
Gossip: Automatically Identifying Malicious Domains from
Mailing List Discussions

Cheng Huang
Sichuan University, China

opcodesec@gmail.com

Shuang Hao
University of California, Santa

Barbara, USA
shuanghao@cs.ucsb.edu

Luca Invernizzi
University of California, Santa

Barbara, USA
invernizzi@cs.ucsb.edu

Jiayong Liu
Sichuan University, China

jylscu@gmail.com

Yong Fang
Sichuan University, China

yongfangscu@gmail.com

Christopher Kruegel
University of California, Santa
Barbara & Lastline, Inc., USA

chris@cs.ucsb.edu
Giovanni Vigna

University of California, Santa
Barbara & Lastline, Inc., USA

vigna@cs.ucsb.edu

ABSTRACT
Domain names play a critical role in cybercrime, because
they identify hosts that serve malicious content (such as
malware, Trojan binaries, or malicious scripts), operate as
command-and-control servers, or carry out some other role
in the malicious network infrastructure. To defend against
Internet attacks and scams, operators widely use blacklist-
ing to detect and block malicious domain names and IP ad-
dresses. Existing blacklists are typically generated by crawl-
ing suspicious domains, manually or automatically analyzing
malware, and collecting information from honeypots and in-
trusion detection systems. Unfortunately, such blacklists are
difficult to maintain and are often slow to respond to new
attacks.

Security experts set up and join mailing lists to discuss
and share intelligence information, which provides a bet-
ter chance to identify emerging malicious activities. In this
paper, we design Gossip, a novel approach to automati-
cally detect malicious domains based on the analysis of dis-
cussions in technical mailing lists (particularly on security-
related topics) by using natural language processing and
machine learning techniques. We identify a set of effective
features extracted from email threads, users participating in
the discussions, and content keywords, to infer malicious do-
mains from mailing lists, without the need to actually crawl
the suspect websites. Our result shows that Gossip achieves
high detection accuracy. Moreover, the detection from our
system is often days or weeks earlier than existing public
blacklists.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02-06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3053017

Keywords
Malware Detection; Natural Language Processing; Black-
lists

1. INTRODUCTION
The Internet has grown quickly and provides a wide range

of services. However, it has also become an attractive tar-
get for cybercriminals who perform malicious activities, such
as spam advertising, financial fraud, and drive-by download
attacks. These attacks are usually associated with domain
names, pointing to the hosts that either contain malicious
content or operate as command-and-control servers. When
servers are identified as malicious, law enforcement and secu-
rity experts take them down, but miscreants keep registering
new domains to support illicit activities. Security companies
and researchers have developed a number of blacklists, such
as Spamhaus [5] or PhishTank [4], to detect and filter the do-
mains used in attacks. Existing systems generate blacklists
by analyzing network traffic, crawling suspicious domains, or
deploying honeypots to identify illicit activities. Although
blacklisting is one of the most widely used methods to de-
tect potential attacks, it suffers from two main problems:
limited coverage and detection delay. Recent studies have
shown that conventional blacklists only capture a small por-
tion of the malicious domains [30, 35], and they experience
considerable delay in capturing the malicious domains after
the attacks happen [39, 43].

At the early stages of the attacks (i.e., before blacklists
successfully report malicious domains), network administra-
tors or security experts might already notice abnormal ac-
tivities, and they tend to find efficient ways to confirm their
observation and exchange findings. Web forums or mailing
lists are an ideal place to discuss and share such informa-
tion. After a user posts a domain in question, other people
can reply and provide additional evidence, which helps in
deciding whether the concerned domain is indeed malicious.
Such online discussion offers several advantages. (1) The ob-
servations from many vantage points are combined to reach
a conclusion. (2) The knowledge and experience of the se-

494

http://dx.doi.org/10.1145/3052973.3053017

curity professionals participating in the discussions helps to
accurately identify potential attacks. (3) Since these dis-
cussions mostly focus on malicious activities that appear in
early stages, only a few victims are under attack. If one
could build a detection system that uses this information
and generates a timely blacklist, it could help to prevent the
larger-scale spreading of the attacks. However, the posted
contents in mailing lists are unstructured, and human ef-
fort is required to uncover useful information. To date,
little research has been performed to automatically recog-
nize threats discussed in mailing lists, even though linguis-
tic analysis has been successfully applied to other security-
related problems, such as using stylometry to identify anony-
mous bloggers [37].

In this work, we design and implement Gossip, a detection
system to automatically extract malicious domains from the
discussions in mailing lists. The main intuition is that these
discussions among security experts contribute to character-
ize the domain names involved in illicit activities. Gossip
relies on the features of linguistic patterns, email thread in-
formation, and users participating in the discussions. Such
features can be easily extracted with small overhead (com-
pared to website crawling or malicious software analysis).
We use machine learning techniques to build a statistical
classification model, and evaluate the performance on over
40 mailing lists. Our result shows that Gossip achieves high
detection accuracy. Moreover, the detection from Gossip is
often days or weeks earlier than existing public blacklists; in
particular, 40% of the domains could be detected 10 days be-
fore their appearance on blacklists. We manually verify the
prediction results, and find hundreds of malicious domains
that could not be identified by other blacklists. Network ad-
ministrators can use the output of our system to find attack
traffic in their networks. Gossip can effectively complement
other detection methods and improve the defense against
malicious domains.

In summary, we make the following contributions:

• We develop Gossip, a novel detection system that uses
linguistic and machine learning techniques to automat-
ically identify malicious domains based on mailing list
discussions.

• We identify four new families of features to leverage the
discussions and opinions of security experts on the sus-
pect domains. (1) URL features capture the patterns
of the embedded URLs; (2) Thread features are based
on the meta-data associated with the multiple emails
in a thread; (3) Participant features focus on the par-
ticipants involved in the email thread discussion; and
(4) Contextual features examine the text around the
domain under analysis. Gossip focuses on the data
within the mailing lists and requires little auxiliary in-
formation to derive these features.

• We evaluate Gossip on real-world mailing lists. The
ground truth information is collected from both public
blacklists and manual checking. We show that Gossip
is able to identify malicious domains accurately, re-
sulting in a 94% detection rate with zero false positive
rate. Our results show that Gossip provides earlier
detection compared to existing blacklists.

2. SYSTEM DESIGN
In this section, we introduce the design and the internal

details of our system. Gossip aims to quickly and accu-
rately find malicious domains from mailing lists that discuss
security-related topics. There are two main challenges that
we face. First, the data and information in the mailing lists
does not have a fixed format and the content text is not
structured. Second, it is difficult to identify effective features
which indicate malicious domains. To achieve our goal, we
develop components to parse the raw data, extract a set of
salient features, and build a model to classify whether the
domains are involved in malicious activities. Figure 1 shows
the architecture of our system. The input is the email mes-
sages from mailing lists. It is noteworthy that Gossip can be
easily extended to work on the messages collected from other
platforms, such as newsgroups or web forums. The output
is a list of domains with classification scores, where higher
scores indicate that the domains are more likely to be ma-
licious. Gossip consists of four components: preprocessor,
domain extractor, feature parser, and automatic classifier.
Next we describe the functionality and implementation of
each component in more detail.

