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ABSTRACT
The proliferation of wearable devices, e.g., smartwatches and ac-
tivity trackers, with embedded sensors has already shown its great
potential on monitoring and inferring human daily activities. This

paper reveals a serious security breach of wearable devices in the
context of divulging secret information (i.e., key entries) while peo-
ple accessing key-based security systems. Existing methods of ob-
taining such secret information relies on installations of dedicated
hardware (e.g., video camera or fake keypad), or training with la-

beled data from body sensors, which restrict use cases in practical
adversary scenarios. In this work, we show that a wearable device
can be exploited to discriminate mm-level distances and directions
of the user’s fine-grained hand movements, which enable attackers
to reproduce the trajectories of the user’s hand and further to re-
cover the secret key entries. In particular, our system confirms the

possibility of using embedded sensors in wearable devices, i.e., ac-
celerometers, gyroscopes, and magnetometers, to derive the mov-
ing distance of the user’s hand between consecutive key entries re-
gardless of the pose of the hand. Our Backward PIN-Sequence
Inference algorithm exploits the inherent physical constraints be-
tween key entries to infer the complete user key entry sequence.

Extensive experiments are conducted with over 5000 key entry
traces collected from 20 adults for key-based security systems (i.e.
ATM keypads and regular keyboards) through testing on different
kinds of wearables. Results demonstrate that such a technique can
achieve 80% accuracy with only one try and more than 90% accu-
racy with three tries, which to our knowledge, is the first technique

that reveals personal PINs leveraging wearable devices without the
need for labeled training data and contextual information.
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1. INTRODUCTION
The convenience of wearable devices, such as smartwatches and

fitness bands (e.g., Fitbit and Jawbone), has greatly stimulated the
growth of the market of mobile devices in recent years; market
researchers estimated that 72.1 million wearable devices will be
shipped in 2015, which will be about 173% from the 26.4 million
wearable devices shipped in 2014 [4]. Such increasing popularity

of wearable devices has enabled a broad range of useful applica-
tions, including fitness tracking, falling detection, gesture control
and user authentication. Since such wearable devices have the abil-
ity to capture users’ hand movements and derive human dynamics
directly, a major concern arises on whether a user’s sensitive in-
formation could be leaked and obtained by adversaries including

the user’s PIN sequence when accessing an ATM machine or using
debit cards for payment.

In this work, we demonstrate that a user’s personal PIN sequence
could be leaked through his wearable devices (e.g, smartwatch or
fitness tracker), when accessing a key-based security system. Such
systems are very common in daily lives. Examples include ac-

cessing ATM cash machines, electronic door locks, and keypad-
controlled enterprise servers. A key-based security system requires
people to enter personal key combinations on the keypad for iden-
tity verification. With people tending to wear wearable devices
around-the-clock, the movements of their wrists during the key en-

try process to a security system (i.e., clicking keys and moving
between clicks) are captured by the sensors on wearable devices.
As such, wearables could cause a new way of sensitive informa-
tion leakage when a user accesses the key-based security systems.
In particular, adversaries can obtain sensor readings of wearables
via sniffing Bluetooth communications [16, 19] or installing mal-

wares [3] on the devices, and further infer the user’s PIN sequence
(e.g., ATM PIN sequences or key sequences on access control pan-
els) for his own use.

There has been active study on sensitive information leakage
when using key-based security systems. Traditional attacks rely on
either shoulder surfing or hidden cameras [6, 11]. Such attacks re-

quire direct visual contact to key entry actions and additional instal-
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lation efforts. Furthermore, Shukla et al. propose a side-channel

attack utilizing a camera-based method to recover smartphone lock
PINs from the user’s spatial-temporal hand dynamics without di-
rectly seeing the keypad on screen [18]. The proposed method
has a low inference accuracy and requires cameras to capture the
user’s hand and the back side of the touch screen. Two recent
work [10, 20] propose to utilize sensors in smartwatches to infer

user’s typed words or passwords. The MoLe [20] system relies on
a linguistic model to infer user’s typed words, which is difficult to
work with non-contextual inputs. Liu et al. [10] devise a system
that requires training of the sensor data to classify user inputs.

In contrast to these prior studies, we develop a training-free,
context-free technique to reveal a user’s private PIN sequence (to a

key-based security system) when a wrist-worn wearable device is
employed. The wrist-worn wearable devices could be either smart-
watches or fitness trackers. While the digital smartwatch is de-
signed to be worn on either hand, the user can wear it on the right
hand without the concern on traditional watch designed to adjust
time easily when wearing it on the left hand. Additionally, many

people tend to wear fitness tracker on the right hand while keep-
ing wearing traditional watch on the left hand. The basic idea is to
exploit embedded sensors in wearable devices to capture dynam-
ics of key entry activities and derive fine-grained hand movement
trajectories traversing secret key entries. While wearable devices
have equipped with various sensors, it is challenging to accurately

recover such fine-grained hand-movement trajectories that exhibit
only mm-level difference in distance between keys via low-fidelity
sensors. In addition, due to hand vibrations and rotations, the co-
ordinate system of a wearable device is not always aligned with a
fixed reference, which makes it hard to track the hand movements

by using sensor readings directly. Additionally, in order to obtain a
person’s key entries without user cooperation or drawing any atten-
tion, the adversary has to achieve the PIN sequence with no training
or contextual information.

To address these challenges, our approach examines the inher-
ent physics phenomenon extracted from the user’s key entry ac-

tivities via wearable sensors and develops distance calculation and
direction derivation schemes to produce mm-level accuracy when
estimating the moving distance and angle between two consecu-
tive key entries. To obtain the complete PIN sequence, our back-
ward PIN-sequence inference algorithm exploits the physical con-
straints of distance between keys and temporal sequence of key en-

try activities to construct a tree of candidate key entries for deter-
mining the PIN sequence in a reversed manner, because in many
practical cases, the “Enter” key is the last key after the user enters
his/her PIN sequence. The mm-level precision of estimating the
fine-grained moving distance and direction between two keys and
the backward PIN-sequence inference algorithm enable our sys-

tem to obtain the user’s PIN sequence without training and contex-
tual information. Such a technique can also be extended to support
password recovery when people type on keyboards while wearing
wearables.

We summarize our main contributions as follows:

• We demonstrate that a single wrist-worn wearable device can
reveal a user’s PIN sequence to key-based security systems.
We develop a training-free approach by exploiting the inher-
ent physics meaning extracted from sensor readings on wear-
ables. Such an approach does not require contextual informa-
tion, allowing it to recover random key entries.

• We develop the distance estimation and direction derivation
schemes that capture the fine-grained hand movements at

mm-level precision.

• We show that it is possible to infer a complete user’s PIN

number via a backward PIN-sequence inference algorithm.
By exploiting spatial and temporal constraints of PIN entries
and the fine-grained hand movement analysis, our approach
can accurately pin-point the location of each PIN entry with
the right sequence.

• We conduct extensive experiments with 20 participants wear-
ing two types of smartwatch and a prototype of wearable on
key-based security systems such as ATM keypads and key-
boards over an eleven-month period. We show that our sys-

tem can achieve 80% accuracy of inferring PIN sequences
with only one try and over 90% accuracy with three tries
without training and contextual information.

