
Detecting Privileged Side-Channel Attacks in Shielded
Execution with Déjà Vu

Sanchuan Chen
The Ohio State University

Columbus, OH, USA
chen.4825@osu.edu

Xiaokuan Zhang
The Ohio State University

Columbus, OH, USA
zhang.5840@osu.edu

Michael K. Reiter
University of North Carolina

Chapel Hill, NC, USA
reiter@cs.unc.edu

Yinqian Zhang
The Ohio State University

Columbus, OH, USA
yinqian@cse.ohio-

state.edu

ABSTRACT

Intel Software Guard Extension (SGX) protects the confi-
dentiality and integrity of an unprivileged program running
inside a secure enclave from a privileged attacker who has
full control of the entire operating system (OS). Program ex-
ecution inside this enclave is therefore referred to as shielded.
Unfortunately, shielded execution does not protect programs
from side-channel attacks by a privileged attacker. For in-
stance, it has been shown that by changing page table entries
of memory pages used by shielded execution, a malicious OS
kernel could observe memory page accesses from the execu-
tion and hence infer a wide range of sensitive information
about it. In fact, this page-fault side channel is only an
instance of a category of side-channel attacks, here called
privileged side-channel attacks, in which privileged attackers
frequently preempt the shielded execution to obtain fine-
grained side-channel observations. In this paper, we present
Déjà Vu, a software framework that enables a shielded exe-
cution to detect such privileged side-channel attacks. Specif-
ically, we build into shielded execution the ability to check
program execution time at the granularity of paths in its
control-flow graph. To provide a trustworthy source of time
measurement, Déjà Vu implements a novel software ref-
erence clock that is protected by Intel Transactional Syn-
chronization Extensions (TSX), a hardware implementation
of transactional memory. Evaluations show that Déjà Vu

effectively detects side-channel attacks against shielded ex-
ecution and against the reference clock itself.

CCS Concepts

•Security and privacy → Information flow control;

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ASIA CCS ’17 April 02-06, 2017, Abu Dhabi, United Arab Emirates

c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4944-4/17/04.

DOI: http://dx.doi.org/10.1145/3052973.3053007

Keywords

side-channel detection; Software Guard Extension; Transac-
tional Synchronization Extensions

1. INTRODUCTION
To reduce the trusted computing base of sensitive appli-

cations, numerous efforts have proposed systems to support
shielded execution—i.e., application program execution for
which the confidentiality and integrity is protected from an
untrusted operating system (e.g., [37, 10, 22, 7]). The advent
of Intel Software Guard eXtension (SGX) [3], which is now
commercially available, offers an opportunity for shielded
execution to become mainstream. Enforced by the hard-
ware memory management unit (MMU), shielded memory
regions of userspace programs (i.e., enclaves) are isolated
from other software, including privileged system software—
no memory read or write can be performed inside the enclave
by external software, regardless of its privilege level.

A significant challenge in accomplishing shielded execu-
tion effectively is that the operating system (OS), though
untrusted, must still be relied upon for some system ser-
vices (e.g., managing devices and physical memory). Pre-
vious work has shown, for example, that the untrusted OS
might be able to compromise a shielded execution by manip-
ulating the return values to system calls that it invokes [8].
Side-channel attacks from an untrusted OS have also been
demonstrated against SGX-based shielded execution: e.g.,
it has been shown that a malicious OS can force page faults
on all but one or two virtual page owned by a victim SGX
enclave so that memory accesses by the victim will leave a
trace of page faults that could leak sensitive information [53,
45]. Unlike the vulnerabilities exploitable by malicious re-
turn values from system calls, these side-channel attacks
cannot be avoided merely through defensive programming
of the shielded program.

Moreover, on untrusted OSes, this page-fault side channel
is only the tip of the iceberg. Page faults are simply one
type of exception that can trap the execution of a software
program into the OS kernel, allowing the malicious OS to
trace the control flow or data flow of a shielded execution.
Similar side channels can be constructed by a malicious OS
using other types of exceptions or interrupts. For example,
by interrupting the shielded execution using frequent hard-

7

ware interrupts, the malicious OS may conduct fine-grained
cache side-channel attacks on private caches (e.g., L1 caches)
that are used by the shielded execution. This type of at-
tack has been demonstrated in scenarios where the attackers
are unprivileged—cross-process attacks [39, 20] or cross-VM
attacks [58]—by exploiting design flaws in OS schedulers.
On untrusted OSes, such attacks, which can be performed
without scheduler vulnerabilities, are even more powerful as
the privileged attacker can program hardware interrupt con-
trollers directly to take control of the CPU at high frequency,
e.g., after every memory access of the shielded execution.

In this paper, we systematize a category of side-channel
attacks on untrusted OSes that we call privileged side-channel

attacks, in which privileged attackers in control of the OS
frequently intervene, via software exceptions or hardware
interrupts, on the shielded execution to obtain fine-grained
side-channel observations. To defeat such privileged side-
channel attacks, we devise an approach to allow the shielded
execution to detect such attacks as it incurs them during its
execution. The shielded execution can then implement an
application-specific policy in response to these detections.
So, for example, if the shielded execution detects unusually
frequent page faults during its execution of a cryptographic
routine, then the execution could abort or else refresh its
keys. Our focus here is not on the policy—again, the pol-
icy will generally be application-specific—but rather on con-
structing a way for a shielded execution to reliably detect
privileged side-channel attacks when they occur.

