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ABSTRACT
Timing attacks rely on systems taking varying amounts of
time to process different input values. This is usually the
result of either conditional branching in code or differences
in input size. Using CSS default filters, we have discovered a
variety of timing attacks that work in multiple browsers and
devices. The first attack exploits differences in time taken to
render various DOM trees. This knowledge can be used to
determine boolean values such as whether or not a user has
an account with a particular website. Second, we introduce
pixel stealing. Pixel stealing attacks can be used to sniff user
history and read text tokens.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce
Security; K.4.1 [Computers and Society]: Public Policy
Issues - Privacy

General Terms
Security, Experimentation

Keywords
CSS-Filters, CSS-Shaders, OpenGL ES, Timing Attacks,
Privacy

1. INTRODUCTION
In this section we discuss CSS filters and describe how web

content is rendered in browsers. Finally we introduce other
timing attacks to provide a basis for our own work.

1.1 CSS filter specification
Cascading Style Sheets, CSS, is a declarative styling lan-

guage that applies and prioritizes styling rules to elements
of a web document (also known as Document Object Model
elements or ”DOM elements”). Some of the latest members
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Figure 1: Image of the Stanford bunny with a CSS
blur filter

of the CSS feature family, filter effects, are descendants of the
W3C SVG specification[11] that allow developers to apply
personalized style to arbitrary web content. Filters are, as of
recently, GPU accelerated [12, 22] giving developers a robust
new way to stylize arbitrary DOM elements through simple
CSS attributes. While filters are not implemented in all
browsers, support does exist in WebKit browsers including
Safari, and mobile browsers such as iOS Safari, Blackberry,
and Chrome for Android. Google Chrome is based on Blink
which is a fork of WebKit in the area of graphics [9, 11].

There are three types of CSS filters. The first, built-in
filters, are canned effects that are parameterized and can be
specified directly as an attribute-value pair in a CSS class.
Figure 1 shows the Stanford bunny with a blur filter applied
to the right panel.

The second type, SVG filters, are similar effects that can
be applied to SVG content.

The final type, CSS shaders, was proposed by Adobe to
the W3C FX task force[18] in October, 2011 as a complement
to CSS filters. Shaders are now referred to as CSS custom
filter effects. The CSS custom filter effects allow web devel-
opers to write OpenGL ES shader programs that operate
on arbitrary web content. Content is applied either through
separate text files specified with a url or directly through
HTML5 tags[18]. The proposed feature is now a part of the
CSS Filter Effect draft[1], and prototype implementation
has started and is available in developer builds. Because
custom filters are experimental, they must first be enabled
by entering chrome://flags in the URL bar.
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Figure 2: CPU rendering path in WebKit

1.2 Rendering DOM content
DOM content is transformed to a rasterized image in

several steps. We summarize CPU and GPU rendering in
WebKit in this section. Since the root cause of our timing
attack is not clear, we provide this section as a possible start-
ing point for further research. Information in this section
was consolidated from the Chromium Design Documents [5,
15].

As of this paper, the majority of WebKit’s rendering algo-
rithms are performed on a single process [15] which it shares
with the sandboxed web application. Figure 2 shows how
content is rendered using the CPU.

DOM elements are stored internally as nodes of a tree
structure whose root is the Document node for all instances.
Each node of a corresponding tree structure of RenderObjects
defines the physical layout of a unique DOM element. Sets of
RenderObjects are mapped to elements of a RenderLayer tree.
While DOM nodes model document data, the RenderObjects
and RenderLayers provide hierarchical views that ultimately
talk to the GraphicsContext, a wrapper for Google’s Skia
Graphics engine [6, 15, 20]. A distinct RenderLayer can be
created for a RenderObject if any of the following are true:

• It is the root element for the page

• It has explicit CSS properties (relative, absolute, or
transform)

• It is transparent

• It has an overflow, mask or reflection

• It has a CSS filter

• It corresponds to a canvas or video element

We found that WebKit reads a RenderLayer tree structure
from root to leaves, using an algorithm similar to Painter’s
Algorithm; i.e. WebKit traverses the entire tree of RenderEle-
ments in order to resolve pixel depth[15] and create a bitmap
by painting elements from furthest away to nearest. This
approach to depth resolution is inefficient [7, 16] and in this
paper we describe a timing attack on user privacy that is
possible because of this. Only after the RenderLayers have
finished providing pixels to a buffer in shared memory can a
separate browser process take over rendering to the correct
tab[15] or iframe element.