2.1 Preprocessor
As the first step, we need to process the raw input data.

The messages from a mailing list are stored in the mbox
format (RFC 4155) in a single file. We develop an email
parser to separate the mailbox contents into individual
email messages in MIME format (RFC 5322) and extract
the message attributes, including the header information
and the message body. In particular, four header fields con-
tribute to the feature extraction later (see Section 3): the
“From” field indicates the author of the message, the “Or-
ganization” field refers to the company or organization that
the author is affiliated with, the “Content-Disposition” field
shows whether the email has attachments, and the“Subject”
field contains words to represent the email topic. The“Date”
field shows the time when the message was sent, which al-
lows us to compare the discussion time in the mailing list
with the time when the domains were eventually included
in other blacklists (see Section 4.2.2).

The message body not only contains clean text, but also
can include HTML elements or special encoded characters.
The process of text sanitization extracts the plain text
from the rendered HTML and removes special characters.
We discard the messages that use encryption (e.g., PGP en-
cryption), since the message content is not accessible. More-
over, the parts of the text with little information for our de-
tection (such as user signatures) are excluded from further
analysis. For simplicity, we filter out the email messages if
they are in non-English languages.

When an email is posted on the mailing list, other people
can reply and participate in the discussion, which forms a
conversation thread. We develop a module that performs
thread grouping to associate emails belonging to the same
conversation. Each email has a unique “Message-ID”. A
reply message has the “In-Reply-To” field referring to the
“Message-ID” of the previous message that it replies to (the
first email in a thread has an empty “In-Reply-To” field).
Following this process, we link the emails in the same thread
based on the header fields “In-Reply-To” and “Message-ID”.
The output of the preprocessor component is the attributes

495

Automatic ClassifierFeature Parser

Contextual Features

Thread Features
Training

Prediction

URL Features

Participant Features

Emails from Maling

Lists (mbox format)

Preprocessor

Email Parser

Text Sanitization

Thread Grouping

Domain Extractor

URL Search

Domain Finalization

Malicious Domains

Benign Domains

Figure 1: The architecture of Gossip. The system contains four components (with various internal modules).

of email messages (including headers and body text) and the
associated threads.

2.2 Domain Extractor
Our analysis target are the domains discussed in the mail-

ing lists, which correspond to parts of the URL strings.
We first find URLs in the message bodies, and then de-
rive the domain names. Though at a first glance it might
seem trivial to extract URLs from the email text, arbi-
trary conventions or variants adapted by users often de-
form the standard URL format and introduce additional
difficulty. Since the suspect URLs have high risk of lead-
ing to websites that host malicious contents, security profes-
sionals tend to substitute or insert characters in the URLs
to avoid accidental clicks. For example, a URL http://

www.malwareexample.com/index.html can be obfuscated as
hxxp//www[.]malwareexample[.]com/index.html, to make
it infeasible to directly click on it. We manually construct
regular expression signatures to match the patterns and de-
velop a URL search module to derive the correct URLs.

We subsequently parse the URLs in the domain finaliza-
tion module to obtain the candidate domains. In our anal-
ysis, we mainly focus on the second-level domains. For ex-
ample, from the above URL http://www.malwareexample.

com/index.html, the extracted domain is malwareexample.
com. Some country code second-level domains, such as
.com.cn and .co.uk, provide subdomain registrations (as
defined in the Mozilla Public Suffix List [3]) to the pub-
lic. For these domains, we extract the third-level domain
names as the analysis target. A domain can appear in mul-
tiple threads, so we associate each domain with all the email
threads in which it is mentioned for further processing.

2.3 Feature Parser
After the previous steps, each domain is correlated with a

set of discussion threads and the corresponding email mes-
sages. A key question is: what features best characterize
a malicious domain? We explore the properties of the dis-
cussion behavior and content in the mailing lists. We group
the features into four categories. URL features examine
the lexical patterns of the URLs and the auxiliary informa-
tion about the domains, such as whether the URL is typed
as in the standard scheme or whether the domain is in the
Alexa top list. Thread features focus on the attributes
of the threads. We characterize how the domains are dis-
cussed, such as how many emails contribute to the discus-
sion or whether the thread contains hash values (often used
to fingerprint malware). Participant features investigate

who participates in the discussions. After someone posts
questions about suspect domains, other people reply to the
message to provide answers or additional observations. The
reputation of the participants indicates to what degree peo-
ple can trust the discussion and conclude that the domain
is problematic. Contextual features consider the semantic
patterns of the discussion content, particularly based on the
text that surrounds the analyzed domains. It is noteworthy
that Gossip only uses the features derived from the discus-
sion threads, and does not need to actively scan the suspect
domains or URLs. In Section 3, we explain the features in
more detail, and we discuss how to represent them.

To avoid the bias caused by different feature scales, we
apply a normalization process on the features. For each
feature value fn ∈ Fn, the normalized value is calculated as
in Equation 1, where max(Fn) and min(Fn) correspond to
the maximum and minimum values in Fn respectively. The
min-max normalization converts the feature values in the
range of [0, 1].

Normalize(fn) =
fn −min(Fn)

max(Fn)−min(Fn)
(1)

2.4 Automatic Classifier
We incorporate the features into a classification approach

to determine whether the domains in discussions tend to get
involved in malicious activities. In our application scenario,
the feature matrix is large (about 20,000 features) and sparse
(with many zero values). We compare multiple classification
methods including Naive Bayes, Support Vector Machine
(SVM), and Random Forests [13] with real data in our ex-
periments. In particular, Random Forests, which combines a
collection of decision trees to vote for the final result, yields
the best accuracy and running performance in our experi-
ments. Therefore, we chose to use Random Forests as the
automatic classifier in Gossip. In the training phase, we
use the labeled ground truth (based on both manual check-
ing and existing blacklists, see Section 4) to construct the
classification model. In the prediction phase, the classifier
outputs a score in the range of [0, 1] for each domain, where
a higher score indicates that the domain is more likely to
be malicious. Operators can set appropriate thresholds to
achieve tradeoffs between the false positive rates and the de-
tection rates. If a domain has a classification score that is
greater than the predefined threshold, Gossip reports the
domain as malicious.

496

3. FEATURES
For each domain under analysis, we first aggregate all

email threads that mention it. We extract a vector of fea-
tures from these emails, which we then feed into our machine
learning component. In this section, we present each feature
category in detail.

3.1 URL Features
We extract two features from each URL. The first is a

popularity feature, which indicates whether the URL’s do-
main name is included in the Alexa top one Million domains.
This feature introduces apriori knowledge on our classifica-
tion, for which we tend to classify very popular domains as
benign, before looking at the content of email threads.

The second feature indicates whether the URL is likely to
lead to a binary download, which is implemented by checking
whether the URL contains a “.exe” extension. URLs leading
to a binary download are more likely to be malicious.