A key obstacle to building such a detection capability is
that current SGX-enabled hardware provides no support for
a shielded execution to directly observe the page faults it
induces or interrupts issued by hardware. An alternative,
therefore, is for the shielded execution to time its own ac-
tivity to observe timings that indicate that a page fault or
an interrupt occurred, as both exceptions and interrupts oc-
curred inside enclaves will result in Asynchronous Enclave
Exits (AEXs) and context switches from userspace to kernel
space, which grows the execution time of the shielded execu-
tion. Unfortunately, current SGX-enabled hardware allows
access to timers only through the untrusted OS, rendering
these timers untrustworthy, as well. As such, the central
challenge is for the shielded execution to itself implement a
reference clock against which to time steps of its own ex-
ecution, to detect when exceptions or interrupts occurred
during one of those steps.

Following Wray [52], one approach to constructing such
a reference clock is by using execution itself as a clock—
i.e., to measure the time between events by the distance
that an execution progresses between those events. While
Wray envisioned this capability as a means to implement

timing side channels, here we use this idea defensively, to
detect when steps of the shielded execution take too long
in comparison to a reference execution. That is, our goal is
to construct a shielded execution consisting of threads that
execute concurrently, one serving as the “reference clock” to
measure the time taken for each step of the other thread.

Of course, this design begs the question of how to de-
tect if the reference-clock thread incurs a delay due to a
page fault or interrupt (again, possibly induced by the un-
trusted OS). For this purpose, we leverage another capability
of modern Intel platforms, namely Transactional Synchro-
nization Extensions (TSX), a hardware implementation of
transactional memory. Specifically, our design advances its

reference clock using transactional memory, in a way that
an interrupt or page fault will cause a transaction to abort
with high probability. This transaction abort will be visible
to the reference-clock thread, allowing it to determine when
it was “paused” by the OS. Of course, this is not the only
threat that the OS poses to the reference clock—e.g., the
OS might change the execution speed of the processor core
on which it executes. However, we show that with careful
engineering, we can implement an execution-based reference
clock within SGX-based shielded execution, for detecting
the interruption of (and thus potential leakage from) criti-
cal routines within the shielding.

We have realized our design in an implementation for
Linux called Déjà Vu.1 Specially, Déjà Vu is implemented
as an extension of the LLVM framework [28], which takes
the source code of the shielded program as the input and
outputs an instrumented binary to be loaded into SGX en-
claves at runtime. The execution time of the shielded ex-
ecution is measured by the instrumented code at selected
basic blocks, which employ threshold-based classifiers to de-
termine whether the measured execution time exceeds the
expected values—longer execution between basic blocks sug-
gests AEXs have occurred during the execution.

We have integrated Déjà Vu with the Intel Linux SGX
SDK. The security evaluation shows Déjà Vu achieves at
least 0.94 precision and recall in detecting AEXs of the ap-
plication thread, and 0.95 or better recall and 0.78 or better
precision in detecting AEXs on the reference-clock thread.
The runtime performance overhead of Déjà Vu when ap-
plied to nbench applications [4] is typically less than 4%.

Contributions. In summary, this paper contributes to the
field of study in the following aspects:

• A software framework, Déjà Vu, for automated program
transformation and detection of privileged side-channel
attacks against shielded execution with good accuracy.

• A software-based reference clock that is protected by In-
tel’s hardware transactional memory, which cannot be
manipulated by the malicious OS without being noticed.

• Implementation and evaluation of Déjà Vu on Intel Sky-
lake processors with both SGX and TSX features.

2. BACKGROUND AND RELATED WORK

2.1 Intel SGX and Shielded Execution
There is a long history of research on shielded execution

on untrusted operating systems [31, 46, 9, 10, 37, 54, 42,
56, 22, 11, 14, 30]. Most rely on a trusted software compo-
nent, usually a hypervisor running at the highest privilege,
to protect the memory of an isolated program against both
confidentiality and integrity attacks from an untrusted guest
operating system.

In contrast to these software-based approaches, Intel Soft-
ware Guard eXtensions (SGX) is a new hardware feature
provided in the most recent Intel processors (e.g., Skylake
processor families) that protects a shielded memory region
from reading and writing by external software regardless of
its privilege levels [3]. This security mechanism provides

1
Déjà Vu is a reference to the movie The Matrix, in which the world

as we know it is a simulation. The simulation has glitches, which are
revealed when one experiences déjà vu. A transaction abort in our
reference-clock thread is an analogy for this déjà vu, or evidence of a
“glitch” in the virtual world.

8

software developers with an unprecedented capability to de-
velop security-critical software programs that can achieve
strong security guarantees (in terms of confidentiality and
integrity) even under the assumption of a malicious operat-
ing system.

2.2 Transactional Synchronization Extensions
Intel Transactional Synchronization eXtensions (TSX) is

a hardware implementation of transactional memory that is
available in recent Intel processors (including Skylake mod-
els that have SGX enabled). Transactional memory (TM) [21]
enables atomic execution of a set of memory read and write
instructions on shared memory regions by concurrent threads,
without the overhead of software locks.

Although not designed as a security enhancement, Intel
TSX has been leveraged to improve security in several works.
Most directly related to our work, concurrent research by
Shih et al. [44] employs TSX to address controlled-channel
attacks on SGX by leveraging, as we do here, the fact that
an exception during the execution of a transaction in an en-
clave will abort the transaction, notifying the enclave pro-
gram without interference by the system software. We will
compare to their solution, called T-SGX, in Sec. 3.4. In
more distant security-related research, Liu et al. [34] demon-
strated the use of Intel TSX to facilitate virtual machine
introspection. Guan et al. [19] explored the use of TSX to
protect cryptographic keys in CPU caches to prevent mem-
ory disclosure attacks.

In terms of usability of Intel TSX, it has been shown in
these prior studies [34, 19] that enclosing large code regions
inside TSX transactions may induce numerous transaction
aborts, degrading the performance of their applications and
even making it unusable. Our use of Intel TSX avoids such
issues by only enclosing a small loop inside the transac-
tion, which significantly reduces the likelihood of transac-
tion aborts due to regular system operations. Therefore,
our design is highly practical.