The GPU can be used to render content more quickly.
While a description of GPU rendering mechanisms is out of
the scope of this paper, its important to know that additional
structures are built for GPU rendering and may also account
for timing differences.

1.3 Timing attacks
Timing attacks work when a system takes different amounts

of time to process different inputs [4, 10, 14, 19]. Vulnerabili-
ties tend to occur as a result of inherent behavior, not ”buggy
code”. Scenarios allowing for successful timing attacks have
been found in performance optimized code [2, 14] browser
caching [4, 10], DNS caching [10], CBC encryption, and RAM
cache hits [14]. By timing these properties, an attacker can
gain insight into a large amount of information.

Timing attacks are usually regarded as an invasion of a
user’s privacy [4, 10]. Exposing Private Information by Tim-
ing Web Applications [4] by Bortz et al defines two families
of web timing attacks:

A Direct timing attack can be used to determine boolean
values such as a user’s login status or content data size such
as the relative size of a shopping cart [4]. A direct timing
attack is carried out by the attacker’s browser against a
victim web server.

In contrast to direct timing attacks, cross-site timing at-
tacks rely on a user to visit, and remain on, a malicious page
while a cross-site exchange is made. Our proposals are all
cross-site timing attacks.

2. RELEVANT SECURITY TOPICS
New features usually arrive with their own set of security

considerations, and CSS filters are no exception. Much work
has already gone into safe integration of CSS filters into web
browsers. We first present a threat model for our timing
attacks. Then we discuss security in CSS custom filters,
browsers, and browser policies.

2.1 Threat model
The threat model for our timing attacks is a web attacker

who operates a malicious domain. The attacker is either able
to provide content that keeps a user engaged on a webpage
for an extended period of time, or is able to open another
window in front of the window being attacked.

2.2 Security in CSS custom filters
Our attempts to look for new timing channels in browser

rendering engines stemmed from an interesting attack pro-
posal by Adam Barth [2], who showed that simply removing
access to sensitive information in custom filters is not enough
to protect web pages from malicious filter developers. He
suggested that a fragment shader could contain code similar
to the following:

Listing 1: Abstract timing attack on color
1 if (pixelColor != 0x000) {
2 for (int i = 0; i < MAX_INT; i++) {;}
3 }
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As a result we can determine whether or not pixelColor is
black by observing the amount of time taken for the shader to
output a final pixel value. There are many ways an attacker
could use this approach to steal an unsettling amount of
sensitive information.

W3C has now recommended that shaders restrict all direct
access to rendered content [19]. Some researchers suspected
that custom shaders are still vulnerable. They did not have
a proof-of-concept to support their claim[2].

2.3 Security in Browsers
While we were able to get our attack to work in several

browsers, Chromium was the one we spent the most time with.
This section is about security in browsers, but focuses on
Chromium’s implementation specifically. The two concepts
in this section are relevant to our work and include flow of
fragment data and multi-process browser architecture.

1. Flow of fragment data. One security feature that
makes GPU-accelerated graphics rendering difficult to
measure is a one-directional flow of fragment data. The
application’s control over hardware-accelerated render-
ing is revoked as soon as commands and data are passed
to the command buffer. There is no mechanism that
can be used to retrieve GPU output.

2. Multi-process architecture. This is another impor-
tant feature is Chromium’s multi-process model. By
separating the browser kernel from rendering engine in-
stances, Chromium wants to prevent the attacker from
installing persistent malware/keyloggers and stealing
local files [3, 5, 15]. These measures are effective at
what they are designed to do. They are unable, how-
ever, to hide timing differences in the rendering engine.
If anything, isolation of the rendering engine makes
timing differences more noticeable.

2.4 Security in Web Policies
It turns out that CSS filters are indifferent as to whether

or not the actual rendered content is cross-origin[18], and
we believe that browser policies regarding filters should only
be part of a larger effort to contain cross-origin information.
CSS filters still violate Same-Origin Policy (SOP) because
they access cross-origin content when X-Frame-Options are
not used. As a result, setting X-Frame-Options to Deny is
the only way to ensure timing attacks will fail to work on a
framed web page.