The rest of the paper is organized as follows. We first put our
work in the context of related studies in Section 2. In section 3,
we investigate the feasibility of using wearables to obtain a user’s
PIN sequence of key-based services. We then describe the design
of our PIN-sequence inference framework in Section 4. Next, we
present two schemes of distance estimation and direction derivation

to capture fine-grained hand movements via sensors on wearables
in Section 5. The backward PIN-sequence inference algorithm to
recover the complete user PIN sequence is described in Section 6.
We present the detailed implementation of our framework in terms
of pre-processing of the sensor data and coordinate alignment in

Section 7. In Section 8, we perform extensive evaluation of our
approach involving real key-based security systems. Finally, we
discuss the relative issues and conclude our work in Sections 9 and
10 respectively.

2. RELATED WORK
Recent studies show that embedded sensors on mobile devices,

such as accelerometers and touch screens, can capture users’ mo-
tion and leak their sensitive information [13, 15, 17]. Recently,

wearable devices, such as smartwatches and fitness bands, extend
the sensing capability to limbs and enable many useful applica-
tions [9, 14, 22]. These existing studies have shown the sensing
capabilities of up-to-date mobile devices, which inspire us to ex-
plore the potential of using wrist-mounted wearables to recover
fine-grained hand movements, and study to what extent the user’s

sensitive information could be leaked from their fingers.
Toward this end, we explore the possibility of recovering peo-

ple’s private PIN sequences through their wrist-worn mobile de-
vices when they enter PINs on key-based security systems. Tra-
ditionally, key-based security systems could be breached by sev-
eral methods, such as hidden cameras and skimmers. For exam-

ple, some ATM machines are attached by a hidden camera, which
was used to record PIN sequences or body movements of entering
PINs [11]. An adversary may also put a skimmer into the ATM
machine card slot. When the customer slides their card, it will go
through the skimmer first and then into the machine. A chip inside

the skimmer device records information about the account without
the knowledge of the customer [1]. These existing methods largely
depend on installing dedicated devices in the restricted area.

In addition, researchers show that it is possible to recognize users’
keystrokes by using acoustic approaches. Berger et al. [7] demon-
strate that by using linguistic models and recorded typing sound

on a keyboard, an attacker can successfully reconstruct the typed
words. Zhu et al. [23] present a context-free and geometry-based
approach to recover keystrokes by using multiple smartphones to
record acoustic emanations from the keystrokes. Wang et al. [21]
develop a system that extracts and optimizes the location-dependent
multipath fading features from the audio signals and leverages the

signal diversity resulted from the dual-microphone interface in a
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Figure 1: Acceleration patterns inherited from key entry activ-
ities, shown in the readings of a 3-axis accelerometer on IMU.
mobile device to identify key entries typed on a keyboard. Along
this line, Jian et al. [8] demonstrate that mobile audio hardware in
off-the-shelf mobile devices can be exploited to discriminate mm-
level position differences, based on which they develop a system

that can locate the origin of keystrokes by using only a single phone
behind a keyboard [8]. Marquardt et al. develop an application that
can utilize accelerometers in a smartphone to sense the vibrations
caused by keystrokes from a nearby keyboard and further identify
the keystrokes [12]. Their proposed technique relies on a linguistic

model and labeled training data and the system is highly sensitive
to environment noise (e.g., people moving around).

The most related work to ours are two concurrent studies, which
analyze the leak of users’ passwords or typed words from smart-
watches [10, 20]. Wang et al. [20] devise a system that can infer
typed words on a keyboard by utilizing motion sensors in smart-

watches. The system assumes to know the fixed initial position
of the smartwatch and relies on a linguistic model to infer typed
words, which makes it hard to deal with non-contextual inputs,
such as passwords and PIN sequences. Liu et al. [10] apply sen-
sors in a smartwatch to infer users’ inputs on a keyboard or POS
terminal by utilizing machine-learning based techniques. Their ap-

proach requires training of hand movements between keystrokes,
and it is unclear how the system handles changing positions of the
wrist during typing. Moreover, both of the above work can only
achieve moderate accuracy in deriving the user inputs given limited
number of tries. Different from previous work, our key entry infer-
ence system is training-free, contextual-free and does not involve

additional devices. Furthermore, our backward PIN-sequence in-
ference framework is not subject to environmental noises, such as
ambient noise, light interference and people walking around.

3. ATTACKMODEL AND FEASIBILITY
STUDY

The positions of wearable devices on human bodies naturally en-

hance the devices’ capability of the activity recognition and facili-
tate many applications based on the context of activities. However,
such strong sensing ability brings up new security and privacy is-
sues. In this work, we study the possible personal secret leakage
in a very common scenario that people wear wrist-worn wearable
devices while using key-based security systems, such as ATM ma-

chines, password secured door entries, and keypad-controlled en-
terprise servers. In this section, we describe the attack model and
explore the feasibility of utilizing wearable devices to recover per-
sonal key entries in key-based security systems.

3.1 Attack Model
We consider an adversary aiming at recovering a person’s secret

PIN entries leveraging embedded sensors (e.g., accelerometer, gy-
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Figure 2: Distance estimation of the number pad on the Dell
keyboard based on IMU.

roscope and magnetometer) in wearable devices worn on his/her
wrist. The adversary has the knowledge of where the victim vis-
its the key-based security system and can obtain the layout of the
keypad. We assume that the adversary is able to access the sensor
data and communicate over networks on the smartphone, but can-

not observe the PIN entry activities visually by any means. The
wearable device is usually paired with the user’s smartphone via
Bluetooth and constantly sends sensor data to the person’s smart-
phone for logging purpose. Most wearables are using Bluetooth
Low Energy (BLE) to transmit sensor data. BLE comes with low
security capability compared with Bluetooth, and as a result the

sensor data could be sniffed by the adversary [16, 19]. But the ad-
versary does not have access to training data, which is specific to a
particular key-based security system. Particularly, we identify two
representative attacking scenarios as follows:
SniffingAttacks. An adversary can place a wireless sniffer close

to a key-based security system (e.g., ATM machine or key-based

security door) to eavesdrop sensor data from the wearable device,
which is worn on the victim’s wrist when he/she enters security
PINs into the security system. The adversary utilizes the wireless
sniffer to capture Bluetooth packets sent by the wearable device
to its associated smartphone [16, 19], and determines the victim’s
PIN sequence based on the sensor data extracted from Bluetooth

packets.
Internal Attacks. An adversary can access the embedded sen-

sors in the victim’s wrist-worn wearable device by installing a mal-
ware app without the victim’s notice [3]. The malware app waits
until the victim accesses the key-based security system and keeps

sending sensor data back to the adversary’s server through the In-
ternet. The adversary can aggregate the sensor data on the server to
determine the victim’s PIN sequence remotely.

3.2 Intuitions of HandMovements behind Key
Entry Activities

When accessing a key-based security system, a person’s PIN se-
quence is entered through multiple key clicks. During each key
click, there exhibits acceleration and deceleration of keys when

pressed and released by the user. This simple information can serve
as a guideline to discriminate different key clicks. The critical ques-
tion we need to answer is that whether the sensors on wearable
devices can discriminate between key clicks and capture the fine-
grained movements between two consecutive clicks. In particular,
we look for unique sensing patterns inherited from such accelera-

tion and deceleration that could be used to facilitate the discrim-
ination of key clicks and distance estimation of hand movement
between two key clicks.

A key click can be separated into two consecutive time periods:
key pressing and key releasing periods. The key pressing period
starts when a person’s finger touches the key and ends when the

finger presses the key to the bottom of the keypad (denoted as press-
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Figure 3: Accelerometer readings from IMU.

ing point). The key releasing period starts when the person’s finger
releases the key from the bottom of the keypad and ends when the
finger stops moving after it is detached from the key (denoted as re-
leasing point). Intuitively, the hand accelerates towards the keypad

while pressing the key before the pressing point, and decelerates
and stops quickly due to the reaction force from the key that touches
the bottom of the keypad. When releasing the key, the hand accel-
erates towards the opposite direction to the keypad and stops after
the finger is detached from the keypad. We illustrate the hand’s
acceleration/deceleration in the Z-axis caused by key pressing and

releasing in Figure 1. We use the keypad’s coordinate system with
the Z-axis perpendicular to the keypad plane and pointing out from
the keypad, and the X-axis aligned to the direction connecting the
first and the second key.