2.3 Side-Channel Attacks and Defenses
Besides exception-based side-channel attacks, cache-based

side-channel attacks have also been demonstrated to be ca-
pable of tracing the victim program’s code execution and
data accesses. A cache-based side channel can be constructed
using data caches (including per-core L2 unified caches) on
shared processors [39, 47, 20, 23], instruction caches [5, 58],
shared last-level caches (LLC) [55, 59, 33, 18, 40, 25]. Sim-
ilar to page fault side-channel attacks, cache side-channel
attacks conducted on per-core caches also require frequent
preemption of the victim program’s execution [39, 20, 58].
However, the page fault side-channel attacks enforce CPU
preemption by inducing page faults, which leads to better
synchronization with the victim program and less noise.

Defenses against these side-channel attacks are not easy.
Modifying the processor architecture [50, 36, 15, 32] and re-
lying on system-level isolation enhancement [49, 27, 29, 60,
48, 57] are not possible in the settings we consider. Software
defenses against cache-based side-channel attacks may be
applicable to our settings, however. Ideally, if the shielded
execution can be transformed so that it does not have secret-
dependent side-effects on memory pages or caches, both
cache-based and exception-based side channels can be elim-
inated. However, doing so in practice is extremely labor-
intensive. Automated program transformation to eliminate

the secret-dependent control flows or data flows have been
attempted in several prior works [38, 12, 35, 13, 43], but
due to the high performance overhead (e.g., several times
higher runtime), these compiler-based approaches have not
yet been widely adopted. Static analysis of software pro-
grams to automatically detect side-channel vulnerabilities
have been studied by Doychev et al. [16]. To enable such
analysis for exception-based side-channel attacks, new mod-
els need to be constructed.

3. PRIVILEGED SIDE-CHANNEL ATTACKS

ON SGX ENCLAVES
Prior studies on side channels by an attacker with a foothold

on the same machine as the victim usually consider unpriv-
ileged attackers, e.g., virtual machines confined by hyper-
visors (e.g., [58, 55, 24, 33]), non-root userspace processes
(e.g., [41, 39, 5, 6, 47, 59]), or sandboxed Javascript code
(e.g., [40]). In contrast, much less is known about side-
channel attacks from privileged attackers. This is primarily
because privileged attackers, i.e., attackers who control priv-
ileged software components, are capable of conducting more
direct attacks than side-channel attacks.

As described in Sec. 2, Intel SGX provides hardware-level
memory isolation of userspace programs running inside en-
claves with an enhanced memory-management unit (MMU),
as well as hardware-facilitated encryption of memory when
it is not protected by the MMU. As such, even the most
privileged software attacker that controls the entire oper-
ating system cannot inspect the memory space inside the
enclave. Side-channel threats thus become primary attack
vectors against SGX-protected programs.

Although the malicious OS cannot access memory inside
the enclaves, it still controls the scheduling of CPU resources,
mediates accesses to I/O devices, handles interrupts and ex-
ceptions, maintains process control blocks and page tables,
etc. Of particular concern here is the OS’ responsibilities in
handling exceptions and interrupts, which allows the mali-
cious OS to intercept the control flows of the shielded exe-
cution in ways that can be controlled by the attacker.

3.1 Exception-based Attacks
Exceptions triggered during the execution inside an en-

clave will be captured first by the untrusted OS before being
forwarded to the enclave program. As such, these exceptions
can be exploited by the adversary to keep track of the ac-
tivities of the victim program’s execution. Even worse, in
some cases, the untrusted OS can cause the enclave execu-
tion to induce exceptions that give it considerable insight
into the enclave’s activities. For instance, Xu et al. [53]
showed that by modifying page table entries of pages inside
an enclave, the untrusted OS can cause enclave execution to
incur an exception upon each new page access, permitting
the OS to trace the enclave execution (at the granularity
of pages as SGX masks the lowest 12 bits of the page-fault
address before passing it to the OS kernel) and gain consid-
erable information about secret data it holds. For instance,
it was shown that the code and data page access patterns
of the freetype font rendering engine, the Hunspell spell
checker, and the image processing library libjpeg can be
monitored through the page-fault side channel, which may
be exploited to infer the content of the documents or im-
ages. Shinde et al. [45] demonstrated similar page-fault at-

9

tacks against cryptographic code, e.g., the EdDSA signing
process in libgcrypt. By tracing the execution sequence of
the three functions ec_mul, add_point and test_bit, which
are located in three separate pages, the adversary can learn
the signing key.

3.2 Interrupt-based Attacks
It has been shown in prior studies [20, 58] that an un-

privileged attacker may generate frequent interrupts to pre-
empt the victim program’s execution, by exploiting design
flaws of the underlying OS or hypervisor schedulers. The
frequent preemption enables fine-grained cache side-channel
attacks, e.g., Prime-Probe attacks, on the L1 data cache
and instruction cache to extract encryption keys. A privi-
leged attacker who controls the entire OS may also program
hardware interrupt controllers to trigger even more frequent
interrupts (e.g., one interrupt per instruction) without ex-
ploiting any vulnerability of the schedulers. For example,
the high-precision Advanced Configuration and Power Inter-
face (ACPI) Power Management Timer, the High Precision
Event Timer (HPET), the Local Advanced Programmable
Interrupt Controller (LAPIC), and the hardware performance
monitoring units (PMUs) can all be programmed to trigger
frequent interrupts to preempt the shielded execution with
high frequency.

