDHE problem in G. For a generator g ∈ G and α ∈ Zp, let

gi = g(αi) ∈ G. On input (z, g, g1, . . . , gb, gb+2, . . . , g2b, T ),
B outputs 1 if T = e(z, gb+1) and 0 otherwise. B works by
interacting with A as follows:

Init: A outputs a set S∗ that it intends to attack.

Setup: After deciding two publicly computable surjective
functions H1 : Z∗p → {1, . . . , a} and H2 : Z∗p → {1, . . . , b},
B divides the challenge set S∗ into subsets S∗1, . . . , S

∗
a. It

depends on the values H1(ID) and H2(ID) for ID ∈ S∗. Next,
B selects a random ρ ∈ Zp and set x0 = gb · gρ. It also picks
random γ1, . . . , γb, δ1, . . . , δa ∈ Zp. It sets yi = gγigi for
i = 1, . . . , b and sets xj = gδj · (ΠID∈S∗j (gH2(ID))

ID)−1 for

j = 1, . . . , a. Finally, B gives A the public parameters

PP = ( g, g1, x0, x1, . . . , xa, y1, . . . , yb, H1, H2 ).

Since ρ, {γi}, and {δj} values are chosen uniformly at ran-
dom, this public key has an identical distribution to that in
the actual construction.

Phase 1: B needs to generate private keys dID for ID /∈ S∗.
Consider a private key for ID such that H1(ID) = u and
H2(ID) = v. Wlog, we can assume the pair (u, v) does not
belong to the set {(H1(ID), H2(ID)) : ID ∈ S∗}. B picks a

random r ∈ Zp. Let r′ = r − α(b+1−v)/ ID. (Recall that
ID ∈ Z∗p) B generates the private key dID for ID as

( xα
0 · (xu · yID

v )r′ , gr′ , yr′
1 , . . . , yr′

v−1, yr′
v+1, . . . , yr′

b )

which is a properly distributed private key for ID due to
the randomness r. We show that B can compute all com-
ponents of this private key given the values that it knows.
To generate the first component of the private key, observe
that

(xu · yID
v )r′

= (gδu(ΠID′∈S∗u(gH2(ID′))
ID′)−1 · (gγv gv)ID)r′

= (gδu(ΠID′∈S∗u(gH2(ID′))
ID′)−1 · (gγv gv)ID)r·

(gδu(ΠID′∈S∗u(gH2(ID′))
ID′)−1 · (gγv gv)ID)−αb+1−v/ID

= . . . (g
(δu+γv ID)
b+1−v (ΠID′∈S∗u(gb+1−v+H2(ID′))

ID′)−1)−1/ID · g−1
b+1.

Note that H2(ID) = v. Since ID /∈ S∗, we see that ID /∈ S∗u
and thus H2(ID

′)−v 6= 0 for any ID′ ∈ S∗u. Since xα
0 = gb+1 ·

gρ
1 , the first component in the private key can be computed

as

gρ
1 · (gδu(ΠID′∈S∗u(gH2(ID′))

ID′)−1 · (gγv gv)ID)r·
(g

(δu+γv ID)
b+1−v · (ΠID′∈S∗u(gb+1−v+H2(ID′))

ID′)−1)−1/ID

where the unknown term gb+1 is canceled out. The

other terms gr′ and yr′
i are computable since gr′ =

gr(gb+1−v)−1/ID and yr′
i = (gγigi)

r(gγi
b+1−v · gb+1−v+i)

−1/ID

for i = 1, . . . , v− 1, v + 1, . . . , b. Since i 6= v, these values do
not require knowledge of gb+1.

Challenge: To generate a challenge (Hdr∗, K∗) under the
receiver set S∗, B sets

Hdr∗ = ( z
δ1+ΣID∈S∗1

ID·γH2(ID) , . . . , z
δa+ΣID∈S∗a ID·γH2(ID) , z )

and K∗ = T ·e(g1, z
ρ), where z and T are input values given

to B. Observe that if z = gc for some (unknown) c ∈ Zp,
then

z
δi+ΣID∈S∗

i
ID·γH2(ID)

= (gδi(ΠID∈S∗i (gH2(ID))
ID)−1 ·ΠID∈S∗i (gγH2(ID)gH2(ID))

ID)c

= (xi ·ΠID∈S∗i (yH2(ID))
ID)c

for i = 1, . . . , a. If T = e(z, gb+1) then K∗ = e(x0, g1)
c and

thus (Hdr∗, K∗) is a valid challenge to A for the receiver set
S∗. On the other hand, when T is uniform and independent
in GT , then Hdr∗ is independent of K∗ in the adversary’s
view.