Furthermore, in between two consecutive key clicks, the key en-

try activity involves the hand movement from one key to another.
As shown in Figure 1, the accelerations on the X axis present an
obvious up-and-down trend, while the accelerations on the Z and
Y axes remain stable. The intuition behind this phenomenon is that
the hand usually accelerates and moves relatively in parallel with
the keypad on the shortest trajectory between the first and second

keys. After passing the middle point of the trajectory, the hand de-
celerates to stop when it reaches the Key 2’s position. Such unique
up-and-down acceleration trend is very useful to help capturing the
small distance of hand movement between two keys.
Feasibility Study. To study whether the sensors on wearables

can capture such detailed acceleration patterns during key entry ac-

tivities, we conduct two sets of experiments on the number pad of
a Dell USB wired keyboard L100 with an Invensense MPU-9150
9-axis motion sensor (i.e., IMU), which is a prototyping alterna-
tive to a wearable device. The sensor uses a moderate sampling
rate of 100Hz and contains an accelerometer, gyroscope and mag-
netometer that are comparable to embedded sensors in wearable

devices. During the experiments, the participant wears the sensor
on his wrist and keeps his hand in parallel to the keypad below so
that the sensor’s Z axis points out and is perpendicular to the key-
pad. The first set of experiments moves from keys 4 to 5, which is
along the sensor’s X axis, and the second set of experiments moves

from keys 5 to 8 along the sensor’s Y axis. The distance between
keys 4 to 5 is only 1.9cm, the same as that between keys 5 to 8. We
use a camera on top of the keyboard to record the moving distance
ground truth of the sensor. We note that these two experiment se-
tups are special as the sensor’s coordinate system is fully aligned
with the keypad’s coordinate system.

We estimate the sensor’s moving distance by applying the dou-
ble integration to the acceleration readings of the X axis and the
Y axis from the accelerometer on the sensor. The details of the
distance estimation scheme are presented in Section 5. Figure 2
compares the ground truth and the estimated distance in 10 runs of
aforementioned settings, respectively. We find that overall the es-

timation errors are less than 1cm, the mean error of the 10 runs of
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Figure 4: PIN-sequence inference framework.
each experimental setting is as low as 0.27cm and 0.24cm on the
X and Y axes, respectively.

Additionally, we find that there is an unique up-and-down ac-

celeration pattern captured by the sensor, which can be utilized to
determine the sensor’s moving direction. Figure 3 shows that the
up-and-down acceleration pattern (like a sine wave) appears on X
and Y axes respectively when the sensor is moving along X or Y
axes. The capability of accurate distance estimation of the small
moving distance between keys and the moving direction determi-

nation are the foundation for recovering the user’s secret PIN se-
quence. Thus, these observations are encouraging as they indicate
the sensors on wearables have the capability to capture the fine-
grained hand movements to facilitate PIN sequence recovery.

4. SYSTEM DESIGN
In this section, we discuss the challenges in our system design

and provide an overview of our system.

4.1 Challenges
The goal of accurately recovering personal PIN sequences by us-

ing the embedded sensor of wearable devices worn on the victim’s
wrist is not trivial. Our system design and implementation need to
overcome the following challenges:
Robust Fine-grained Hand Movement Tracking. Using em-

bedded sensors in wrist-worn wearable devices to reconstruct the
trajectories of hand movements in key-entry activities is challeng-

ing since the sensors not only capture the acceleration patterns of
key clicks and movements from key to key, but also are affected by
the users’s unconscious hand vibration and rotation. Furthermore,
due to the limited size of the keypad, the distance between keys is
small, making it hard to estimate using the low-grade sensors on
wearables. Thus, we need to design distance estimation and di-

rection derivation schemes to accurately estimate the hand moving
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distance between keys and track the direction of fine-grained hand

movements despite various interfering sensing factors.
Training-free Key Entry Recognition. Considering the attack-

ing nature of our goal, it would be unlikely for the adversary to
collect any training data (e.g., sensor data of hand movements) be-
fore recovering a user’s PIN sequence. And it is also unlikely to
have the user’s cooperation during this process. Thus, we aim to

infer the user’s secret PIN sequence leveraging wearables without
training efforts involving target users’ participation.
Recovering PIN Sequence without Contextual Information.

The target user’s PIN sequences used in key-based security systems
are usually consisted of numbers without contextual information or
linguistic meaning. Our developed method should have the ability

to recover sensitive information consisting of random combination
of numbers. This requires our system to be able to recover PIN
sequences without relying on linguistic model or dictionaries.
Sensing with Single Free-axis Wearable Device. Using a sin-

gle wearable device to recover PIN sequence is necessary because
usually there is only one wearable device available on the wrist of

the hand that performs key entry activities. There is no reference
point available besides the single wearable device. Furthermore,
sensor readings are with respect to the wearable device’s coordi-
nate system, which is not stable and changes often according to
the device’s posture. In order to recognize key entry activities and
derive fine-grained hand movement trajectories, it is important for

our system to translate the sensor readings from the wearable de-
vice’s coordinate system to a fixed coordinate system, such as the
keypad’s coordinate system.

4.2 System Overview
The main goal of our work is to demonstrate that using wearable

devices could reveal people’s secret PIN sequence to key-based se-
curity systems such as ATM machines, electronic-key based door

entries, and enterprise servers. We design and implement a system
that has the capability to reveal target user’s secret PIN sequences
through tracking the fine-grained hand movement trajectories re-
lated to key entry activities. The basic idea is to examine the ac-
celeration of the user’s hand movements when accessing key entry
based security systems. Based on the feasibility study of two spe-

cial cases in Section 3, wrist-worn wearables can capture the unique
patterns of acceleration embedded in the hand movements caused
by entering the secret PINs. Such unique patterns can be exploited
to estimate hand moving distances and directions during the key-
entry activities, which can be leveraged to reconstruct fine-grained
moving trajectories of the user’s hand and infer the PIN sequence

traversed by the trajectories. We note that our approach can also be
extended to recover letters on any kind of keypad.

The flow of our system is illustrated in Figure 4. Our system
takes as input the raw sensor readings, such as acceleration, rota-
tion rate, and quaternion, from the wearable device worn on a target

user’s wrist. Then the system performs Key Click Detection and
Trace Segmentation to detect each key click by examining accel-
erations and separate the sensor readings into segments containing
consecutive key entries. The Data Calibration utilizesQuaternion-
based Coordinate Alignment and Noise Reduction techniques to
translate each segment of accelerations into the measurements with

respect to the coordinate system of the keypad, and remove noise
from readings by using the Savitzky-Golay filter.