Not only can privileged side-channel attackers trigger more
frequent Primes and Probes by instructing hardware inter-
rupt controllers to trigger high-frequency interrupts, they
can also reduce the background noise that are major ob-
stacles in unprivileged cache side-channel attacks by, e.g.,
pinning all other processes on the system to other CPU
cores to make sure no other processes are scheduled on the
core where the attack is performed. Moreover, as the adver-
sary also has full control over the hardware configuration, he
might also disable hardware features that make his cache at-
tacks challenging. For instance, by disabling hardware cache
prefetching, the attacker can considerably reduce noise in
cache-based side-channel attacks.

Whereas page-fault side channels trace the execution of
the shielded code at the page level and cache side chan-
nels trace shielded execution at cache-set granularity, it is
also conceivable that a malicious OS may combine page-level
side channels and cache-set-level side channels to trace the
execution of the shielded code at the granularity of 64-byte
cache lines, enabling much more fine-grained observations
than any previously known attacks.

3.3 Threat Model
To summarize, we consider privileged side-channel attacks

against shielded execution in SGX enclaves. The operating
system is untrusted and possibly malicious, but its direct
inspection of enclave memory is prohibited by SGX. We
specifically consider a privileged side-channel attacker who
may induce page faults or trigger interrupts to preempt the
shielded execution and trace its control flow or data flow at
the page level or cache-line level. We assume the attacker’s
side-channel observations are noise-free and deterministic.

We also assume that the untrusted OS is willing to provide
an execution environment to shielded execution that is free
of excessive interrupts, e.g., by pinning the shielded execu-
tion to dedicated CPU cores. We consider this requirement a
contract between the operating system and the shielded ex-
ecution. Violation of the contract, detected using the meth-

ods we lay out in this paper, will result in self-termination
of the shielded execution (assuming the shielded program
is configured with policy to do so), which leads to denial-
of-service (DOS). DOS attacks are beyond the scope of the
paper, as a malicious OS can easily do so by not scheduling
the shielded execution.

3.4 Known Defenses
Closely related to Déjà Vu is concurrent research by Shih

et al. [44]. Their solution, called T-SGX, works by compiling
the enclave application into a collection of TSX transactions,
so that page faults are handled by the transaction abort
handler first, before trapping into the kernel, effectively hid-
ing faulting addresses from the kernel. A side effect is that
exceptions and interrupts are detectable (by causing these
transactions to abort). Doing so, however, requires detailed
static analysis and a number of program transformations
to dissect the enclave program into short transactions sub-
ject to hardware-specific constraints (e.g., that its write and
read sets fit into the L1 or L3 caches, respectively). These
larger write and read sets will tend to cause more transaction
aborts than our simple reference-clock code. And, perhaps
most importantly, T-SGX precludes the use of TSX for its
intended purpose: eliding software locks in multithreaded
programs. Our approach is based on similar principles, but
neither requires detailed static analysis nor imposes on en-
clave programs’ other uses of TSX. Aside from T-SGX, the
only other software-based defense known to us for page-fault
side channels involves hiding the pattern of page accesses
from the untrusted OS, which addresses only the page-fault
side channel (versus also cache-based side-channels lever-
aging interrupts), has been demonstrated only on crypto-
graphic libraries, and required manual program annotation
to achieve reasonable overheads [45].

4. ATTACK DETECTION THROUGH TIMED

EXECUTION
As discussed in Sec. 3, a significant vantage point that a

privileged attacker has is the ability to frequently preempt
the shielded execution in enclaves, resulting in unexpected
enclave exits—i.e., Asynchronous Enclave Exits (AEXs) in
SGX—that the untrusted OS can observe. While not ev-
ery AEX is necessarily indicative of an attack, a higher fre-
quency of AEXs than normal, particularly at certain points
in an execution, can serve as a signature for such an at-
tack. Therefore, we aim to detect AEXs as an indicator of
side-channel attacks.

This seemingly simple task in practice is very challenging:
Shielded execution is not notified by CPU hardware when
AEXs occur. Because the shielded program cannot rely on
the untrusted OS for such information, there is no reliable
source that allows the shielded program to detect AEXs.
Therefore, the only viable solution is to detect them itself.
Déjà Vu does so by implementing a trustworthy reference
clock to measure the execution time of its application thread
in the enclave and compare the execution time of its steps
with their normal execution times to detect whether enclave
exits occurred and, if so, during which steps they occurred.

We design a mechanism that embeds time measurement
into the program’s execution—the shielded program will pe-
riodically check a reliable clock to measure its own execution
time with fine granularity. If during any period of time, the

10

execution time deviates from the expectation by a threshold,
the shielded application program obtains evidence of AEXs
during its execution. To make the scheme secure, the time
measurement code must be executed inside the enclave. For
the moment, assume that there is a trustworthy clock inside
the enclave for time measurement. (As we will discuss in
the next section, such an assumption is not easy to satisfy.)

Déjà Vu statically instruments enclave programs at com-
pile time to incorporate time-measurement code that is used
to detect variations in the execution times of execution paths
in the instrumented enclave programs due to both page
faults and interrupts (and, indeed, any AEXs). The key in-
sight of Déjà Vu is that by injecting the time-measurement
code at the basic-block level in the control-flow graph (CFG),
the final compiled binary code, when run inside the enclave,
will repeatedly reference a real-time clock during its execu-
tion along paths of the CFG.

The execution time of each path in the CFG is then mea-
sured to detect unexpected enclave exits; i.e., if the execu-
tion time is too long, then it is quite likely that an AEX
occurred during the execution. Although the design seems
straightforward, in practice it is challenging to make the
method both effective and efficient. In the rest of this sec-
tion, we gradually explain the technical difficulties we faced
and incrementally describe our solutions to these challenges.