3. OUR PROPOSED TIMING ATTACKS
In this section we demonstrate how cross-site timing at-

tacks may be used to invade a user’s privacy and to steal
sensitive data. First we explain our approach to collecting
timing data. Second we show how timing data can be used to
determine a user’s login status on arbitrary websites. Finally
we present pixel stealing and how it can be used to sniff user
history and steal cross-origin text tokens.

3.1 Collecting data using requestAnimation-
Frame

We found that the entire rendering process can be timed
through requestAnimationFrame[8], which allows a web page
to provide a callback for the browser to call when an anima-
tion frame is available for painting. The function requestAni-
mationFrame is implemented in Gecko and WebKit, and the
code below demonstrates how it can be used to measure the
average framerate of a browser window.

Listing 2: Measuring Framerate with javascript
1 FramerateFinder = function () {
2 var tFrames = 0,
3 avgFramerate = 0,
4 startTime;
5
6 var updateAvgFramerate = function () {
7 var elapsed = timer.now () - startTime;
8 avgFramerate = tFrames / elapsed;
9 avgFramerate = avgFramerate * 1000;

10 }
11
12 var step = function () {
13 tFrames += 1;
14 requestAnimationFrame(step);
15 }
16
17 var start = function () {
18 startTime = timer.now ();
19 step();
20 }
21 }

The function start begins a series of calls to step, which
increases the total frame count by one and passes itself to
requestAnimationFrame. The total frame count is incre-
mented each frame, and the current average framerate can
be calculated with updateAvgFramerate at any time.

3.2 Determining a user’s login status
The simplest attack we implemented is to detect a user’s

login status. While simple, it is important to protect against
attacks such as this because they can reveal a significant
amount of insight about a user’s online behavior. For in-
stance we could use this data to quickly determine which
web users are T-Mobile customers.

For many websites, a user with an authentication cookie
will be directed to a personalized home page, while other
users are sent to a ‘catch-all’ home page. Normally, a login
page has a different DOM structure than that of a user’s
homepage. If a CSS filter is applied to documents with
different tree structures, we found the corresponding frame
rates to be different since WebKit always traverses the en-
tire RenderObject tree when building a RenderLayer tree.
Assume example.com/home is the user’s homepage and ex-
ample.com/login is the login page.

An attacker could determine whether or not a user has
authentication cookies for a website in the following way:

1057



Figure 3: We performed the login attack on five high-traffic websites. (hardware: 2012 MacbookPro Retina
with Intel Core i7 3720QM / Nvidia GT650M; browser: Google Chrome).

1. Malicious reference page created. The attacker
copies the example.com login page and all referenced
content from the victim’s web server at example.com/lo-
gin.html to a location on his server as a“reference page”,
and the attacker saves it to www.attacker.com/reference
.html.

2. Dummy page is created. The attacker creates a
dummy page with <iframe id=”attack-iframe” src=”ex-
ample.com”>. This page resides at www.attacker.com/
attack.html. The victim must browse to this page for
the attack to occur.

3. Victim is engaged. A victim using a vulnerable
browser visits www.attacker.com/attack.html, and is
engaged for a short period of time.

4. Shaders are applied. A CSS built-in filter is rapidly
re-applied to the iframe, causing the framed page to
rerender without refreshing. Example code for this step
is in Listing 3.

5. Victim’s data is collected. After some time, the
average framerate is determined.

6. Reference page is timed. The iframe loads the
reference page on the attacker’s server, located at
www.attacker.com/reference.html, and the same pro-
cess is repeated for the new page. Data must be col-
lected from both pages since timing between devices
may differ.

7. Data is analyzed. The total frame counts for both
pages are returned to the attacker’s server to be com-
pared.

Listing 3: Toggle filter
1 <style>
2 .filter{
3 -webkit-filter: blur (10px);
4 -moz-filter: blur (10px);
5 }
6 </style>
7
8 <script>
9 function alternate (){

10 $("#attack-iframe")
11 .toggleClass("filter");
12 }
13 setInterval(alternate , time);
14 </script>

We found that this attack also works in Firefox by using
an svg-image-blur effect instead of webkit-filter, since Firefox
allows a user to apply SVG filters to DOM elements. As with
most web timing attacks, timing data is an approximation of
the true runtime of a process. Our attack is less noisy than
typical web application timing attack[4] though, since there
is no network latency or packet-loss involved.