3.2 Thread Features
We identify all email threads mentioning each URL un-

der analysis, and we extract features from the collection of
threads.

Terms used in email subjects. The subject of an email
often provides a concise overview of the email content. Be-
cause of this, we build a bag-of-words binary vector rep-
resenting the terms used in these subjects, after stripping
common words (e.g., stop words, “Re:”,. . .) and punctu-
ation characters. For example, the presence of the words
“mailing list memberships reminder” is indicative of benign
content. The email subject is extracted from the “Subject”
field in the message header.

Number of replies. We indicate in a single feature the
total length of the threads where a URL was mentioned. A
URL appearing with high frequency is often part of a partic-
ipant’s signature, which indicates it is benign. On the other
end of the spectrum, less frequent URLs are more likely
malicious. As we discussed, the reply number is calculated
based on the “Message-ID” and “In-Reply-To” fields.

Number of domains. We compute the number of distinct
domains that co-occur with each URL. This feature is in-
dicative of the presence of “URL dumps”, where some emails
contain lists of domains that have been used or victimized
by the same attacker.

Number of IP addresses. Similarly to the previous fea-
ture, we compute the total number of IPv4 addresses that
co-occur with each URL. Long lists of IP address are typ-
ically used to identify compromised hosts that are under
the control of the attacker. We parse the message contents
and extract the strings in quad-dotted format (each integer
ranging from 0 to 255) as the IP addresses.

Number of attachments. When discussing a particu-
lar piece of malware, some participants include additional
evidence as attachments. These attachments include mal-
ware samples, network dumps, or lists of affected users. We
include a feature that counts them. The attachment is in-
dicated by the “Content-Disposition” header field in each
email.

Number of organizations. Some companies configure
their SMTP servers to include a non-standard email header

“Organization” in all outgoing mail. This field is sometime
spelled in its plural form, and/or British variant. We encode
the name of the organization in a binary vector, which we
add to our features. In particular, we generate a one-hot
vector for each email, and we aggregate them all in a single
vector, that will have a non-zero value for each organization
that took part in the discussion.

Number of known malware-detection services. We
compute the number of URL, co-located with the URLs un-
der analysis, which point to known malware-detection ser-
vices (e.g., VirusTotal [20]). To do so, we refer to a short
list of these services that we have manually compiled.

Number of cryptographic digests. We compute the
number of SHA1 and MD5 digests co-located with each
URL under analysis, as these digests are routinely used to
uniquely identify malware samples. We leverage the fact
that SHA1 and MD5 digests correspond to 40 and 32 hex-
adecimal numbers respectively, and count the strings match-
ing the criteria.

3.3 Participant Features
The members participating in the mailing lists have differ-

ent experience, resources, and technical background. There-
fore, their contribution to the discussions may vary. The
response from some people (especially security experts) is
more likely to indicate attacks or malicious activities. We
leverage the users’ activities and examine who participated
in a conversation thread. The identities of the participants
could be easily distinguished by their email addresses.

First, we extract all the senders’ email addresses from the
data sets and compute their hash with the MD5 algorithm
in order to avoid disclosing any private information. Second,
we use these strings as participant features: If an email ad-
dress shows to reply a thread, the value will be set to binary
value 1. Finally, we generate a mapping matrix to indicate
which members have participated in the discussions about
the domains.

3.4 Contextual Features
In this last group of features, we extract traits of the text

that surrounds each URL under analysis. A challenge is how
to find keywords to accurately indicate the URL’s reputa-
tion. Traditional bag-of-words method based on the whole
text or paragraph have several limitations, such as including
many common words or sentences not closely related with
the subject. Previous research only focuses on analyzing the
linguistic patterns in the URL itself [18, 48].

We develop an approach to generate features from the
contextual keywords. The heuristic is based on the intuition
that the neighbor words close to the discussed URL could
represent the judgment of human analysts on the URL.

We build a bag-of-words feature vector from a windowed
portion of the text (up to a maximum of 20 words, as a recent
study showed that an English sentence typically contains less
than 20 words [17, 21]), centered on the URL. If plenty of
negative-meaning words are associated with the domain, the
domain is more likely to be malicious. For example, consider
the following snippet from real-word data:

The first-stage backdoor is a freshly compiled,
slightly modified version of the same one used in
the IE 0day phishing waves, and the re-use of a
c2 domain xxxxx.com is compelling. And the

497

domain is associated with some malicious activ-
ities.

From the text description, a human user can infer that
the domain “xxxxx.com” is malicious. We expect Gossip
to automatically extract the words that can represent the
discussion opinions on the domain. A series of keywords
from this paragraph could indicate the attributes or activity
information about the domain. In order to select representa-
tive words to reflect the domain’s reputation, we first remove
stop words (which are frequently used common words and do
not have any meanings in the sentence) close to the entity’s
position, select a certain area to limit the number of words,
and extract the words that best indicate the maliciousness
of the domain. An output result for the above sample is
shown below:

The first-stage backdoor is a freshly compiled,
slightly modified version of the same one used in
the IE 0day phishing waves, and the re-use of a c2
domain xxxxx.com is compelling. And the do-
main is associated with some malicious activities.

To automatically extract the contextual features from the
email threads, we use four steps: text cleaning, removing
stop words, stemming, and extracting contextual words.
Next we introduce each step in detail.

Text cleaning. There are various kinds of email formats
and encoding methods in addition to plain text (such as
HTML pages, non-ASCII characters, etc.). The “Content-
Type” in the email header indicates the content type of
the message. The encode method could be found in the
“Content-Transfer-Encoding” field. In order to correctly ex-
tract the content and remove irrelevant HTML codes, we
parse the HTML tags with the Beautiful Soup Python li-
brary [41] and decode the Base64 encoded content. More-
over, some punctuations are vital to represent the meaning
of sentences and show the attitude of the discussions. For
example, some punctuations, like “!”, “?”, could affect the
meaning of the sentence, while some other punctuations,
like “:”, “–”, do not represent a user’s strong sentiments. In
order to build a representative feature set, we construct a
punctuation list and include these punctuations into word
tokenization.

Removing stop words. We first checked the stop words
from the NLTK library [44], but the library only contains a
limited set of 127 English words. Google research team has
calculated and published the 10,000 most common English
words (ordered by their frequencies) [19]. We combined the
top 2,000 English words from the Google list and all the stop
words from the NLTK library, and then manually removed
the words which have sentimental meanings. Eventually, we
obtained 1,550 stop words and exclude them in our analysis.

Stemming. Stemming is the process of getting the root
form of other-tense-format verbs (such as present tense, past
tense, or future tense). In our work, we treat different tense-
format words as one feature, and use the Porter stemming
module [49] to convert each word into its root form (which
is less aggressive than other stemming algorithms [22, 40]).

Extracting contextual words. To get contextual infor-
mation about a domain under analysis, we extract text to-
kens from all the threads in which the domain is mentioned.