4.1 Sources of Time
To measure the execution time with fine granularity, Déjà

Vu constructs a reference clock that satisfies the following
requirements:

• The clock provides an interface to a monotonically non-
decreasing counter.

• The counter value of the clock cannot be read or altered
by the untrusted OS.

• The clock cannot be silently stopped by the untrusted
OS without being noticed; referencing a clock that has
been stopped will return a failure indicator.

As we will show in Sec. 5, such a reference clock cannot
be achieved easily inside enclaves. We will elaborate on our
design and implementation shortly. For the sake of discus-
sion in this section, we simply assume the existence of such
a reference clock.

4.2 Selective Basic Block Instrumentation
Instrumenting all basic blocks for time measurements may

induce high performance overhead. So, Déjà Vu only selec-
tively instruments a subset of all basic blocks. Specifically,
Déjà Vu instruments only two types of basic blocks:

• multi-sinks: A multi-sink is a basic block with indegree
larger than 1 in the CFG, or that is an entry block or
exit block.

• multi-sink predecessors: A multi-sink predecessor is a ba-
sic block that has an edge to a multi-sink in the CFG.

By definition, a basic block can be both a multi-sink and
a multi-sink predecessor. Déjà Vu instruments multi-sinks
with the time measurement logic; specifically, the clock is
referenced to get the current value of the clock counter, and
the time increment since the last time measurement (i.e., the
last time a multi-sink was visited in the CFG) is computed
by subtracting the last clock reading from the current clock
reading. A multi-sink predecessor is not instrumented to
measure time (unless it is also a multi-sink), but instead each

is instrumented to record the fact that it was just traversed,
by logging its basic-block identifier for that purpose.

Let an execution pathlet between two multi-sinks in a CFG
be a path of basic blocks between the two multi-sinks that
does not contain another multi-sink. Note that there is a
one-to-one correspondence between each multi-sink prede-
cessor in the CFG and the execution pathlet that traverses
it and reaches its successor. This is due to the fact that
only two basic blocks on an execution pathlet have inde-
grees larger than 1. As such, in the instrumentation of a
multi-sink, it suffices to only check the multi-sink predeces-
sor last traversed to determine which pathlet was just fol-
lowed. Therefore, a multi-sink can use the identifier of this
predecessor to look up the threshold to which to compare
the time taken to traverse this pathlet to detect an AEX
during its execution.

We illustrate these basic blocks in Fig. 1. In this figure,
four types of basic blocks are shown: basic block 1 and 6 are
multi-sinks, basic block 3 and 4 are multi-sink predecessors,
and basic block 5 is both a multi-sink and a multi-sink pre-
decessor. Basic block 2 is not instrumented. Four execution
pathlets are shown in the figure: two pathlets from basic
block 1 to 5, one from 1 to 6, and one from 5 to 6. The two
pathlets between block 1 and 5 can be distinguished at basic
block 5 by checking the predecessor.

Figure 1: Examples of multi-sinks, multi-sink predecessors
and execution pathlets.

4.3 Detecting AEXs
To detect AEXs at runtime, Déjà Vu first trains a classi-

fier offline. The classifier is trained using measured execution
times (using the reference clock of Sec. 5) of each execution
pathlet, each labeled according to whether AEXs were taken
during the execution of that pathlet or not. Provided that
these times are easily separable by a threshold (and we will
show that they are), the classifier will apply that threshold
to each execution time of an execution pathlet to determine
whether an AEX was taken during its execution.

As the execution time is measured per pathlet, training
of the threshold-based classifier is independent of the input.
This is because indirect control flow transfers (e.g., loops) do
not exist on any pathlet. The execution time without AEXs
is only dependent on the set of instructions on the pathlet
and the runtime interaction with CPU caches. In practice,
we find the variation of execution time due to cache misses
and hits is negligible compared to the time consumed by an
AEX. When the training data is not sufficient to cover all
execution pathlets in the CFG, which is a limitation of any
dynamic training scheme, a default threshold is used for the
baseline classifier. The default threshold is conservatively
estimated by the minimum time it needs to take for one

11

AEX. We will detail our implementation of the detection
mechanisms in Sec. 6.

4.4 Responding to AEX Detections
Given the wide variety of applications, it is unlikely that

there is a single best policy for responding to AEX detections
across all of them. However, in the context of specific ap-
plications, some effective response policies are evident. For
example, in the page-fault attack of Shinde et al. [45] against
libgcrypt, the attacker leveraged page faults to determine
the path taken through the ec_mul routine; since the path
taken is determined by an exponent bit, determining the
path determines the exponent bit (i.e., the signing key bit).
Under normal operation, a high rate of AEXs during a mod-
ular exponentiation routine would be very unlikely. As such,
even only a couple of detections of AEXs during the execu-
tion of this routine would already be indicative of an attack
occurring. In response, the application could simply halt
the exponentiation to protect the key, or even change its
cryptographic key. However, our goal here is not to provide
response policies for many different applications, but rather
to provide the underlying capability to reliably detect AEXs
during the execution of an application thread in an enclave.

5. CREATING A REFERENCE CLOCK
As discussed in Sec. 4, the central innovation in Déjà Vu

is in how it constructs a reference clock with which enclave
logic can measure execution of pathlets of the application
thread in the enclave, in order to determine whether the ap-
plication thread incurs page faults. While numerous facili-
ties exist on a computer platform to support measuring exe-
cution time, unfortunately none of them work in our threat
model:

• Operating system clocks: Operating systems provide fine-
grained software clocks, such as clock_gettime() and
gettimeofday(), but as they are all maintained by the
untrusted OS kernel, none of them can be trusted to pro-
vide faithful measurement of the passage of time.