The core of our system consists of two components, Fine-grained
Subpath Recovery and Backward PIN-Sequence Inference, which
first estimate the distance and direction of hand movements in each
segment of acceleration collected between two consecutive key en-

tries, and then integrate the estimated distance and direction of each
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Figure 5: Illustration of the coordinate system on a typical key
pad and examples of moving directions of key clicks, 13, 39, 16,
and 68.
segment to determine the entire PIN sequence based on the physi-

cal constraints of the keypad and temporal relationship of the key
entering sequence. We define a subpath as the trajectory of the
user’s hand movement between two consecutive key clicks inside
one segment. As shown in Figure 4, the Fine-grained Subpath Re-
covery consists of two subtasks: Distance Estimation andDirection
Derivation. The Distance Estimation identifies the unique acceler-

ation patterns embedded in the key pressing and releasing activities
and perform distance estimation based on such patterns. Addition-
ally, the Direction Derivation leverages the estimated distance to-
gether with the acceleration patterns caused by the hand movement
in each subpath to derive the hand moving direction.

After obtaining the estimated moving distance and direction in
each subpath, the system develops the Backward PIN-Sequence In-
ference to recover the user’s PIN sequence. Specifically, our system
first applies the Backward Subpath Integration to combine subpaths
in a backward manner in time series. Then the system performs
Point-wise Euclidean Distance Accumulation to calculate the accu-

mulated Euclidean distance for each candidate of key sequence at
each estimated key position (i.e., point-wise). Last, the Tree based
Key Sequence Derivation generates a tree with the candidates of
key sequence and their accumulated Euclidean distance. The key
sequence candidate with the minimum accumulated Euclidean dis-
tance is chosen to be the output of the system, which is the inferred

PIN sequence that the victim uses in the key-based security system.

5. DISTANCE ESTIMATION AND DIREC-
TION DERIVATION SCHEMES

Our system requires tracking hand movement trajectories on small

keypads accurately without training. Inspired by the basic dead
reckoning technique, we seek to derive such fine-grained trajecto-
ries based on hand movement distances and directions. Particularly,
we develop Distance Estimation and Direction Derivation schemes
to estimate the distances and derive direction for each subpath (i.e.,
between two consecutive key clicks).

5.1 Distance Estimation
In order to accurately estimate the hand movement distance be-

tween two consecutive key clicks, we need to identify the patterns
in the sensor data corresponding to the hand movement precisely.
Therefore, our system needs to first search the starting and end-
ing points of the sensor data caused by the hand movements based

on pressing and releasing points of key clicks; then calculate the
hand moving distance by utilizing the extracted patterns from the
sensor data. In the rest of the section, we assume the system has
performed the Key-click Detection and segmented the sensor data
to traces that capture hand movements between two consecutive
key clicks. The sensor data in each trace are translated into keypad

coordinate system through Coordinate Alignment. The details of
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Key-click Detection and Coordinate Alignment will be discussed

in Section 7. Figure 5 illustrates the coordinate system of a typical
ATM keypad, where the center of key 5 is the origin; the directions
of positive X and Y axes are in parallel with the direction from keys
5 to 6 and keys 5 to 2, respectively; and the Z axis is perpendicular
to the X-Y plane, pointing out from the surface of the keypad. The
four quadrants of the X-Y plane are defined as the standard quad-

rants in a two-dimensional Cartesian system. Figure 5 also shows
some examples of moving directions of key clicks, e.g, 13 indicates
clicking from keys 1 to 3.
Starting and Ending Points Searching based on Pressing and

Releasing Points. The hand movements from one key to another
happen after releasing the first key and end when touching the sec-

ond key. Ideally, the hand movement distance can be calculated
based on the acceleration (e.g., acceleration from the Z-axis) ex-
tracted between the releasing point of the first key click and the
pressing point of the second key click. However, such coarse seg-
mentation includes the sensor data resulted from hand vibrations
usually result in large estimation errors. In Section 3, we find that

the acceleration captured during the hand movements between con-
secutive key clicks has significant and unique patterns on X and Y
axes (i.e., either up-and-down or down-and-up shapes due to differ-
ent moving directions).

Apparently, such unique acceleration patterns include merely the
dynamics of the key-to-key hand movements, and can be further

utilized to facilitate accurate hand moving distance estimation. In
order to determine the right segment of acceleration data corre-
sponding to the unique acceleration pattern, we propose to further
search the starting and ending points of the pattern based on the seg-
ment of sensor data. Specifically, we define the first zero-crossing

point occurring before and after the unique acceleration pattern as
the starting point and ending point, respectively. The intuition be-
hind this is that when a hand moves from one key to another, its
moving trajectory is mainly in parallel with the X-Y plane of the
keypad. Therefore, the acceleration and deceleration of the hand
during such movement dominates the acceleration on X and Y axes,

and results in the acceleration that always experiences a pattern of
[0, ak,max(ak,min), 0, ak,min(ak,max), 0] as shown in Figure 6,
where ak,max and ak,min denote local maximum and minimum of
acceleration on X and Y axes with k = x or y.

Thus, we design a strategy to locate the starting and ending points
of the unique acceleration pattern so that we could estimate the

distance between two key clicks accurately. Our strategy involves
the following steps: 1) extract the acceleration on X and Y axes
between the releasing and pressing points of two consecutive key
clicks respectively; 2) examine the extracted acceleration to find
the ax,max, ax,min, ay,max, ay,min; 3) determine the dominated
axis by choosing the axis has the more significant unique accelera-

tion pattern (i.e., a larger peak-to-peak value defined by |ak,max−
ak,min|, k = x or y ); 4) find the starting point of the unique pat-
tern on the dominated axis by searching the first time that accel-
eration crosses the axis (i.e., zero-crossing point) before ak,max

or ak,min, whichever occurs earlier; 5) similarly, find the ending

point of the unique pattern on the dominated axis by searching the
first zero-crossing point after ak,min or ak,max, whichever occurs
later. The accelerations within the starting and ending points de-
rived above merely correspond to the hand movements between
two consecutive key clicks and are utilized to calculate the hand
movement distance and direction in our schemes.

Distance Calculation. The distance estimation between two
consecutive key clicks is obtained by considering the movements
in both X and Y axes. To perform accurate estimation, we compute
the small movement between two samples in sensor data and then
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Figure 6: Searching for starting and ending points based on
releasing and pressing points within an acceleration segment.
sum up to produce the distance estimation in one acceleration seg-

ment bounded by the identified starting and ending points. As the
distance is two times integration of accelerations, we utilize trape-
zoidal rule to approximate each integration.

5.2 Direction Derivation
In order to recover the complete PIN sequence, our system needs

to determine the moving direction of each subpath during the key-

entry process in addition to the distance. We define the moving
direction of a subpath as the angle between the positive X axis and
the subpath with counter-clockwise rotation as shown in Figure 5.
The moving direction is denoted as ϑ ∈ [0◦, 360◦). The basic idea
is to find the direction based on the ratio of distances on X and Y
axis derived from hand movement acceleration. In particular, we

design a two-step approach, including the Quadrant Determination
and Slope-based Direction Calculation. The Quadrant Determina-
tion first leverages the unique acceleration patterns to determine
which quadrant of X-Y plane that the hand moving direction be-
longs to. Then the Slope-based Direction Calculation examines the

slope angle of the moving direction in a quadrant ranging from 0◦

to 90◦ based on the hand movement distances on X and Y axes,
and converts the slope angle to the moving direction ϑ.
Quadrant Determination. Intuitively, the hand movement ac-

celeration projected on X and Y axes results in different combina-
tions of the unique acceleration patterns in terms of the order of

ak,max and ak,min on X and Y axes with k = x or y. For exam-
ple, when the hand moves towards 45◦, the acceleration on X and
Y axes both experiences the ak,max before the ak,min, while the
acceleration on the X axis experiences the ax,max after the ax,min

and the acceleration on the Y axis experiences the opposite when
the hand moves towards 135◦. Therefore, we leverage the com-

binations of unique acceleration patterns on X and Y axes to de-
termine the quadrant that a certain moving direction should belong
to. Specifically, the quadrant of the moving direction can be deter-
mined by the following equation:

Q =

⎧⎪⎨
⎪⎩
1; if Iax,max < Iax,min

& Iay,max < Iay,min
,

2; if Iax,max > Iax,min
& Iay,max < Iay,min

,

3; if Iax,max > Iax,min
& Iay,max > Iay,min

,

4; if Iax,max < Iax,min
& Iay,max > Iay,min

.