While a naive choice is to select all tokens showing in the
threads, the approach would confuse the classifier: Users
may discuss both benign and malicious domains in the same
thread. Using a bag-of-words approach at the thread level
would yield the inclusion of irrelevant or even misleading
word tokens for the analyzed domain. The key observation
to resolve this issue is that the tokens in the immediate
vicinity of each analyzed domain best indicate the potential
maliciousness of the domain. Therefore, for each domain we
only extract a subset of text tokens close to its position in
the text.

4. EVALUATION
We evaluate the performance of Gossip on real-world

mailing list data. First, we describe how we collected our
datasets and obtained ground truth. We then present exper-
imental results regarding the detection accuracy and timing
compared with existing blacklists.

4.1 Datasets
The mailing list data that we use include two types of

lists: security mailing lists that focus on discussing malicious
activities and attacks, and public mailing lists that discuss
general computer-related issues. These mailing lists provide
real-world examples of people taking advantage of online
forums to share information and find solutions. We collected
a number of blacklists to label the domains and use them to
evaluate the performance of our system.

Security mailing lists. Security professionals from dif-
ferent organizations or enterprises establish mailing lists to
exchange observations and security opinions. Since such
mailing lists might contain private information about net-
work configurations or company security products, the con-
tent is usually not accessible to the public and the subscrip-
tion requests need moderator’s approval. We subscribed to
six security mailing lists and collected the email discussions
from June 2009 to May 2015. These mailing lists focus on
security-related topics, and post questions about suspect do-
mains. After processing the raw data, we extracted 10,780
email threads and 2,649 distinct domains.

Public mailing lists. We collected data from public mail-
ing lists to further examine the robustness of our system.
The public mailing lists provide a platform where people can
discuss general computer-related issues. It is unlikely that
the discussion contents contain malicious domains, so we use
the public mailing lists as a control group to make sure that
Gossip has little misclassification on benign domains (see
Section 4.3). A collection of mailing lists can be found at the
“MARC” archive (marc.info), which stores 70 million emails
across over 3,500 mailing lists from seven million users. We
randomly sampled 43 mailing lists and crawled 76,380 email
threads from November 1999 to September 2015, which con-
tain 3,898 distinct domain names.

Blacklist labels. We crawl data from public blacklists and
online malware detection services to obtain ground truth in-
formation. It is noteworthy that existing blacklists do not
provide perfect ground truth, so we further performed man-
ual validation on the detection results of Gossip (see Sec-
tion 4.2.1). Some blacklist services have timestamp informa-
tion to indicate when the domains were blacklisted, which
allows us to compare the time difference between the de-

498

Table 1: Statistics of 244 sampled domains in secu-
rity mailing lists (as training data).

Category Count and percentage
Malicious domains 93 (38.11%)
Benign domains 141 (57.79%)
Uncertain domains 10 (4.10%)

tection of existing blacklists and our system. Note that in
our experiments we only collected and compared with public
blacklists. While commercial blacklists contain more timely
information, Gossip helps to automatically extract threats
from the online discussions of human analysts. The black-
lists that we use are from three main groups.

• Feed of multiple blacklists. We obtained a feed which
collected over 75 different public blacklists [29], includ-
ing malwaredomainlist [2], abuse.ch [6], Malc0de [1],
Spamhaus [5], and PhishTank [4]. The collection pe-
riod spans from July 2011 to June 2015, and the data
covers domain names involved in various malicious ac-
tivities, such as phishing, spam, and drive-by down-
load attacks. Given a domain name, the feed shows
the particular blacklists that reported the domain as
malicious and the corresponding blacklisting periods.

• VirusTotal [20]. To complement the above blacklist
feeds, we query VirusTotal, which integrates over 60
different security products. However, VirusTotal pro-
duces a non-negligible number of false positives [45]
and, therefore, the domains in our experiment are la-
beled as malicious only if more than one security prod-
uct flagged as problematic. VirusTotal provides times-
tamps to indicate the first time a domain was analyzed.

• McAfee SiteAdvisor [33]. Another resource is SiteAd-
visor, a free online service from McAfee to check
whether a domain is associated with malicious activi-
ties. We submitted the domains that have been found
from the mailing lists to the McAfee SiteAdvisor. Al-
though the service returns many labels for malicious
domains, a deficiency is that it does not provide time
stamps associated with the detection.

In our experiments, we consider a domain as malicious if
any of the above blacklists has reported that the domain was
associated with illicit activities.

4.2 Experiments on Security Mailing Lists
We first examine the performance of Gossip on the se-

curity mailing lists, and compare the results with existing
blacklists. One challenge is that it is uncertain which do-
mains discussed in the security mailing lists are the benign
ones. So we sample a set of domains and manually check
whether they are malicious. To make sure our samples are
representative, we do not pick more than one domain from
the same email thread (which have similar features). Table 1
shows the manual checking results of the sampled domains.
We use 93 manually checked malicious domains and 141 be-
nign domains as training data.

To derive unbiased testing data, we remove the domains
appearing in the same discussion threads as those in the
training data. In other words, we separate the training data
and testing data and make them unassociated. We obtain

2,405 domains from the security mailing lists as the testing
dataset.

4.2.1 Accuracy and Manual Validation
We use the algorithm of Random Forests on the training

data to learn a classification model, and apply the model
on the testing data. The output result of each domain is
a score, where a higher score indicates that the domain is
more likely to be malicious. The domains that Gossip clas-
sifies as malicious depend on the selected score threshold. In
our experiments, we set a 0.4 threshold (the value is in the
range of [0, 1]), which results in detecting most of the black-
listed domains. There are 1,559 malicious domains being
classified by Gossip as malicious. The blacklists reported
693 malicious domains discussed in the mailing lists, among
which 608 domains (88.7%) are also captured by Gossip.
The result shows that Gossip can cover most of the mali-
cious domains detected by existing blacklists. Recall that we
do not have a perfect ground truth about malicious and be-
nign domains. To further examine how accurate our results
are, we sorted the domains in descending order according
to the detection scores, and manually investigated the top
200 domains, the 100 domains with scores right above 0.4
threshold (ranking 1,460–1,559), and the last 100 domains
(i.e., those close to the end of 2,405 domains in list). Ta-
ble 2 shows the count of blacklisted domains (the second
column) and manual checking results of the non-blacklisted
domains (the third to the fifth columns). We see that the
domains with top classification scores contain considerable
amount of blacklisted domains: the first 100 domains have
60 blacklisted, and the next 100 domains have 62 black-
listed. When we manually investigated the non-blacklisted
domains by checking the web content of the domains and
the evidence in the mailing list discussions, in the 1–100
and 101–200 groups, we found that 90.0% and 76.4% of the
non-blacklisted domains were actually malicious ones, but
missed by existing blacklists. Among the 100 domains with
ranking 1,460–1,559, there were still a substantial amount
of malicious domains that were not blacklisted. The obser-
vation demonstrates that Gossip complements the existing
blacklists, and captures more malicious domains. In Sec-
tion 5.1, we further analyze the false positives and show
that whitelisting can significantly improve the accuracy of
Gossip. The last row in the table shows the 100 domains
with the lowest classification scores, which are supposed to
be benign domains. Few of them appear in blacklists or
are determined to be malicious via manual checking. The
results demonstrate that our system can effectively distin-
guish malicious domains from benign ones.