• Hardware clocks and timers: Fine-grained hardware time
stamp counters can be accessed from userspace through
the rdtsc instruction. However, this instruction can be
emulated by the operating system so that the returned
value is controlled by the untrusted OS [2]. In addition,
the current SGX implementation, SGX v1.0, does not
support running rdtsc instructions inside enclaves. Sim-
ilarly, APIC timers and performance counters may also
provide fine-grained time measurement by delivering in-
terrupts at specific time intervals. However, they can be
controlled by the malicious OS.

• Remote clocks: The enclave could communicate through
a secure channel (e.g., over TLS/SSL) to a remote timing
facility. However, since the IP stack is still maintained
by the untrusted OS, requests to remote clocks can be
arbitrarily delayed, and without a local clock reference,
the enclave program has no way to validate whether the
returned value from the remote clock is recent.

As discussed in Sec. 1, we therefore implement our refer-
ence clock using a separate thread in the SGX enclave, i.e.,
in which progress of the application thread is measured by
progress of the reference-clock thread. We first refine our
goals for our clock implementation in Sec. 5.1 and then de-
scribe its design in Sec. 5.2–5.4.

5.1 Design Goals
Denote the value of our reference clock at real time t by

C(t). Our goal is to implement a clock that behaves as
follows for any t1 ≥ t0:

⌊

fmin × (t1−t0)

v

⌋

≤C(t1)−C(t0)≤

⌊

fmax × (t1−t0)

v

⌋

(1)

Here, v is a parameter to our algorithm that is the num-
ber of CPU cycles that defines a “clock tick”. fmin and
fmax are the minimum and maximum CPU core frequen-
cies (GHz), respectively, to which the untrusted OS can set
the core running the reference-clock thread. fmin and fmax

can be obtained from processor specifications. The fact that
the untrusted OS can manipulate the frequency of the CPU
core on which the reference-clock thread runs, accounted for
by the inclusion of fmin and fmax in (1), means that the
untrusted OS has some latitude to manipulate our clock to
its advantage. As we will show on our test platform, how-
ever, for intervals [t0, t1] that are characteristic of how we
use the clock, this latitude is still inadequate for the attacker
to avoid the enclave detecting a page fault incurred by the
application thread during [t0, t1].

One exceptional case in which our clock will not meet
condition (1) is if the untrusted OS interrupts the reference
clock thread in [t0, t1]. Fortunately, it suffices for our pur-
poses to ensure condition (1) if the reference-clock thread
is not interrupted during [t0, t1] and, if it is interrupted, to
detect that interruption with high probability and set a flag
indicating the interruption.

5.2 Intel TSX
To detect the interruption of the reference-clock thread by

the untrusted OS, Déjà Vu needs to leverage hardware con-
tracts that even system software cannot break. Our choice
for such a hardware contract is hardware transactional mem-
ory, specifically Intel TSX.

Intel TSX implements extensions to support atomic oper-
ation of critical regions of software. Once a program enters a
critical region enclosed within a hardware transaction, mod-
ifications to data read by the critical region or fetching of
data modified within the critical region will cause the trans-
action to abort, after which the memory will roll back to
a state before entering the transaction. A feature that is
particularly of interest to the design of Déjà Vu is that a
transaction will abort if it is interrupted by the operating
system. This abort is enforced in hardware; even the most
privileged system software cannot avoid it [1]. Therefore, by
enclosing the execution of the reference-clock thread inside
a transaction, Déjà Vu can guarantee that interruption of
the thread will not go undetected: If the malicious OS at-
tempts to preempt the reference-clock thread, either by de-
livering hardware interrupts or by generating a system-level
exception, the interrupted transaction will abort immedi-
ately, which will be detected by the reference-clock thread
(by it following a fallback execution path).

5.3 Detailed Design
Our reference-clock thread continuously updates an en-

clave variable timer that represents the current clock time;
the application thread consults this timer to get the current
clock time C(t) when needed. Because timer is protected
by SGX in the enclave, the untrusted OS cannot read or

12

alter it, and so its value cannot be directly manipulated by
the untrusted OS.

One subtlety in this design is that because the timer will
be frequently read by the application thread, it cannot be
included in the write-set of a hardware transaction; oth-
erwise the transaction will abort whenever timer is read.
Therefore, timer can be updated only outside transactions,
implying that detecting interruption of the reference-clock
thread will be (only) probabilistic. Moreover, there is a ten-
sion between the frequency with which the reference-clock
thread updates timer and the probability of it detecting
its interruption: On the one hand, updating the counter
frequently implies a lower ability to detect an interruption,
since the update requires executing outside the protection of
hardware transactions. On the other hand, executing within
a hardware transaction longer increases the likelihood of de-
tecting an interruption, but prevents updating timer fre-
quently, meaning its granularity will suffer.

To balance this tension, we randomize the number of cy-
cles that the reference-clock thread executes within a trans-
action prior to updating timer; see Fig. 2. More specifically,
the reference-clock thread runs in an endless loop: it first ob-
tains a pseudo-random number from the hardware by issu-
ing rdrand instruction at the beginning of each loop, keeps
its least significant bits and adds one (line 10), yielding a
pseudo-random value rand ∈ [1, N], where N is a power of
2. In the example shown in Fig. 2, N is 8. At the end of each
loop, the reference-clock thread increments timer by rand.
The thread executes an inner loop of v cycles in duration
to make sure the execution of each outer loop is rand × v

cycles. To leverage the desired property of hardware transac-
tional memory, the reference-clock thread encloses the inner
loop inside a transaction (lines 7-14), which guarantees that
the execution of the inner loop cannot be disrupted with-
out being detected. Otherwise, a counter is incremented to
indicate the interruption (line 16).