Phase 2: A issues private key queries. B responds as before.

Guess: A outputs a guess b′ ∈ {0, 1}. If b′ = 1 then it indi-
cates T = e(z, gb+1). Otherwise, it indicates T 6= e(z, gb+1).

When T is random in GT then Pr[B(z, g,−→g α,b, T ) = 0] =
1/2. When T = e(z, gb+1), B replied with a valid challenge
(Hdr∗, K∗). Then |Pr[b = b′] − 1/2| ≥ ε. Therefore, B has
that

|Pr[B(z, g,−→g α,b, e(z, gb+1)) = 0]

− Pr[B(z, g,−→g α,b, T ) = 0]| ≥ ε.

This completes the proof of Theorem 1. 2

4.3 Performance
Let n be the total number of users the mIB-KEM can

handle, and let S be the set of receivers. Recall that the
values a, b are derived from the two publicly computable
surjective functions H1 : Z∗p → {1, . . . , a} and H2 : Z∗p →
{1, . . . , b}.

Table 1 shows the performance comparison between the
previous mIB-KEMs [2, 11, 1] and ours for n = ab, in terms
of header(Hdr) size, private key size, decryption cost, and
public parameters (PP) size. Note that the mID-KEM in
[1] is obtained from so-called wicked identity-based encryp-
tion based on the Boneh, Boyen, and Goh’s HIBE scheme
[5]. Unlike the previous schemes [2, 11, 1], our mIB-KEM
provides a tradeoff between the Hdr and private key and PP
sizes. With appropriate parametrization, our scheme could
have sub-linear size Hdr and private keys simultaneously.
This sub-linearity depends on the choice of a and the num-
ber |S| of receivers. For example, let a = b =

√
n. When

|S| > a our scheme has sub-linear size Hdr and private keys,
but when |S| ≤ a the Hdr size could become (|S|+1) elements
in G only in the worst case.

We notice that the above mIB-KEMs [2, 11, 1] including
ours are all proven secure in the sID security model. Until
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Table 1: Performance Comparison of mIB-KEMs for n(= ab)

Hardness Random Hdr size Private Key Decryption PP size

Assumption Oracle size cost

BSS [2] DBDH Yes (|S|+ 1) G 1 G 2 p 3 G

CS [11] DBDH No (|S|+ 1) G 2 G 2 p + b Ge (b + 4) G

AKN [1] DBDHE No 2 G n(n + 1) G 2 p + |S| Ge (n + 3) G

Ours DBDHE No (a + 1) G (b + 1) G 2 p + b Ge (a + b + 3) G

G: element in G, p: pairing in G, Ge: exponentiation in G.

now, two mIB-KEMs [3, 12] are suggested to obtain secu-
rity in the full model, but these schemes have suffered from
an exponential security degradation in N , where N is the
number of “target” users.

5. CCA-SECURE MIB-KEM
In this section we propose a CCA-secure mIB-KEM by

applying the ideas of hash-based method (so called “BMW
transformation”) in [9] to our CPA-secure construction. Un-
like the signature-based method [10] and message authenti-
cation code (MAC)-based method [8], the BMW transfor-
mation does not need to attach a one-time signature or a
MAC to a ciphertext. In particular, the BMW transforma-
tion is more suitable for key encapsulation than other meth-
ods [10, 8]. To employ the BMW transformation, we need
a family of collision resistant hash functions Hk : G → Zp

indexed by k ∈ K. We say that a family of hash functions
is (t, ε)-collision resistant if no t-time adversary is able to
find two distinct values x, y such that Hk(x) = Hk(y) with
probability at least ε.

5.1 Scheme
Let G and GT be groups of prime order p, and let e :

G×G→ GT be the bilinear map. We note that Decapsulate
algorithm requires the public parameters PP as input, as
opposed to the CPA-secure scheme in the previous section.

Setup(1k, n): In addition to the setup procedure for the
CPA-secure scheme, the algorithm picks a random element
h ∈ G and selects a random hash key k ∈ K for hash function
H. The public parameters PP (with the description of (G,
GT , e, p, Hk)) and the master key MK are given by

PP = (g, g1, h, x0, x1, . . . , xa, y1, . . . , yb, H1, H2), MK = α.