4.2.2 Comparison of Detection Timing
Detection time is an important metric for blacklists and

detection systems, since early detection can prevent mali-
cious activities from spreading to more victims. We investi-
gate and compare when the malicious domains appeared on
blacklists and when they could be detected by Gossip. As
we mentioned, McAfee SiteAdvisor does not provide times-
tamps in the data, and therefore, we exclude it from the
analysis. With the 0.4 threshold above, we have 476 ma-
licious domains being flagged by both reputation services
(excluding McAfee SiteAdvisor) and Gossip.

We use the timestamp (in the “Date” header field) of the
last email of the thread that discussed a domain as the time

499

Table 2: Results of manual checking on domains that
Gossip classifies as malicious (ranked by the classifi-
cation scores). In each row, the combination of the
numbers in bold is the ground truth of malicious
domains.

Rank Non-blacklisted
region Blacklisted Malicious Benign Uncertain
1–100 60 36 (90%) 4 (10%) 0 (0%)

101–200 62 29 (76%) 8 (21%) 1 (3%)

.
1,460–1,559 20 22 (27%) 55 (69%) 3 (4%)

.
2,306–2,405 4 0 (0%) 96 (100%) 0 (0%)

−300 −200 −100 0 100 200 300
Number of different days

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

b
in

e
d
 p

ro
b
a
b
ili

ty
 s

co
re

s

0.21

Figure 2: Distribution of the detection time differ-
ence between Gossip and public blacklists (one year
period).

when Gossip could detect the domain. Each blacklist pro-
vides the first time and last time when it flagged a domain as
malicious, which forms a blacklisting window. Since differ-
ent blacklists could generate multiple blacklisting windows,
we need to find the appropriate window to compare with
Gossip. The detailed process of calculating the time differ-
ence is shown in Algorithm 1.

Figure 2 presents the distribution of the days between
blacklisting time and when Gossip made the detection. We
only show the time difference within one year, since it is un-
likely that the gap is over one year (a domain might expire
after one year and change ownership). The positive values
on the x-axis represent that Gossip could detect the mali-
cious domains earlier than blacklists. We see that 79% of
the malicious domains were detected sooner by Gossip than
existing public blacklists. Figure 3 shows the truncated dis-
tribution within 30 days (one month). About 40% of the
domains could be detected 10 days before they appeared
on public blacklists. Therefore, Gossip has a better chance
to detect attacks early and provide more time for users to
mitigate the threats.

4.3 Experiments on Public Mailing Lists
In order to evaluate the effectiveness of Gossip, we com-

bine the public mailing lists to construct a synthetic dataset.
The public mailing lists usually do not contain malicious do-

−30 −20 −10 0 10 20 30
Number of different days

0.0

0.2

0.4

0.6

0.8

1.0

C
o
m

b
in

e
d
 p

ro
b
a
b
ili

ty
 s

co
re

s

0.21

0.61

Figure 3: Distribution of the detection time dif-
ference between Gossip and public blacklists (trun-
cated, one month period).

0.000 0.005 0.010 0.015 0.020
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

AUC = 0.9978

Figure 4: ROC curve of Gossip (10-fold cross valida-
tion).

mains, since their topics are about general computer-related
issues (not focusing on security or attacks). We extract the
domains discussed in the public mailing lists as the benign
set, and remove any domains that have appeared in black-
lists. We use the blacklisted domains in the security mailing
lists as the malicious set. At the end, we have 693 malicious
domains and 3,898 benign domains.

Most of the features can be extracted as previously. One
special case is participant features. It is unlikely that the
security mailing lists and the public mailing lists have over-
lapping users (with the same email addresses). Therefore,
we extend the participant features as the second-level do-
main parts in the email addresses (instead of using the whole
email addresses as the feature). We use 10-fold cross vali-
dation to evaluate the detection accuracy. The domains are
randomly partitioned into 10 equal-size parts. At each iter-
ation, one single part is taken as the testing data, and the
other parts are used as training data. The final result is
the average over all iterations. As discussed before, we use
Random Forests as the classifier.

500

Algorithm 1 Calculating the time difference between black-
listing and Gossip detection.

Require:
d: target domain;
BT : set of appear time period in multiple-blacklist feed
(MD);
vt: first seen time in VirusTotal;
mt: first seen time in mailing list;
dt: different time for domain;

1: BT ⇐ search all appear time in MD for d
2: if BT 6= empty then
3: if exist(ibt ∈ BT) &

ibt.first.time ≤ mt ≤ ibt.last.time then
4: dt⇐ min(ibt.first.time−mt)
5: else if exist(ibt ∈ BT) &

ibt.first.time ≥ mt then
6: dt⇐ min(ibt.first.time−mt)
7: else if exist(ibt ∈ BT) &

ibt.first.time ≤ mt then
8: dt⇐ min(ibt.first.time−mt)
9: else if d ∈ vt then

10: dt⇐ vt−mt
11: return dt

Figure 4 shows the ROC curve of the 10-fold cross vali-
dation. Gossip achieves high accuracy, namely a 94% de-
tection rate with zero false positives. The area under curve
(AUC) in the figure is about 0.99. Our result shows that
Gossip can be deployed across mailing lists and effectively
distinguish malicious domains based on the online discus-
sions.

5. ANALYSIS AND MEASUREMENT
Based on the results from the previous section, we perform

further analysis to investigate the false positives, evaluate
what are the most important features, and characterize the
types of the malicious domains that we found in the mailing
list discussions.

5.1 False Positive Analysis
In Section 4.2.1, we see that even though Gossip is able

to extract many malicious domains from security mailing
lists, it also classifies a certain amount of benign domains
as malicious (i.e., false positives). We investigated the false
positives and found that most of them were security blogs
or company websites. The reason is that during the discus-
sions about malicious activities, security professionals often
include external blogs or technical websites as references to
find more details. These benign domains shared similar fea-
tures in our system as the discussed malicious domains, and
therefore had a certain probability to be misclassified. If
we can whitelist these security-related domains, the per-
formance of Gossip can be further improved. A heuristic
is that malicious websites would not show security-related
words, such as “malware” or “threat”, to alert the visitors.
On the other hand, the security-related websites often con-
tain such words when mentioning the malicious activities.
Therefore, we developed a bag-of-words model to identify
the keywords on the security-related websites, and then
crawled the domains in our dataset to whitelist the benign
ones.

Table 3: Selected security websites as the seed to
extract security-related words.

No. URL of the website
1 http://lastline.com
2 https://usa.kaspersky.com
3 https://www.fireeye.com
4 https://www.damballa.com
5 http://home.f-secure.com
6 https://www.lancope.com
7 https://www.alienvault.com
8 http://www.avg.com
9 http://www.trendmicro.com
10 https://www.paloaltonetworks.com

We selected 10 well-known security websites (listed in Ta-
ble 3) as the seed to extract security-related words. Algo-
rithm 2 explains the detailed extraction steps using natu-
ral language processing technology to generate security key-
words (line 1–8) and ranking these keywords by term fre-
quency (TF) and the inverse document frequency (IDF) al-
gorithm (line 9–14). To find what keywords best represent
security topics, we calculated the TF-ID value for each word,
where the IDF value was calculated from Microsoft’s N-gram
service [47]. We ranked the words according to the TF-IDF
values, and selected the top 50 words to generate a security
keyword corpus.