One consequence of this randomization is that this clock
implementation can lag by up to N ticks; i.e., the left-hand
inequality in (1) must be weakened to

⌊

fmin × (t1−t0)

v

⌋

−N ≤ C(t1)− C(t0)

However, the probability of a substantial lag is small, as-
suming rand is uniformly distributed in [1, N], i.e.,

P

(

C(t1)−C(t0)+ x <

⌊

fmin × (t1−t0)

v

⌋)

≤ P (rand > x)

= 1−
x

N

5.4 Side-Channel Inferences on Clock Refer-
ences

Because timer cannot be written inside the transaction of
lines 7–14 of Fig. 2, the untrusted OS could induce a page
fault on the page containing timer to detect whenever timer
is accessed. In this way, the untrusted OS could measure the
real time between accesses to timer and use them to infer
what pathlets the application thread in the enclave executes.

To address this threat, Déjà Vu accesses a variable in
the same virtual page as timer within the transaction (in

1 unsigned int timer; // global variable
2 unsigned int interrupted; // global variable

3 void timer_thread()
4 {

5 unsigned int rand;
6 while (1) {
7 if (_xbegin () == _XBEGIN_STARTED) {

8 __asm volatile ("rdrand %0\n\t"
9 :"=r"(rand));

10 rand = (rand & 0x7) + 1;
11 for(int i = 0; i < rand; i++) {

12 // tasks comprising v cycles
13 }
14 _xend ();

15 } else {
16 interrupted += 1;

17 continue ;
18 }
19 timer += rand

20 }
21 }

Figure 2: Code snippet for the reference-clock thread.

Figure 3: System architecture of Déjà Vu. Blocks in gray
are untrusted, which include the untrusted components of
the processes and the entire OS kernel.

line 12).2 In this way, if the untrusted OS induces a page
fault when that page is accessed (e.g., in an effort to per-
form the timing attack described above), then it aborts the
transaction with high probability, causing the interruption
to be detected.

6. IMPLEMENTATION
The runtime architecture of Déjà Vu is illustrated in

Fig. 3. The application logic that runs inside the SGX en-
clave is contained inside one or more application threads,
which are accompanied by the reference-clock thread within
the same enclave. The threads are bound to dedicated CPU
cores by the untrusted OS. Failure of the untrusted OS to
do so will cause these threads to suffer more interruptions,
which will be detected by Déjà Vu and might result in
the shielded execution terminating itself (if its policy is to
do so). If the application itself is multi-threaded, only one
reference-clock per enclave is needed to protect all threads.

We implementedDéjà Vu by extending the LLVM frame-
work (v3.5.2). The workflow of Déjà Vu is illustrated
in Fig. 4. Specifically, a Déjà Vu library implements the
reference-clock thread and the code specifying the security
policy that reacts to AEX detections. The Déjà Vu library
code is compiled using the gcc compilerto an object file. The

2
To confirm that another variable at virtual address vaddr lies

in the same virtual page as timer, it suffices to check that
⌊vaddr/pageSize⌋ = ⌊&timer/pageSize⌋, where pageSize is the
smallest page size allowed by the processor in bytes.

13

Figure 4: Workflow of Déjà Vu.

application source code is compiled using Clang3, a front-end
to LLVM that compiles C code into LLVM intermediate rep-
resentation (IR). Our static analysis tool is implemented as
an LLVM IR optimization pass that instruments selected
basic blocks according to our criteria. The instrumentation
conducted by our extended Clang is different in the training

mode and detection mode, which will be explained further in
Sec. 6.1 and Sec. 6.2. The output of the training mode con-
tains classifier thresholds, which will be used in monitoring
the shielded execution in the detection mode.

6.1 Training Mode
Our extended Clang in the training mode instruments ev-

ery multi-sink by adding instructions to read the reference
clock, so that the execution time of each execution pathlet
will be measured by the training executables. It also instru-
ments every multi-sink predecessor to record the basic-block
identifier, which is used to indicate which pathlet is taken.
The training executables are given a set of input values and
are run for multiple times. During the execution, the in-
strumented code records the time measurement of running
every pathlet in a large array and prints the records into
files at the very end of the training. The training file is
post-processed to obtain the mean and standard deviation
of the time measurement of each pathlet.

To measure the time spent in AEXs, we conducted the
following experiments. Recall that the time spent in an AEX
includes the time for an enclave exit and a context switch
into the kernel. So, to conservatively estimate the minimum
time needed by a malicious AEX, we measured only the time
for enclave exits, which can be approximated by the time
spent in empty OCalls. As such, we tried to measure the
time (in the v-cycle time units of our own reference clock,
where v is about 30) taken in an empty OCall by calling it
1000 times. On our test platform, the average time taken
was 78.14 time units and the standard deviation was 3.27
time units.

The threshold of the execution time measurement of each
execution pathlet is determined as the mean of the execution
time of the underlying pathlet minus its standard deviation
plus the mean of the time for one AEX minus its standard
deviation. The resulting configuration file is then used by
the extended Clang in the detection mode.

6.2 Detection Mode
The instrumented basic blocks in the detection mode work

in the following way. At each multi-sink predecessor, the
basic-block identifier is recorded to keep track of the current
execution pathlet. At each multi-sink, a reference to the
clock is made. If the clock was interrupted in the time since
the last clock reference, a call to the Déjà Vu library is
made to indicate a clock-AEX alarm. If not, then the current

3
http://clang.llvm.org/

Figure 5: Integrating Déjà Vu with Linux SGX SDK.

clock reading is compared with the previous clock reading to
calculate the difference, which is the time spent to execute
the just-finished pathlet. If the execution time is larger than
the instrumented threshold, then a call is made to the Déjà

Vu library to indicate an app-AEX alarm. Both clock-AEX
alarms and app-AEX alarms can be used by the security
policy engine to make informed decisions about whether a
privileged side-channel attack is ongoing.