The results in Figure 3 show how the relative size of a
page can be determined with CSS default filters. Notice
that the page when the user is logged in produces a different
average framerate than the homepage when the user is not
logged in because their DOM trees are different.

3.3 Pixel Stealing with CSS filters
Next we describe a general technique that we have discov-

ered can be used to read a field of arbitrary pixels from the
user’s browser window. We fill the screen with a single color
and examine the way in which the browser window’s average
framerate changes by reading it with requestAnimationFrame.
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Figure 4: Using the same test that produced the bitmaps shown in Figure 5, we determined how accuracy
differed across different devices.

3.3.1 Focusing on a Single Pixel without anti-aliasing
We found that enlarging the pixel to the size of the user’s

screen exaggerated timing differences. This section describes
our technique.

Listing 4: Enlarging a single pixel
1 #malicious-iframe {
2 overflow: hidden;
3 width: 1px;
4 height: 1px;
5 margin-top: 0px;
6 margin-left: 0px;
7 }
8
9 #pixel-container {

10 top: calc (50% - 1px);
11 left: calc (50% - 1px);
12 width: 1px;
13 height: 1px;
14 }
15
16 #pixel-container-container {
17 width: 999px;
18 height: 999px;
19 -webkit-filter: custom(url(enlarge.vs)

mix(url(enlarge.fs)), 4 4);
20 }

To enlarge a pixel to the size of the screen without anti-
aliasing, we first apply the style rules for #malicious-iframe

to a borderless iframe. The iframe contains the webpage un-
der attack. By setting margin-left and margin-top to values
less than or equal to zero, different offsets onto the victim
page can be achieved.

Next we position the iframe inside a div of class #pixel-
container. This div is centered inside its parent element,
#pixel-container-container. This class defines a CSS filter
that scales the pixel-sized iframe to a much bigger size. The
width and height are odd-valued to ensure that the single-
pixel iframe will be in the center.

3.3.2 Pixel Stealing
We use the above mechanism to traverse a bitmap of pix-

els by setting margin-top and margin-left in the malicious
iframe. Our attack performs arbitrary transformations on
the scaled pixel, determines the average framerate during the
transformations, and interprets the the resulting value for
each pixel. A pixel stealing attack occurs in the following way:

1. Expand a single pixel. The attacker builds a mech-
anism that can expand a pixel to the size of the user
agent’s screen.

2. Victim page is framed. The attacker frames a web-
site that has neglected to use X-Frame-Options.

3. Vicitm visits malicious page. A victim user visits
the attacker’s malicious web page, and is tricked into
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remaining on the page for the duration of the attack.

4. Page is traversed. In an attack, a malicious website
may want to traverse each pixel in a target region of the
intended website or in a target region of its source code.
An arbitrary transformation is repeatedly performed
on each pixel.

5. Average framerate is captured. RequestAnima-
tionFrame determines the average framerate on the
browser window for each target pixel.

6. Data is interpreted. An array of pixel measurements
are sent to the attacker’s server to be interpreted.

Collecting and interpreting pixel data turned out to be an
interesting problem by itself, and we tried several methods
that helped us understand the set of values returned by the
attack. The most successful attempt involved writing code
with a JQueryUI slider that could change the threshold that
separated black and white pixels, however writing a script
to interpret the pixel data for us proved to be more than
sufficient. The script interpreted values by deciding what
thresholds should be used to distinguish black and white
pixel framerates. Using a canvas element we could visually
examine the pixel values.

3.3.3 Our Results
We initially tested our pixel stealing idea by running black

and white pixels through shaders with arbitrary transforma-
tion matrices. Our intuition was if there existed two colors
that could create distinct timing channels, black and white
would be the most likely candidates. Our intuition turned
out to be correct.

A proof-of-concept attack involved recreating a 10 × 10
bitmap of black and white pixels to determine the timing
consistencies of a user’s device. A higher percent of correctly-
guessed pixels implies a more vulnerable user agent. Results
from this initial test indicated that stealing cross-origin pixels
could be achieved with high enough accuracy to make pixel
stealing attacks practical. We conducted tests that measured
each pixel’s color for 4, 12, and 20 seconds, and the results
are shown in Figure 5. Compare our results with the actual
bitmap in (d).