KeyGen(ID, MK, PP): The private key for ID ∈ Zp is com-
puted as follows: as before, find two values u, v (where
1 ≤ u ≤ a and 1 ≤ v ≤ b) such that H1(ID) = u and
H2(ID) = v. Pick a random r ∈ Zp and set the private key
for ID as

di = ( xα
0 · (xu · yID

v )r, hr, gr,

yr
1 , . . . , yr

v−1, yr
v+1, . . . , yr

b ) ∈ Gb+2.

Encapsulate(S, PP): A sender chooses a random s ∈ Zp

and set K = e(x0, g1)
s ∈ GT . Next, the sender computes gs

and µ = Hk(gs). A header (Hdr) is generated as

Hdr = ( (x1 · hµ ·ΠID∈S1(yH2(ID))
ID)s, . . . ,

(xa · hµ ·ΠID∈Sa(yH2(ID))
ID)s, gs ) ∈ Ga+1.

The algorithm outputs the pair (Hdr, K). The sender broad-
casts (S, Hdr, CM ).

Decapsulate(dID, S, Hdr, PP): As before, a receiver with
identity ID is assigned to index u, v such that H1(ID) = u
and H2(ID) = v. The receiver decrypts the Hdr using
his private key dID = (dID,1, dID,2, dID,3, kID,1, . . . , kID,v−1,
kID,v+1, . . . , kID,b). Let Hdr = (A1, . . . , Aa, B). Compute
µ′ = Hk(B) and check that the following equality

e(Au, g) = e(xu · hµ′ ·ΠID∈Su(yH2(ID))
ID, B)

holds. If not, output ⊥. Otherwise, output

K = e(dID,1 · dµ′
ID,2 ·Π ID′∈Su

ID′ 6=ID

(kID,H2(ID′))
ID′ , B) / e(Au, dID,3).

Note that the pair (dID,1 · dµ′
ID,2 ·Π ID′∈Su

ID′ 6=ID

(kID,H2(ID′))
ID′ , dID,3)

is chosen from the following distribution

( xα
0 · (xu · hµ′ ·ΠID∈Su(yH2(ID))

ID)r′ , gr′ )

where r′ is uniform in Zp. We can show that the correctness
of decapsulation is checked by the similar calculation to the
one in Section 4.1.

To save the pairing computations in the decapsulation, we
can use the same technique described in [15]. In that case,
the decapsulation algorithm picks a random w ∈ Zp and
computes

d′ID,1 = (dID,1 · dµ′
ID,2 ·Π ID′∈Su

ID′ 6=ID

(kID,H2(ID′))
ID′)·

(xu · hµ′ ·ΠID∈Su(yH2(ID))
ID)w,

d′ID,3 = dID,3 · gw.

The algorithm then outputs K = e(d′ID,1, B)/e(Au, d′ID,3).
Consequently, this is the same approach to that of [7].

5.2 Security
As opposed to the (b+1)-BDHE assumption for the CPA

security in Section 4, the CCA security of the above mIB-
KEM is based on the (b + 2)-BDHE assumption.

Theorem 2. Suppose that the decision (t1, ε1, b + 2)-BDHE
assumption holds in G and the family of hash function {Hk}
is (t2, ε2)-collision resistant. Then the previous mIB-KEM is
(t3, ε3, n, qID, qD)-CCA-secure in the sID security model for
t3 < t1 −Θ(τbn) and ε1 + ε2 ≥ ε3, where τ is the maximum
time for an exponentiation in G.

Proof. Suppose there exists an adversary A which has
advantage ε3 in attacking the CCA security of the mIB-
KEM. We construct an algorithm B that uses A to solve
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the decision (b + 2)-BDHE problem in G. For a gener-

ator g ∈ G and α ∈ Zp, let gi = g(αi) ∈ G. On
input (z, g, g1, . . . , gb+1, gb+3, . . . , g2b+2, T ), B outputs 1 if
T = e(z, gb+2) and 0 otherwise. B works by interacting with
A as follows:

Init: A outputs a set S∗ that it intends to attack.