The top 50 security-related keywords in our experiment
are: “security”, “threat”, “amp”, “avg”, “kaspersky”, “last-
line”, “business”, “protection”, “cyber”, “2015”, “endpoint”,
“network”, “advanced”, “intelligence”, “learn”, “alienvault”,
“malware”, “products”, “trend”, “enterprise”, “get”, “threats”,
“antivirus”, “mobile”, “partner”, “fireeye”, “internet”, “free”,
“support”, “data”, “micro”, “damballa”, “detection”, “man-
agement”, “home”, “small”, “attacks”, “lancope”, “detect”,
“contact”, “new”, “incident”, “defense”, “online”, “united”,
“delivers”, “breach”, “zeroday”, “virus”, “services”.

Next, we crawled the domains in our dataset and ex-
tracted the words from their websites. If a website has at
least N words in the security keyword corpus, we think the
corresponding domain is a security-related domain (applica-
ble for whitelisting). We set N as 5 in our experiments.

We re-visited the manual checking process on the Gos-
sip’s output. Table 4 shows the result with whitelisting,
compared to Table 2. The numbers in the parentheses rep-
resent the counts of domains that can be filtered by the
whitelist. Especially, for the domains with lower ranking,
like those in the 1,460–1,559 group, a considerable portion
of the misclassified benign domains can be whitelisted. With
whitelisting, Gossip can achieve higher detection accuracy.

5.2 Feature Importance
With the classification results, we identify what the most

effective features in Gossip are. This insight can help fu-
ture feature development, and might stimulate mailing lists
or Web forums to provide structured formats or interface
to extract the useful features. We evaluated the feature
importance by using the mean decrease impurity (MDI)
method [38]. Table 5 shows the 10 most effective features
in our system. Among the top five features, four of them
belong to URL features and Thread features, which require
small overhead to extract.

501

Algorithm 2 Extraction of keywords from security websites
with TF-IDF algorithm

Require:
D: set of testing domains;
TW : set of words from all websites;
TFIDF : set of td idf values for all words;
RV : set of top 50 security keywords;

1: for each d ∈ D do
2: W ⇐ extract text from html(d);
3: W ⇐ word tokenize(W);
4: W ⇐ remove stopwords(W);
5: for each w ∈W do
6: if len(w) ∈ [2, 20] then
7: w ⇐ stemming(w.lower());
8: TW.append(w);
9: for each tw ∈ TW do

10: tf ⇐ TW.counter(tw)/len(TW)
11: idf ⇐Microsoft Ngram idf(tw)
12: TFIDF.append((tf ∗ idf, tw), tw)
13: TFIDF ⇐ order by value(TFIDF);
14: RV ⇐ TFIDF.get most 50 words;
15: return RV ;

Table 4: Results of whitelisting compared to Table 2.
The numbers in parentehses indicate the amount of
whitelisted domains.

Rank Non-blacklisted
region Blacklisted Malicious Benign Uncertain
1–100 60 36 4 (-2) 0

101–200 62 29 8 (-3) 1 (-1)
.

1,460–1,559 20 22 (-4) 55 (-31) 3 (-1)
.

2,306–2,405 4 0 96 (-48) 0

To show a complete picture about the feature ranking,
we list the next 40 features. The keywords in the Contex-
tual features are put in quotes. Since the Participant fea-
tures contain personal information, we just show the feature
indexes. The ranked feature list is: “fw”, “folk”, “server”,
“more”,“associate”, number of known malware-detection ser-
vices, “intel”, “hash”, “hxxp”, number of domains, “public”,
participant feature #456, “reject”, “refer”, “lot”, “korean”,
“marco”, “jeroen”, number of IP addresses, “down”, “origin”,
“regard”, feature #132, “incident”, “intrude”, “iframe”, par-
ticipant feature #387,“poc”, participant feature #787,“uri”,
“firm”, “advance”, “investigate”, participant feature #1287,
“against”, “attack”, “jose”, participant feature #21, “myself”.

5.3 Domain Characteristics in Mailing Lists
We provide high-level statistics of the malicious domains

discussed in the mailing lists, to understand what malicious
activities draw the most discussions, and where they come
from. We manually checked the sampled malicious domains
(see Section 4.2.1), and put them into different categories.
In Table 6, the first column shows the category of the mali-
cious activities, and the second column is the percentage of
the domains in that category over all malicious domains. We
see that drive-by download attacks, C&C servers, and mal-
ware download servers account for the most significant per-
centages. Presumably since these attacks are more stealthy

Table 5: The 10 most important features in Gossip.
No. Feature Feature group
1 Alexa rank URL features
2 “n’t” Contextual features
3 Number of replies Thread features
4 Number of attachments Thread features
5 “something” Contextual features
6 URL ending with .exe URL features
7 “believe” Contextual features
8 “not” Contextual features
9 Number of organizations Thread features
10 Number of cryptographic digests Thread features

Table 6: Distribution of the categories of the mali-
cious activities discussed in mailing lists.

Category Domain percentage
Drive-by download 34.57%
C&C 22.84%
Malware download server 17.28%
Phishing 9.88%
Web backdoor 6.17%
Spam 5.56%
DDoS botnet 3.70%

(i.e., not easy to detect) and cause direct damages, security
experts are inclined to discussing them more often in the
mailing lists.

Next, we investigate DNS infrastructure and what par-
ent zones host the most malicious domains. Note that in
our analysis, some parent zones are top-level domains, and
some are second-level domains (as discussed in Section 2.2).
Table 7 shows the distribution of the parent zones. The
“.com” zone is still the leading target that cybercriminals
use for illicit activities. Among the country code top-level
domains, the “.ru” zone is the most abused one.

6. LIMITATIONS
As other malware detection systems with machine learn-

ing techniques, our approach has some limitations when be-
ing applied to mailing lists. In this section, we discuss these
limitations, and put forward how Gossip could work more
effectively in real-world deployments.

Most of the threads in mailing lists include many discus-
sion on a post, but there are also some threads with very few
replies or limited amount of words. If any malicious domain
is mentioned in the threads with few replies or words, it is
difficult to correctly classify the domain. Such cases con-
tribute to a higher false negative rate. This limitation has
been studied in previous research [36]. Stylistic features,
such as inferential conjunctions, could help to improve the
accuracy of predictions if the amount of training data is large
enough, or if one can actively crawl the domains to obtain
additional information.

Another issue is that some threads may include a large
number of domains and contain few words in the content,
e.g., when people discuss many domains resolved to the same
IP address. If the training datasets include many such enti-
ties, the detection system would be less effective. However,
a solution to avoid this issue is to drop such mailing threads

502

Table 7: Distribution of the parent zones of the ma-
licious domains discussed in mailing lists.