In this test, we counted the number of pixels that were
guessed correctly out of 100. If our attack was returning
random values, we would expect about 50 pixels to be correct
regardless of time spent per pixel. The chance that exactly
half of the pixels are guessed correctly is 50%. The chance
that more than 60% of a bitmap’s pixels are chosen correctly
on any given test is just 6%. Figure 4 shows accuracy for
various devices. Half of the setups we tried were vulnerable.

3.3.4 Possible Attack Scenarios in Practice
Once a bitmap of pixel colors can be determined over https,

attack possibilities are endless. The most interesting attack
we implemented involves stealing tokens of cross-origin text.
We were able to read a fake token that we retrieved across
origins. This token was stolen from a machine with an AMD
Radeon HD 6770 and Intel Core i7:

We also used our pixel stealing attack to implement history
sniffing. Until recently, a user’s history could be determined

(a) 4 secs (b) 12 secs

(c) 20 secs (d) original

Figure 5: The original pixel stealing tests (a), (b),
and (c) show how accuracy improves as the amount
of time (4, 12, and 20 seconds respectively) spent per
pixel is increased. (d) shows the original bitmap.

by simply adding a link to a page and determining its color
by calling getComputedStyle()[13] since visited links have
different colors than non-visited links. Browsers will now lie
[21] if this function is called on a link.

The following attack can be used to determine whether or
not a user has visited a particular website:

1. Victim visits malicious page. The malicious page
initializes with a block of ascii text (say, ascii value
219) that hrefs to a website that is known to not exist.

2. Link is expanded. A pixel from the link is expanded
to the size of the user’s screen.

3. Data is collected. The malicious web page allows a
sufficient amount of time to pass while measuring the
page framerate using requestAnimationFrame.

4. Process is repeated. Steps 2-4 are repeated two
more times. The first is for this page, which will return
results for a URL that we know the user has visited.
The second is for a URL we are curious about.

5. Data is analyzed. We can determine if the user vis-
ited the victim URL by comparing it with the framerate
of our two test URLs.

By using the pixel stealing technique described above, it
is possible to determine whether or not a user has visited a
website by analyzing a single pixel.

3.3.5 Complications and Solutions
We have found that the best results can be obtained when

the input pixel field is restricted to black and white only. We
combined several filter effects to achieve a close estimate of a
black and white transform. We ended up using the following
filter combination:
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(a) Original Text

(b) Text after applying filters

(c) Stolen Text

Figure 6: (a) shows the original bitmap of anti-aliased pixels in Google Chrome for a text token. We applied
filters to approximate a black and white version of the token, shown in (b). Finally, (c) shows the cross-origin
token of text that we stole with our timing attack.

Listing 5: Filter effects to achieve a close estimate
of a black and white transform
1 .black-and-white {
2 -webkit-filter: saturate (0%)
3 grayscale (100%)
4 brightness (69%)
5 contrast (100%);
6 }

Notice in Figure 7 that without the use of these filter
effects, non-black pixels are usually interpreted as white.
This sample of cross-origin HTML text is easily recognized
as the letter “h” in Figure 7, but without default filters,
many letters with curves such as “S” and “R” were nearly
impossible to read.

A final challenge we faced with this attack was finding
a reasonable amount of time to spend on each pixel. It is
important that all pixels are read before the user closes his
or her browser window. To get a better understanding of
the accuracy achieved as a result of various amounts of time
spent per pixel on several graphics cards, see Figure 4. While
history sniffing or stealing small text tokens is possible in
practice, stealing medium-sized images or large tokens may
not be.

Under what conditions do the attacks fail? We determined
that running shaders in background tabs produces undesir-
able performance, and will cause an attack to fail. Running
the attack in a background window will have the same per-
formance results and an attack in the foreground. Running
the attack on a div or iframe element whose opacity equals
0.0 will not work, but covering it with another DOM does
work.

4. CONCLUSIONS AND FUTURE WORK
In this paper we show that timing attacks using CSS filters

can reveal sensitive information such as text tokens. Our

Figure 7: Attempts to read text without converting
to black and white made letter curvature difficult to
capture.

work uses both default and custom filters to exploit timing
channels in rendering engines of various browsers. A paper
that cites the original version of this paper shows that the
timing attacks can also be performed with SVG filters [17].

An easy solution would be to simply place shaders and
filters under the restrictions of the Same-Origin Policy, but
this would entirely defeat the purpose of these features. This
would also likely be covering up a larger problem that is
present across multiple browsers. Creating awareness in the
security community seems like the best way to proceed.
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