Setup: As before, B first divides the challenge set S∗ into
subsets S∗1, . . . , S

∗
a after selecting two publicly computable

surjective functions H1 : Z∗p → {1, . . . , a} and H2 : Z∗p →
{1, . . . , b}. Next, B computes µ∗ = Hk(z) and selects two
random ρ, τ ∈ Zp. It sets x0 = gb+1 · gρ and h = gb+1 · gτ .
Next, it picks random γ1, . . . , γb, δ1, . . . , δa ∈ Zp. It sets yi =
gγigi for i = 1, . . . , b and sets xj = gδj ·(ΠID∈S∗j (gH2(ID))

ID)−1·
g−µ∗

b+1 for j = 1, . . . , a. It additionally picks a random hash
key k ∈ K for hash function H. With the information about
(G,GT , e, p, Hk), B gives A the public parameters

PP = (g, g1, h, x0, x1, . . . , xa, y1, . . . , yb, H1, H2).

Since ρ, τ, {γi}, and {δj} values are chosen uniformly at ran-
dom, this public parameters have an identical distribution
to that in the actual construction.

Phase 1: A issues up to qID private key and qD decryption
queries. First, B needs to generate private keys dID for ID /∈
S∗. Consider a private key for ID such that H1(ID) = u and
H2(ID) = v. As before, we can assume the pair (u, v) does
not belong to the set {(H1(ID), H2(ID)) : ID ∈ S∗}. B picks

a random r ∈ Zp. Let r′ = r − α(b+2−v)/ ID. (ID ∈ Z∗p as
before.) B generates the private key dID for ID as

( xα
0 ·(xu ·yID

v )r′ , hr′ , gr′ , yr′
1 , . . . , yr′

v−1, . . . , yr′
v+1, . . . , yr′

b )

which is a properly distributed private key for ID. By the
similar calculation to that in Section 3, we can show that B
is able to compute all elements of this private key given the

input values, except hr′ . The term hr′ becomes

hr′ = (gb+1 · gτ )r · (g2b+3−v · gτ
b+2−v)−1/ID.

Since 1 ≤ v ≤ b, the unknown value gb+2 is not required to

compute hr′ .
Second, let (ID, S, Hdr) be a decryption query where S ⊆

S∗ and ID ∈ S. Let Hdr = (A1, . . . , Aa, B). Wlog, let
H1(ID) = u and H2(ID) = v for ID. When we divide S into
subsets (S1, . . . , Sa), we have that ID ∈ Su ⊆ S∗u. To decrypt
the queried ciphertext, B does as follows:

1. Compute µ′ = Hk(B) and check if the components
(Au, B) in the Hdr are of the valid form, using the
following equation

e(Au, g) = e(xu · hµ′ ·ΠID∈Su(yH2(ID))
ID, B).

If the equality does not hold, B responds with ⊥.

2. Otherwise, check that µ′ = µ∗. If the equality holds,
B outputs a random bit b ∈ {0, 1} and aborts the sim-
ulation (in this case, the collision of hash function Hk

occurs).

3. Otherwise, from the equation above, B has that

Au = (xu · hµ′ ·ΠID∈Su(yH2(ID))
ID)s

for some (unknown) s ∈ Zp such that B = gs. Plug-
ging in the values of xu, h, and {yk}, the Au becomes

Au = (gδu(ΠID∈S∗u(gH2(ID))
−ID)−1g−µ∗

b+1 · (gb+1g
τ )µ′ ·

ΠID∈Su(gγH2(ID)gH2(ID))
ID)s

= (g
(µ′−µ∗)
b+1 · gη ·ΠID∈S∗u\Su(gH2(ID))

−ID)s

where η = δu + τµ′ + ΣID∈Su ID · γH2(ID). B computes

d′ID,1 = g
−η/(µ′−µ∗)
1 ·Au·

(ΠID∈S∗u\Su(gH2(ID)+1)
ID)−1/(µ′−µ∗),

d′ID,3 = B · g−1/(µ′−µ∗)
1 .

Since 1 ≤ H2(ID) ≤ b, B does not require knowledge
of gb+2 and then is able to compute d′ID,1 with input
values. Let r′ = s− α/(µ′ − µ∗). Then,

d′ID,1 = g
−η/(µ′−µ∗)
1 (g

(µ′−µ∗)
b+1 gη ·ΠID∈S∗u\Su(gH2(ID))

−ID)s

· (ΠID∈S∗u\Su(gH2(ID)+1)
ID)−1/(µ′−µ∗)

= gb+2 · (g(µ′−µ∗)
b+1 · gη ·ΠID∈S∗u\Su(gH2(ID))

−ID)r′

= gb+2 · (xu · hµ′ ·ΠID∈Su(yH2(ID))
ID)r′ ,

d′ID,3 = gsg
−1/(µ′−µ∗)
1 = gr′ .