Zone
Domain
coverage Zone

Domain
coverage

com 47.66% com.tw 0.87%
net 7.31% us 0.87%
org 6.32% in 0.87%
ru 5.78% ch 0.76%

info 2.84% edu 0.65%
de 2.18% co.uk 0.65%

com.br 1.96% co.za 0.65%
eu 1.64% at 0.65%
pl 1.64% co.kr 0.65%

com.au 1.42% tk 0.55%
biz 1.31% es 0.55%
nl 1.09% Others 11.13%

in the training data sets or just extract a certain amount
of domains from the same threads. There also exist other
mitigation methods, e.g., previous research extracted more
features from URLs (length, digits numbers, etc.) [48], Xi-
ang et al. proposed more features from the Web page and
WHOIS information of the entity [50]. But such methods
need more network requests and timely response to crawl
Web pages.

We use natural language processing techniques to extract
contextual features, as in Section 3, but due to the diver-
sity in countries and culture, people may use various words
and sentences, and might have different writing errors and
grammar mistakes in the threads. Sadia et al. has used
stylometric methods to identify anonymous authors by an-
alyzing their writing style [7]. In order to fix these issues,
people can adapt more complicated linguistic approaches to
extract the contextual features.

7. RELATED WORK
Malware detection is a common problem in security, and

has attracted a lot of research interest. Different researchers
use various approaches to study this topic, such as dynamic
analysis, lexical patterns in the URLs, and the analysis of
the underground market. In the following, we highlight the
most relevant previous work.

Malware detection. There are several kinds of features to
indicate the difference between malicious and benign web-
sites: suspicious code in Web pages, browser behaviors in
sandbox, or domain meta-data. These schemes for detecting
malicious domains are often leveraged in machine learning
techniques. These features can be based on static character-
istics of website content [12, 16, 27], or could be extracted
from their dynamic behaviors [14, 15, 28]. Domain regis-
tration information and DNS traffic also provide important
patterns in recognizing malicious domains [9, 10, 11, 23, 24,
25, 51], but such features need to be extracted with external
resources or at particular network vantage points. Various
machine learning classifiers could be used to classify these
entities after the feature extraction.

Blacklisting. There are a number of research works focus-
ing on blacklists: Kührer et al. presented a blacklist parsing
system to track 49 different blacklists and provided an anal-
ysis of the malicious activities originating from these public

blacklists [29]. Kührer found that 15 public blacklists in-
clude less than 20% of the malicious domains for a majority
of popular malware families [30]. Ma et al. described an
approach to classify malicious and benign URLs based on
machine learning methods using lexical and host-based fea-
tures [32]. Almuhimedi et al. studied human behaviors in re-
action to the malware warnings in Google Chrome [8]. Such
studies have shown that blacklisting has been widely used to
block malicious domains and IP addresses, but also outlined
several shortages of blacklists. Liao et al. put forward a so-
lution for fully automated Indicators of Compromise (IOC)
extraction only based on context terms [31], but mailing list
discussions have different situations, in which technical de-
scriptions have fewer words and the same topic has multiple
discussions. Thus, their solution could not work.

Natural language processing technologies. NLP tech-
nologies have been widely used in security recently, espe-
cially in detecting phishing and malicious domains: Darling
et al. developed a classification system based on lexical fea-
tures of URLs [18]. Other researchers also studied the de-
tection of malicious domains using lexical and word segmen-
tation techniques to extract various features such as domain
name length, frequencies of certain characters [26, 34, 46].
The N-Gram method also has been used to detect unknown
network attacks [42].

To compare with previous research, our approach uses
contextual words and machine learning techniques to de-
tect malicious domains in mailing lists. This study could
analyze suspicious domains which traditional detection so-
lutions miss, because many malicious domains only appear
a few times and last for a very short time. We also pro-
pose the Participant features based on the historic relation-
ship between domains and security experts. Finally, we use
natural language processing technologies to extract features
based on the contextual words, which have not been used in
this domain before.

8. CONCLUSION
In this paper, we designed Gossip, a novel light-weight

detection system to extract malicious domains from mail-
ing lists. We identified four groups of features: URL fea-
tures, thread features, participant features, and contextual
features. We incorporated these features into a classifier
to develop a detection system. To derive meaningful key-
words for each domain, we introduced an improved contin-
uous bag-of-words model that could extract the represen-
tative words around the discussed domains. To filter secu-
rity company websites or technical blogs in the mailing lists,
we proposed an approach to crawl keywords from the Web
pages and reduce the false positives. We evaluated Gossip
with real-word data. Our results show that Gossip achieves
high accuracy with private mailing lists, and captures hun-
dreds of malicious domains that existing public blacklists
have missed. Moreover, our system detects 79% of the ma-
licious domains earlier than existing public blacklists. With
the experiment on public mailing lists, Gossip gets a 94%
detection rate with zero false positives, which also proves
the reliability and accuracy of our model.

503

References
[1] Malc0de database. http://malc0de.com/database.
[2] Malware domain list.

http://www.malwaredomainlist.com.
[3] Mozilla public suffic list. http://publicsuffix.org.
[4] Phishtank. https://www.phishtank.com.
[5] The spamhaus project. https://www.spamhaus.org.
[6] The swiss security blog. https://www.abuse.ch.
[7] S. Afroz, A. C. Islam, A. Stolerman, R. Greenstadt,

and D. McCoy. Doppelgänger finder: Taking
stylometry to the underground. In IEEE Symposium
on Security and Privacy, 2014.

[8] H. Almuhimedi, A. P. Felt, R. W. Reeder, and
S. Consolvo. Your reputation precedes you: History,
reputation, and the Chrome malware warning. In
Symposium on Usable Privacy and Security (SOUPS),
2014.

[9] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and
N. Feamster. Building a dynamic reputation system
for DNS. In Proceedings of 19th USENIX Security
Symposium, 2010.

[10] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou II,
and D. Dagon. Detecting malware domains at the
upper DNS hierarchy. In Proceedings of 20th USENIX
Security Symposium, 2011.

[11] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi.
EXPOSURE: Finding malicious domains using passive
DNS analysis. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2011.

[12] D. Canali, M. Cova, G. Vigna, and C. Kruegel.
Prophiler: A fast filter for the large-scale detection of
malicious web pages. In Proceedings of the
International World Wide Web Conference (WWW),
2011.

[13] R. Caruana and A. Niculescu-Mizil. An empirical
comparison of supervised learning algorithms. In
Proceedings of the 23rd International Conference on
Machine Learning, 2006.

[14] C.-M. Chen, J.-J. Huang, and Y.-H. Ou. Detecting
web attacks based on domain statistics. In Intelligence
and Security Informatics, pages 97–106. Springer,
2013.

[15] M. Cova, C. Kruegel, and G. Vigna. Detection and
analysis of drive-by-download attacks and malicious
javascript code. In Proceedings of the World Wide
Web Conference (WWW), 2010.