(1)

where Q is the quadrant index, Iaaxe,max and Iaaxe,min
denotes

the index of the local maximum and minimum on X and Y axes,

respectively.
Slope-based Direction Calculation. After quadrant determina-

tion, we compute the slope angle of the moving direction within
each quadrant based on the ratio of the distance on X and Y axes
by utilizing the following equation:

φ =

∣∣∣∣arctan
(
sy

sx

)∣∣∣∣ . (2)

Equation (2) returns the relative moving direction defined in a quad-
rant ranging from 0◦ to 90◦, we further convert the φ to an absolute

moving direction (i.e., the direction defined within keypad coordi-
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Figure 7: Illustration of the clustering results of distance
estimation and direction derivation for 6 different subpaths
{46, 28, 19, 64, 82, 91} by treating the first key click as the ori-
gin. The red star is the ground truth.

nate ranging from 0◦ to 360◦). Given the quadrant index Q, the
absolute moving direction ϑ can be derived as follow:

ϑ =

⎧⎪⎪⎨
⎪⎪⎩
φ; if Q = 1,
180◦ − φ; if Q = 2,
180◦ + φ; if Q = 3,
360◦ − φ; if Q = 4.

(3)

Once we estimate the distance and derive the direction of a sub-
path, the relationship between two consecutive key clicks in the
contained subpath is determined. Therefore, if the position of ei-
ther key click is known, we can derive the position of the other
key click according to the derived moving distance and direction.

We show an example of distance estimation and direction determi-
nation for 6 subpaths {46, 28, 37, 64, 82, 73}. Figure 7 shows the
clustering results in both distance and direction when treating the
first click as the origin. We observe that each key-click combina-
tion is clustered together around the ground truth (shown as the red
star) based on our distance estimation and direction determination

schemes, indicating that our schemes have the capability to capture
the fine-grained hand movement trajectories in key entry activities.

6. BACKWARD PIN SEQUENCE INFER-
ENCE ALGORITHM

After performing Fine-Grained Subpath Recovery grounded on

distance estimation and direction determination, we next describe
how to reconstruct the hand-movement trajectory using the esti-
mated subpaths to infer the target user’s PIN sequence.

6.1 Backward Subpath Integration
We notice that all key-based security systems require the user to

execute the verification by pressing key Enter or Confirm, which is
at a known position on the keypad. We can then utilize this infor-

mation to reconstruct the hand-movement trajectory on the keypad
by examining the subpaths in a backward time sequence. That is,
the position of key Enter can be considered as a end of the last sub-
path, and the starting of the last subpath indicates the position of
the last key clicked before key Enter.

More generally, we concatenate the estimated end of the (j −
1)th subpath to the starting of the jth subpath and continue to re-
peat this step until reaching the starting of the first subpath. By
integrating all the derived subpaths in such a backward head-tail
connecting way, we can obtain a trajectory roughly matching the
hand movements during the key-entry process, called the Naively
Integrated Trajectory. Ideally, the vertices on the Naively Inte-
grated Trajectory should be mapped to real-key positions with the
last vertex mapping to the center of Key Enter.

� � �

� � �

� 	




�����
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Figure 8: Example of the naively integrated trajectory having
a large accumulated error cannot correctly map to the key po-
sitions of the PIN sequence "419" (though the estimation error
of distance and direction of individual subpath is small).
6.2 Point-wise Euclidean Distance Accumula-

tion
Although we can recover each individual subpath based on the

estimated distance and derived direction, each subpath contains

small errors and the Naively Integrated Trajectory inherits and fur-
ther accumulates such small errors in each subpath, resulting in
mapping to the wrong-key positions on the keypad. Figure 8 shows
an example that the naively integrated subpaths (i.e. in black dashed
lines) cannot recover the correct target user’s PIN sequence, e.g.,
“419”, instead, they return “529” as a result. To reduce cumulative

errors, we propose a Point-wise Euclidean Distance Accumulation
approach. In this approach, instead of matching the Naively Inte-
grated Trajectory directly to the keys on the keypad, we consider
each subpath separately by comparing the closeness in terms of the
Euclidean distance between the starting point of the subpath (i.e.,
point-wisely) and real key positions, while the ending point of the

subpath is fixed on real keys.
In particular, each subpath j contains the estimated distance (Sj )

and direction (ϑj). Given a real key’s position as an ending point
(assuming this key is clicked at this ending point), we can estimate
the starting point (x̃j , ỹj) of each subpath. We conduct this effort in
a backward manner starting from Enter key because we know the

ending point in the last subpath is the Enter key. The estimation of
the starting point in the jth subpath is obtained as following:{

x̃j = cos(ϑj + 180) × Sj + X ,

ỹj = sin(ϑj + 180) × Sj + Y,
(4)

where (X ,Y) are the coordinates of ten real number keys {1, 2, 3,
..., 9, 0} on the keypad. Given that there are ten real number keys

in the key pad, there will be ten estimation results of the starting
points in subpath j. We note that, for the last subpath, (X ,Y) is
the coordinates of the key Enter. Once the starting point of the
jth subpath is estimated, our algorithm will recursively move to
the previous subpath. By doing so, we introduce the concept of
accumulated Euclidean distance, which is the sum of the Euclidean

distances between the starting point of a subpath and the coordinate
of a real key in the keypad, over all consecutive subpaths. We can
recursively run the following equation to calculate the accumulated
Euclidean distance:

Dj = Dj+1 + dj , (5)

where Dj and Dj+1 denote the accumulated Euclidean distance of

two consecutive subpaths, respectively, and dj is the Euclidean dis-
tance between the estimated starting point (x̃j , ỹj ) of the jth sub-
path and a real key in the keypad. The resulted final accumulated
Euclidean distance measures the closeness of the real key combina-
tion, defined as PIN sequence candidate, to the estimated consec-
utive subpaths while leveraging the dimension of the keypad. The

insight is that we would like to explore the possible candidate keys
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Figure 9: Example of point-wise Euclidean distance accumulation for candidate PIN sequence "846", where the real PIN is "419".