Recall that xα
0 = gb+2 ·gρ

1 . For the re-randomization, B
selects a random r′′ ∈ Zp and computes d′′ID,1 = d′ID,1 ·
gρ
1 ·(xu ·hµ′ ·ΠID∈Su(yH2(ID))

ID)r′′ and d′′ID,3 = d′ID,3 ·gr′′ .
For some (unknown) r′′′ = r′ + r′′,

d′′ID,1 = xα
0 · (xu · hµ′ ·ΠID∈Su(yH2(ID))

ID)r′′′ ,

d′′ID,3 = gr′′′ .

B responds with e(d′′ID,1, B)/e(Au, d′′ID,3). This response
is identical to the decapsulation algorithm in a real
attack, because r′′ (and r′′′) is uniform in Zp.

Challenge: B computes Hdr∗ as

(z
δ1+τµ∗+ΣID∈S∗1

ID·γH2(ID) , . . . , z
δa+τµ∗+ΣID∈S∗a ID·γH2(ID) , z)

and K∗ = T ·e(g1, z
ρ), where z and T are input values given

to B. Recall that µ∗ = Hk(z). As before, if z = gc for some
(unknown) c ∈ Zp, then

z
δi+τµ∗+ΣID∈S∗

i
ID·γH2(ID)

= (gδi · (ΠID∈S∗i (gH2(ID))
ID)−1 · g−µ∗

b+1 · (gb+1g
τ )µ∗ ·

ΠID∈S∗i (gγH2(ID)gH2(ID))
ID)c

= (xi · hµ∗ ·ΠID∈S∗i (yH2(ID))
ID)c

for i = 1, . . . , a. If T = e(z, gb+2) then K∗ = e(x0, g1)
c and

thus (Hdr∗, K∗) is a valid challenge to A for the receiver set
S∗. On the other hand, when T is uniform and independent
in GT , then Hdr∗ is independent of K∗ in the adversary’s
view.

Phase 2: A issues more private key and decryption queries
not queried in phase 1. B responds as before.

Guess: A outputs a guess b′ ∈ {0, 1}. If b = b′ then B
outputs 1, indicating T = e(z, gb+2). Otherwise, it outputs
0, indicating T 6= e(z, gb+2).
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When T is random in GT then Pr[B(z, g,−→g α,b+1, T ) =
0] = 1/2. Let Collision denote the event that A submits a
valid header Hdr = (A1, . . . , Aa, B) such that µ∗ = Hk(B)
as a decapsulation query. In the case of Collision, B cannot
reply to the decryption query and aborts the simulation.
When T = e(z, gb+2), B replied with a valid message en-
cryption key unless event Collision occurs. Then, B has

|Pr[B(z, g,−→g α,b+1, T ) = 0]− 1/2| ≥
|Pr[b = b′ ∧ Collision]− 1/2| − Pr[Collision].

Since B provided A with perfect simulation when the event
Collision did not occur, |Pr[b = b′ ∧ Collision] − 1/2| ≥ ε3.
Also, note that Pr[Collision] is negligible. This means that
Pr[Collision] < ε2 since otherwise B finds two values z, B
such that Hk(z) = Hk(B), which is contradiction to the
definition of H. Therefore,

|Pr[B(z, g,−→g α,b+1, e(z, gb+2)) = 0]−
Pr[B(z, g,−→g α,b+1, T ) = 0]| ≥ ε3 − ε2.

This completes the proof of Theorem 2. 2

6. CONCLUSION
We showed that a mIB-KEM suggested by Chatterjee and

Sarkar [12] does not guarantee the chosen plaintext (or ci-
phertext) security. The security leak is originated from em-
bedding the same element into partitioned subsets of re-
ceivers. We solved this weakness to use random elements
dedicated to subsets respectively. Our proposed mIB-KEM
has sublinear-size ciphertexts and private keys. We proved
the chosen plaintext security without random oracles un-
der the BDHE assumption, and extended the CPA-secure
scheme to obtain the chosen ciphertext security by employ-
ing the hash-based transformation [9].
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