[16] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert.
Zozzle: Low-overhead mostly static Javascript
malware detection. In Proceedings of 20th USENIX
Security Symposium, 2011.

[17] M. Cutts. Oxford guide to plain English. OUP Oxford,
2013.

[18] M. Darling, G. Heileman, G. Gressel, A. Ashok, and
P. Poornachandran. A lexical approach for classifying
malicious URLs. In IEEE International Conference on
High Performance Computing & Simulation (HPCS),
pages 195–202, 2015.

[19] G. groups. 10,000 most common English words.
https://github.com/first20hours/google-10000-english.

[20] G. groups. VirusTotal. https://www.virustotal.com.
[21] R. Gunning et al. How to take the fog out of writing.

1964.
[22] N. Habash, O. Rambow, and R. Roth. Mada+ tokan:

A toolkit for Arabic tokenization, diacritization,
morphological disambiguation, POS tagging,
stemming and lemmatization. In Proceedings of the
2nd International Conference on Arabic Language
Resources and Tools (MEDAR), 2009.

[23] S. Hao, N. Feamster, and R. Pandrangi. Monitoring
the initial DNS behavior of malicious domains. In
Proceedings of the ACM Internet Measurement
Conference, 2011.

[24] S. Hao, A. Kantchelian, B. Miller, V. Paxson, and
N. Feamster. Predator: Proactive recognition and
elimination of domain abuse at time-of-registration. In
ACM Conference on Computer and Communications
Security, 2016.

[25] S. Hao, M. Thomas, V. Paxson, N. Feamster,
C. Kreibich, C. Grier, and S. Hollenbeck.
Understanding the domain registration behavior of
spammers. In Proceedings of the ACM Internet
Measurement Conference, 2013.

[26] Y. He, Z. Zhong, S. Krasser, and Y. Tang. Mining
DNS for malicious domain registrations. In
Proceedings of the 6th International Conference on
Collaborative Computing: Networking, Applications
and Worksharing, 2010.

[27] L. Invernizzi, P. M. Comparetti, S. Benvenuti,
C. Kruegel, M. Cova, and G. Vigna. EvilSeed: A
guided approach to finding malicious web pages. In
IEEE Symposium on Security and Privacy, 2012.

[28] A. Kapravelos, M. Cova, C. Kruegel, and G. Vigna.
Escape from monkey island: Evading high-interaction
honeyclients. In Proceedings of the 8th Conference on
Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA). 2011.

[29] M. Kührer and T. Holz. An empirical analysis of
malware blacklists. Praxis der
Informationsverarbeitung und Kommunikation,
35(1):11–16, 2012.

[30] M. Kührer, C. Rossow, and T. Holz. Paint it black:
Evaluating the effectiveness of malware blacklists. In
Symposium on Recent Advances in Intrusion
Detection. 2014.

[31] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and
R. Beyah. Acing the IOC game: Toward automatic
discovery and analysis of open-source cyber threat
intelligence. In ACM Conference on Computer and
Communications Security, 2016.

[32] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker.
Beyond blacklists: Learning to detect malicious web
sites from suspicious URLs. In Proceedings of the 15th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2009.

[33] McAfee. https://www.siteadvisor.com.
[34] D. K. McGrath and M. Gupta. Behind phishing: An

examination of phisher modi operandi. In Proceedings
of the USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET), 2008.

[35] T. Moore and R. Clayton. Evaluating the wisdom of
crowds in assessing phishing websites. In Proceedings
of the Conference on Financial Cryptography and
Data Security. 2008.

[36] S. Mukherjee, G. Weikum, and
C. Danescu-Niculescu-Mizil. People on drugs:
Credibility of user statements in health communities.

504

http://www.malwaredomainlist.com
http://publicsuffix.org
https://www.abuse.ch
https://www.virustotal.com
https://www.siteadvisor.com

In Proceedings of the 20th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2014.

[37] A. Narayanan, H. Paskov, N. Z. Gong, J. Bethencourt,
E. Stefanov, E. C. R. Shin, and D. Song. On the
feasibility of internet-scale author identification. In
IEEE Symposium on Security and Privacy, 2012.

[38] L. Olshen, C. J. Stone, et al. Classification and
regression trees. Wadsworth International Group,
93(99):101, 1984.

[39] A. Pitsillidis, C. Kanich, G. M. Voelker,
K. Levchenko, and S. Savage. Taster’s choice: A
comparative analysis of spam feeds. In Proceedings of
the ACM Internet Measurement Conference, 2012.

[40] M. F. Porter. Snowball: A language for stemming
algorithms, 2001.

[41] L. Richardson. Beautiful soup documentation. 2007.
[42] K. Rieck and P. Laskov. Detecting unknown network

attacks using language models. In International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. 2006.

[43] S. Sheng, B. Wardman, G. Warner, L. F. Cranor,
J. Hong, and C. Zhang. An empirical analysis of
phishing blacklists. In Proceedings of Sixth Conference
on Email and Anti-Spam (CEAS), 2009.

[44] B. Steven, E. Klein, and E. Loper. Natural language
processing with Python. OReilly Media, 2009.

[45] P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, and
M. Antonakakis. Measuring and detecting malware
downloads in live network traffic. In Proceedings of the
European Symposium on Research in Computer
Security, 2013.

[46] K. Wang, C. Thrasher, and B.-J. P. Hsu. Web scale
NLP: A case study on URL word breaking. In
Proceedings of the 20th International Conference on
World Wide Web, 2011.

[47] K. Wang, C. Thrasher, E. Viegas, X. Li, and B.-j. P.
Hsu. An overview of Microsoft Web N-gram corpus
and applications. In Proceedings of the NAACL HLT
2010 Demonstration Session, pages 45–48. Association
for Computational Linguistics, 2010.

[48] W. Wang and K. E. Shirley. Breaking bad: Detecting
malicious domains using word segmentation. In IEEE
Web 2.0 Security and Privacy Workshop. 2015.

[49] P. Willett. The Porter stemming algorithm: then and
now. Program, 40(3):219–223, 2006.

[50] G. Xiang, J. Hong, C. P. Rose, and L. Cranor.
Cantina+: A feature-rich machine learning framework
for detecting phishing web sites. ACM Transactions
on Information and System Security (TISSEC),
14(2):21, 2011.

[51] W. Zhang, W. Wang, X. Zhang, and H. Shi. Research
on privacy protection of WHOIS information in DNS.
In Computer Science and its Applications, pages
71–76. Springer, 2015.

505

	Introduction
	System Design
	Preprocessor
	Domain Extractor
	Feature Parser
	Automatic Classifier

	Features
	URL Features
	Thread Features
	participant Features
	Contextual Features

	Evaluation
	Datasets
	Experiments on Security Mailing Lists
	Accuracy and Manual Validation
	Comparison of Detection Timing

	Experiments on Public Mailing Lists

	Analysis And Measurement
	False Positive Analysis
	Feature Importance
	Domain Characteristics in Mailing Lists

	Limitations
	Related work
	Conclusion