leveraging the estimation from each subpath without fixing to a par-
ticular key matching. In this way, we will not end up with only one
Naively Integrated Trajectory, instead, we will obtain multiple key
sequences as the candidates for PIN sequence recovery. Further-

more, by conducting the point-wise Euclidean distance accumula-
tion for each candidate of PIN sequence, our algorithm balances the
contribution of each estimated subpath and reduce the accumulated
errors that impact the accuracy of PIN sequence inference.
Example. Figure 9 shows an example of how the Euclidean dis-

tance is accumulated point-wisely in backward for a specific can-

didate PIN sequence “846” (The real PIN entry in this example
is "419"). In the sequence of Figure 9, (a) we first generate the
Naively Integrated Trajectory consisted of three consecutive sub-
paths, subpath 1, subpath 2, and subpath 3, which need to be
point-wisely compared with the candidate subpaths: “84”,“46”,
and “6enter” in the candidate PIN sequence “846”. The gener-

ation of naively integrated trajectory is based on the estimated dis-
tances and derived directions of each subpath. (b) then we start
by mapping the ending point of subpath 3 to the key Enter and set
D4 = 0, and utilize the estimated moving distance and derived di-
rection in the subpath to estimate its starting point on the keypad
in a backward way. The Euclidean distance between the estimated

starting point of subpath 3 and key 6 (i.e. the 3rd key entry in
the candidate PIN sequence “846”) is found to be d3 = 1.2cm,
and the accumulated Euclidean distance for this subpath is D3 =
D4 + d3 = 1.2cm; (c) next, assuming the ending point of subpath
2 is mapped to key 4, we similarly estimate the starting point of

the subpath and calculate the Euclidean distance between the esti-
mated starting point and the position of key 4 (i.e., d2 = 2.1cm).
The accumulated Euclidean distance for the previous two supaths is
D2 = D3 + d2 = 3.3cm; (d) lastly, we assume the ending point of
the subpath 1 to be key 8 and estimate the starting point of the sub-
path. We find the Euclidean distance between the estimated start-

ing point and the position of key 8 to be d1 = 0.8cm and calculate
the accumulated Euclidean distance for the entire candidate of PIN
sequence “846” as: D1 = D2 + d1 = 4.1cm. We note that our al-
gorithm recursively calculates the accumulated Euclidean distance
for every possible candidate of PIN sequence based on Equations
(4) and (5) and select the candidate with the minimum accumulated

Euclidean distance as the final result.

6.3 Tree-based Key Sequence Inference
To implement the Backward PIN-Sequence Inference algorithm,

we develop a tree-based approach for PIN-sequence inference. Next,
we discuss how to build and optimize the tree in our algorithm.
Building a Tree with PIN Sequence Candidates. In order to

record and compare different candidates of PIN sequence, we seek

to build a decimal tree according to the backward order of all PIN

sequence candidates. Each node is defined as a 2-tuple structure
containing its corresponding key entry and the Euclidean distance
accumulated on the path from the root node to the node, denoted
as < NodeKey,AccuDist >. Because the tree is built based on

a backward order, nodes in the jth level of the tree correspond to
the (N − j)th key entries of all candidates of PIN sequences. The
root node is always the last key entry (i.e., key Enter), while the
leaf nodes are always the first key entry of the candidate of PIN
sequence (i.e., number keys on the keypad). Each node (except the
leaf nodes) has 10 child nodes corresponding to keys 0 to 9. The

branches from one parent node to its child nodes represent the sub-
paths between the keys corresponding to the parent and child nodes.
The leaves of the tree stores the final accumulated Euclidean dis-
tance of each candidate of PIN sequence. Our algorithm searches
for the leaf node having the minimum accumulated Euclidean dis-
tance, and traces back to recover the path from the leaf node to the

root node. The inferred PIN sequence is generated by recording the
key entries corresponding to the nodes on the recovered path.

Figure 10 shows an example of a tree for inferring a PIN se-
quence of “419”, where the accumulated Euclidean distance for
one candidate of PIN sequence “846” is 4.1cm, while another can-
didate of PIN sequence “419” has the accumulated Euclidean dis-

tance of 1.6cm, which is the minimum over all candidates. There-
fore, the candidate of PIN sequence “419” will be determined to be
the inferred PIN sequence.
Subpath Calibration and Tree Pruning. In order to improve

the accuracy of our system, we take the advantage of the keypad

dimension to calibrate subpaths. Intuitively, the distance of a sub-
path should not exceed the dimension of a keypad. Therefore, if the
estimated distance of a subpath exceeds the dimension of a keypad,
our system replaces the estimated distance of the particular subpath
with the possible longest distance on the keypad. In addition, since
every non-leaf node in a PIN-sequence tree has 10 child nodes, the

jth level has 10j nodes. Apparently, it is not necessary to store
and calculate the Euclidean distance in every node. Our algorithm
prunes the tree by keeping the child nodes with the least m accu-
mulated Euclidean distances for each parent node. In this way, leaf
nodes are largely reduced from 10N to mN , where N is the length
of the PIN sequence. In our experiments, we set m = 4, which

balances the tree size and produces good performance.

7. IMPLEMENTATION
7.1 Key-click Detection

Given embedded sensor data from wearable devices, our system
first performs key-click detection based on acceleration readings to
find the key-click events and the number of keys in a PIN sequence
and assist the trace segmentation. Key clicks usually cause signifi-

cant changes of acceleration towards the keypad that has the poten-
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Figure 10: Illustration of the construction of the backward trajectory inference tree for recovering PIN "419".

tial to be distinguished from other hand movements. In particular,

we calculate the magnitude of the composition of accelerations on
three axes first, and apply a threshold to examine the normalized
magnitude of the composed acceleration to detect key clicks. We
empirically determine the threshold to be 0.6 based on our experi-
ments with 20 participants in this work.

7.2 Key-click Trace Segmentation
After key-click detection, we roughly segment input sensor data

into small chunks containing the data between two consecutive de-
tected key clicks. After segmentation, the resulted small chunks

contain the sensor data representing subpaths, which include the
acceleration caused by hand movements from one key to another.
In addition, to mitigate high frequency noise caused by hand vi-
bration, we apply the Savitzky −Golay filter to each chunk of
sensor data respectively.

7.3 Quaternion-based Coordinate Alignment
When recovering the user’s PIN sequence from the wearables’

embedded sensors, our system involves three different coordinate

systems, namely, wearable coordinate, world coordinate and key-
pad coordinate. The sensor readings from a wearable are defined
within the wearable coordinate and thus cannot be used directly to
represent hand movements because of the rotating wearable coordi-
nate caused by frequently changed hand position. In this work, we

employ quaternion to help convert sensor readings from the wear-
able coordinate to keypad coordinate for hand trajectory derivation.

Specifically, we first convert the sensor readings from the wear-
able coordinate to world coordinate by applying �aw = qdw�adq

−1

dw ,
where �aw and �ad are the sensor readings in the world coordinate
and werable coordinate, respectively, and qdw is the quaternion that

represents the conversion from the werable coordinate to world co-
ordinate. Then aw will be further converted to the keypad coordi-
nate via �ak = qwk�awq

−1

wk , where �ak denotes the sensor readings
in the keyboad coordiante and qwk denotes the quaternion that rep-
resents the conversion from the world coordinate to keypad coor-
dinate. The quaternion qdw can be extracted from wearables dur-

ing hand movements, and qwk can be derived from qwk = q−1

kw ,
where the quaternion qkw can be collected by placing a sensor (i.e.,
smartphone, smartwatch, or IMU) aligned with the coordinate of
the target keypad. We note that adversaries can utilize this method
to obtain qkw without attention at a time other than the user entering
the PIN sequence.

8. PERFORMANCE EVALUATION
In this section, we present the experimental methodology and de-

scribe the evaluation metrics. We then present the most important
results of our system with respect to PIN sequence recovery us-
ing the Backward PIN-sequence Recovery Algorithm. Finally, we
show the performance of two supporting schemes for PIN sequence

recovery, distance estimation and direction derivation schemes.

Figure 11: Experiments: three different kinds of keypads, de-
tachable ATM pad, keypad on ATM machine, keyboard; and
wearable devices.

8.1 Experimental Methodology
Keypads. We evaluate our system with three different kinds of

keypads as shown in Figure 11: 1) A keypad on ATM machine

(from PNC bank) with the dimension of 108mm × 76mm; 2)
A real detached ATM keypad with the dimension of 127mm ×
95mm, both 1) and 2) representing the use cases with different
ATM pad sizes; and 3) A number pad of Dell USB wired keyboard
L100 with the dimension of 77mm× 97mm, representing the use
case of key-based security access to enterprise servers. The three

keypads have different structures and key depths. It is important to
evaluate their effects on our approach when capturing fine-grained
hand movements. We focus on experiments on numbers to recover
PIN-sequences.
Wearable Devices. In our experiments, we use three different

types of wearable devices, including two smartwatches (i.e., LG

W150 and Moto360) and an IMU (Invensence MPU-9150). These
wearables represent different achievable maximum sampling rates
(i.e., 200Hz, 25Hz and 100Hz, respectively). The LG W150 and
Moto 360 are two commodity smartwatches running on Android
Wear OS with Bluetooth LE. The IMU contains a 9-axis motion
tracking sensor designed for consumer electronics. We use it as

a prototyping alternative to a wearable device with its sampling
rate set to 100Hz. During key-entry activities, the wearable de-
vices collect acceleration and quaternion data and send them to a
pre-associated storage device (i.e., smartphone via Bluetooth and
laptop via an USB cable for smartwatches and IMU respectively).

The ground truth of the hand moving distance and direction is com-
puted through the video recorded by a camera set on top of the key-
pad. In particular, we use AutoCAD to connect two positions of
the sensor in two captured video frames corresponding to the time
points when the finger just leaves the first key and about to touch
the second key, respectively. The measured distance and angle of

the line (with the positive X axis of the keypad) connecting these
two sensor positions are used as the ground truth of the distance
and direction of the hand movement.
Data Collection. We conduct experiments of various key-entry

activities with three different types of wearables on three kinds of
keypads. 20 volunteers are recruited to performance key-entry ac-

tivities over an 11-month period. The volunteers are asked to enter
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Figure 12: Performance of Backward PIN-sequence Inference
with three kinds of wearables on the detachable ATM Keypad.

keys in two ways: 4-digit PIN sequences consisting of five consec-

utive key clicks (with "Enter" as the last click) and a single subpath
consisting of two consecutive key clicks. For each subpath, based
on the keypad layout, we classify different subpath lengths into
three representative scales: short, medium and long. Specifically,
short covers subpaths between two adjacent keys with no keys in
between (e.g., 45, 41 and 75); medium is for horizontal and vertical

subpaths between two keys with one key in between (e.g., 46 and
82); and long contains subpaths of two keys neither horizontal nor
vertical and with one or more keys in between (e.g., 10, 37 and 29).
We collect 5000 PIN sequences from three keypads when having
20 volunteers wear three different kinds of wearables. For single

subpath, we collect 3000 subpaths from three keypads including
long, medium and short distances with volunteers wearing an IMU.

8.2 Evaluation Metrics
We develop the following metrics to evaluate our system with re-

gard to the accuracy of distance estimation and direction determina-
tion schemes and the performance of our Backward PIN-sequence
Inference Algorithm:
Distance Estimation Error. To evaluate the performance of our

distance estimation scheme, we define the Distance Estimation Er-
ror as the difference between the estimated distance and the ground

truth of the hand moving distance. The ground truth of the hand
moving distance is computed through the recorded video during
experiments. We study the Distance Estimation Error in two ways:
mean error and cumulative distribution function (CDF).
Direction Classification Accuracy. To evaluate the performance

of our direction derivation scheme, we divide the 360◦ on the X-
Y plane into 16 groups (i.e., 5 groups in each quadrant exclud-
ing 4 overlapped groups) and examine whether the derived direc-
tion is classified into the same group as that of the corresponding
ground truth. The ground truth of angles is also computed through

the recorded videos. The Direction Classification Accuracy is Ñc

Nc
,

where Ñc is the number of directions have been classified into the

same group containing the corresponding ground-truth direction,
and Nc is the total experimental runs of direction classification.
Top-k Success Rate. Given an experimental run of a key-entry

activity, our algorithm could return multiple top candidates of key-
entry sequence in an ascending order of the accumulated Euclidean

distance. We define that the inference algorithm is a Top-k Success
Hit if the first k candidates of key-entry sequence returned from our
algorithm contain the target user’s key-entry sequence. We further

define the Top-k Success Rate as the ratio (
Ñk

s

Ns
) of the number of

Top-k Success Hits (Ñk
s ) over the total number of experimental

runs (Ns) when applying key-entry sequence inference to recover
the target user’s PIN sequence. Specially, when k = 1, the ratio
indicates the rate of our algorithm that can successfully determine

the target user’s key-entry sequence without ambiguity.
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Figure 13: Performance of PIN-sequence recovery on three dif-
ferent keypads by using medium sampling rate 100Hz (IMU).
Tries Until Success. Since our system can provide multiple can-

didates as the result for key-entry sequence inference, the adversary
has the chance to try out each key sequence returned in the candi-
date list to recover the target user’s PIN sequence. We define the

Number of Tries Until Success as the number of candidate key-entry
sequence the adversary has tried (starting from the candidate with
the smallest accumulated Euclidean distance) until he/she breaks
the key-based security system, suggesting a success recovery of
the target user’s PIN sequence. Thus, the Number of Trails Until
Success indicates the possible efforts that an attack needs to take to

break the key-based security system.

8.3 Performance of Backward PIN-Sequence
Inference

Wearable Devices. We first examine the performance of our

PIN-sequence inference algorithm on the detachable ATM keypad
with three different wearable devices. Figure 12(a) shows the top-k
success rate of our system from three different types of wearable
devices. We find that our system can effectively recover PIN se-
quences from all the three wearables, and higher success rate is
achieved under higher sampling rates. In particular, by choosing

the top-1 choice, our system can achieve over 82% success rate
for the LG W150 and IMU, while the success rate is 67% for
the Moto 360 . Furthermore, the PIN sequences can be inferred
with increasing success rates if the adversary utilizes more choices
from the top-k candidate list. Specifically, when using the top-2
choices, the adversary can achieve about 94% success rate with the

LG W150 and IMU, and the success rate for the Moto 360 is over
80%. Although the Moto 360 achieves lower success rates than
the LG W150 and IMU due to its much lower sampling rate (i.e.,
25Hz), an adversary can still achieve a high probability to reveal
the PIN sequences based on top-2 or 3 choices. This indicates that
our system can tolerate the insufficient information introduced by

wearable devices with low sampling rates.
Figure 12(b) depicts the cumulative distribution of the number

of tries until successfully recovering the user’s PIN sequence from
three wearables. We find that the adversary can break over 97%
PIN entries from the LG W150 and IMU within 5 tries, which is

usually the maximum PIN tries on ATM machine. The number of
PIN entries revealed increases to 99%, if the attacker conducts 10
tries. For Moto 360, the attacker can break 90% PIN entries within
5 tries and 96% within 10 tries. Therefore, regardless of the types
of wearable, the attacker can break the user’s PIN sequence with
few tries. Although the LG W150 is set to use 200Hz sampling

rate and generates the best performance, we find that using 100Hz
sampling rate is enough to achieve comparable good results. There-
fore, we present the results using the IMU for the rest sections.
ATM Keypads and Keyboard. Figure 13(a) shows the top-k

success rate to recover PIN sequences on three keypads. We ob-
serve that our system can achieve around 80% success rate for all

three keypads with the top-1 choice. When using the top-5 choices,
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Figure 14: Distance estimation mean error and direction classi-
fication results between two consecutive key clicks under 100Hz
sampling rate (IMU).
our system can achieve over 97% success rate with both of the de-
tachable ATM pad and the number pad on keyboard, while on real
ATM machine, the success rate is over 92.5%. Figure 13(b) con-
firms our observation in Figure 13(a). The results demonstrate that
our Backward PIN-sequence Inference is effective when applied
with keypads of different layouts and coordinates. The success rate

is higher with both of the detachable ATM pad and the number pad
on keyboard than that with the ATM machine. Our results suggests
that the electronic magnetic field and the tilt angle of the ATM ma-
chine affect the PIN entry recovery result on ATM machine.

8.4 Distance Estimation of Different Kinds of
Keypads

We next study the performance of two supporting schemes. The

study of the distance estimation scheme is described in this sub-
section, and the results of the direction determination scheme is
presented in the next subsection. We apply our distance estimation
scheme to various subpaths across three different kinds of keypads.
We compare the distance difference between ground truth (i.e., ob-

tained from camera) and the estimated distance from sensor data.
Take ATM machine as an example, the distances for short, medium
and long are 2.5cm, 5cm and 6.4cm, respectively.

We observe that the mean error is proportional to the distance
scale, i.e., short distance has relative smaller error compared with
long distance, as shown in Figure 14(a). In particular, the mean

error of ATM machine for short, medium and long distance are
5mm, 7mm and 8.5mm, respectively. For detachable ATM pad,
the error of long, medium and short distance are 8mm, 6mm and
3.5mm, respectively. The mean error of long distance in keyboard
number pad experiment is 8mm, 5mm for medium distance and
for short distance the error is as low as 3mm. The experiment re-

sults from keyboard shows relative smaller distance error since the
physical layout of keyboard number pad is smaller than ATM ma-
chine keypad and detachable ATM pad. We observe that such error
difference is marginal and reveal the effectiveness of our scheme.

Figure 15(a) shows the cumulative distributive function of dis-
tance estimation errors. We observe that the 80th percentile errors

are 8mm, 10mm and 12mm for short, medium and long distance
of ATM machine, respectively. For detachable ATM pad the 80th
percentile error are 5mm, 10mm and 13mm, receptively and the
80th percentile error of number pad experiment are 4mm, 8mm

and 13.2mm respectively. The results also show the effectiveness

and robustness of our scheme under various keypads.

8.5 Direction Derivation of Different Kinds of
Keypads

Next, we evaluate our slope-based direction derivation scheme
by showing the performance under three different kinds of key-
pads. According to the keypad layout, we select five representative

directions in one quadrant. Take ATM machine as an example, the
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Figure 15: Performance of distance estimation and direction
derivation on three kinds of keypads under 100Hz sampling
rate (IMU).
five directions within the fourth quadrant are: keys 2 to 8, keys 2
to 9, keys 1 to 9, keys 4 to 9 and keys 4 to 6. The corresponding
direction angle for these subpaths on the keypad are: 270◦ , 302◦ ,
321◦, 338◦ and 360◦. To evaluate our direction derivation scheme,
we study the direction classification accuracy of classifying the di-

rections of testing subpaths into the aforementioned 5 groups of
directions angles. Figure 14(b) shows the direction classification
accuracy with five directions on ATM machine. The X axis rep-
resents the ground truth direction between two keys on the ATM
machine. We find that there are few subpaths mistakenly classified
as incorrect direction. In particular, our scheme can achieve 80%
classification accuracy for 270◦ and we observe that directions with
larger angles have better accuracy, which is up to 97% accuracy for
360◦. This may due to that when user performs vertical key clicks
(e.g., key 2 to 8 with 270◦ on ATM pad), there might be a small
inclined angle between hand moving direction and wrist moving

direction. For keyboard and ATM pad, we have similar high clas-
sification accuracy. In addition, Figure 15(b) shows the cumula-
tive distribution function of estimated five directions in the fourth
quadrant. We find that all five directions obtained from our scheme
only have small overlap for any two adjacent directions. Moreover,
90% of the derived direction are close to the ground truth direction

within ±10◦. The above results show that our system provides ef-
fective distance estimation and direction derivation schemes under
various keypads and is robust in real environments.

9. DISCUSSION
Wearing the Wearable Device on the Left Hand or Right

Hand. Our training-free approach does not require mirroring the
derivation from sensor data when applied to either the left-handed
or right-handed user since the inherent physics of key entry activ-
ities will be preserved regardless of either case. We assume the

victim use either hand wearing a wearable (i.e. a smartwatch or
fitness tracker) to access key-based security systems. While it is
very difficult to know the exact number of how many people shar-
ing this style, we instead discuss the population of the potential
wearable user victims. We take the right-handed user for discus-

sion as the left-handed user share the same conclusion. Wearable
devices are usually designed in a way that allows users to comfort-
ably wear them on either wrist (e.g., smartwatches no longer nec-
essarily have crowns as traditional watches do). There are many
smartwatch users [2, 5] claiming that they wear smartwatches on
their right wrists. Furthermore, for those wearing traditional watch

on the left wrist, they tend to wear fitness tracker on the right wrist
for health-related applications. Naturally, the right-handed people
use their right hand to perform key entry and the sensors in their
smartwatches or fitness trackers can be utilized by our approach to
reveal PINs. Given the growing cheaper price of these wearable
devices, many people wear both a smartwatch and a fitness tracker

on separate hand to better serve their work and health applications,
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which further increases the number of potential victims. Lastly,

the increasing popular usage of wearables leaves adversary great
chances to recover the user’s sensitive information, making it vul-
nerable irrespective of the hand on which it is worn.
Using Sensor Moving Direction as Hand Moving Direction.

We discuss the rationality of using sensor moving direction as hand
moving direction. The current system is designed for recovering a

PIN sequence by reconstructing hand movement trajectories. We
leverage embedded sensor readings from wearable devices on a
user’s wrist to determine the direction. We use the sensor move-
ment to represent the hand movement since the hand and the wrist
are moving together. During our extensive experimental study, we
observe that sensor movement and hand movement share similar

moving trend. Therefore such a representation is reasonable.

10. CONCLUSION
In this paper, we show that the embedded sensors on wrist-worn

wearable devices (i.e., smartwatches and fitness trackers) can be ex-
ploited to discriminate mm-level distances of the user’s fine-grained
hand movements during key-entry activities, exposing the user to
a serious security breach. We present a PIN-sequence inference

framework to recover the user’s secret key entries when the user
accesses key-based security systems such as ATM keypads and
regular keyboards. The implemented system does not require any
training or contextual information, which makes it applicable in
real world adversarial contexts. In particular, our system exploits
the physics phenomenon and unique patterns of key entry activities

from the sensor data and develops distance estimation and slope-
based moving direction derivation schemes to capture the small
hand movement between two consecutive keys. Our system further
applies the Backward PIN-sequence Inference Algorithm to reveal
the user’s complete PIN sequence, leveraging both the spatial and
temporal constraints of the key entry to achieve a high success rate.

Extensive experiments involving 20 volunteers on three different
types of keypads over 11 months show that our system can achieve
80% accuracy in revealing the user’s PIN sequences with one try,
and over a 90% success rate within three tries, while recovering the
hand movement trajectory has a mean error as low as 6mm. Our
findings are an early and significant step to understand the possible

security vulnerabilities of a wearable device’s embedded sensors.
Future countermeasures may aim at camouflaging the sensitive sen-
sor data transmitted from wearables to host devices. For example,
a wearable can inject a certain type of noise to the data so that the
data cannot be used to derive fine-grained hand movements while
still effective for fitness tracking purpose (i.e., activity recognition

or step counts). Moreover, in the two attack models we discuss,
more secure encryption schemes are necessary to protect the BLE
communication, while accessing to sensor data should be regulated
by the wearable or its host’s operating system to avoid leakage.
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