6.3 Integration with SGX Software Develop-
ment Environments

The design of Déjà Vu is independent of the software
development environment. For demonstration purposes, we
have integrated Déjà Vu with the official Linux SGX SDK
released by Intel4. The workflow for integrating Déjà Vu

with the official Linux SGX SDK is shown in Fig. 5. Fol-
lowing the standard use case of Intel SGX described by the
SDK, the source code of the project to be protected by Déjà

Vu is separated into two components: an application com-
ponent and an enclave component. The separation is en-
abled by the SGX SDK with an edl file, which is manually
created by the developer and specifies which files and func-
tions are to be compiled into which components. With the
help of an SDK-provided tool called edger8r, two header
files are generated that help the two components to interact
with each other: Enclave_u.h and Enclave_t.h. The stan-
dard SDK compiles the application source code using the
gcc compiler. Déjà Vu leaves this part unchanged. To en-
able program analysis and instrumentation, we replace the
compiler for the enclave source code (i.e., gcc) with Clang.
The compiled binary is the SGX library that will be loaded
into the enclave.

7. EVALUATION

7.1 Experiment Setup
Our experiments were conducted on a Dell Latitude E5470

laptop, which is equipped with an Intel CORE i5-6440HQ
Skylake processor that supports both SGX and TSX ex-
tensions. The processor had four cores, whose maximum
frequency is 2.6GHz. The laptop was equipped with 8GB
DRAM. The size of EPC was the default, 128MB. The oper-
ating system was a Ubuntu 14.04 with Linux kernel version
3.19.0. To perform security and performance evaluations,
we ported the nbench performance benchmark [4] to sup-
port SGX and applied Déjà Vu to compile them with the
SGX Linux SDK.

7.2 Security Evaluation
We consider three types of attacks against Déjà Vu in

our empirical security evaluation: (1) stopping the clock by

4
https://github.com/01org/linux-sgx

14

4 8 16 32

N

0.00

0.05

0.10

0.15
P

ro
b
a
b
ili

ty

0.107

0.036
0.021

0.012

0.077

0.044 0.042 0.038

Theoretical

Empirical

Figure 6: Probability of clock-thread AEX not causing a
TSX abort. Grey bars show theoretical probability esti-
mates and white bars represent the empirical probabilities.

interrupting the execution of the reference-clock thread; (2)
tracing the shielded execution by triggering page faults; and
(3) slowing the reference-clock thread by scaling down the
operating frequency of the underlying CPU core.

7.2.1 Detecting Reference-Clock AEXs

We designed the reference clock so that the probability
for the adversary to preempt the clock without inducing a
TSX abort is only about 5%, by tuning the value of v, the
fixed CPU cycles taken in the inner loop, and N , the upper-
bound of the variable rand. That is, the reference-clock
thread will spend about 5% of the time outside the hardware
transactions, to execute the instruction timer+=rand.

We validate that our theoretical estimates are consistent
with empirical results in the following experiments. In each
of the experiments we report in Fig. 6, we instrumented the
OS kernel to trigger interrupts to preempt the reference-
clock thread, inducing roughly 5000 AEXs on that thread.
The reference-clock thread was implemented with a fixed
unit execution time, v ≈ 30 CPU cycles, but we varied the
value of N in each of the experiments. The gray bars in
Fig. 6 represent our theoretical estimates of the probabil-
ity that an AEX will not induce a TSX abort on the clock
thread (calculated for the choice of v and N in the exper-
iment), and the white bars represent the empirical proba-
bilities that an AEX did not induce a TSX abort in the
experiments. The empirical probability was calculated by
comparing the time stamps of transaction aborts (read in
an OCall from the transaction abort handler) and AEX
time stamps read in the Asynchronous Exit handler Pointer
(AEP), which is a piece of code that is called when an AEX
resumes, right before re-entering the enclave. If the transac-
tion abort took place shortly (less than 5000 cycles) after the
AEX, then it is considered to be caused by the AEX. The
reported empirical probability is the ratio of the number of
AEXs that did not cause an abort (i.e., were not followed
by a TSX abort in the next 5000 cycles) to the total number
of AEXs.

By comparing these values, we can see that our theoreti-
cal estimation is close to the empirical probability when N

is small (e.g., 4 or 8), but when N increases, the theoretical
value of the vulnerable window in which the reference-clock
thread can incur an AEX without causing a TSX abort drops
faster than the empirical results suggest. We conjecture that
the result has to do with our inability to accurately mea-
sure the execution time of one single statement outside the
transaction due to the CPU’s speculative execution, which
is critical in our calculation of the theoretical probability.
Nevertheless, the experiments suggest the theoretical values

numeric
sort

strin
g sort

bitfi
eld

fp
emulatio

n
fourie

r

assignment
idea

huffm
an

neural net

lu
decompositio

n
0.70

0.75

0.80

0.85

0.90

0.95

1.00
Precision

Recall

Figure 7: Precision and recall of clock-AEX alarms during
ten nbench applications.

are close to empirical ones, especially when N = 8, which is
the value we used in the rest of our experiments.

A TSX abort does not itself raise a clock-AEX alarm;
rather, the application thread raises a clock-AEX alarm upon
noticing that at least one TSX abort occurred on the clock
thread since the application thread last consulted the clock.
Moreover, a TSX abort can occur for other reasons than an
AEX occurring on the clock thread. As such, a clock-AEX
alarm can reflect zero, one, or multiple AEXs on the clock
thread. To measure the accuracy of clock-AEX alarms, then,
we adapt definitions of precision and recall to our case as
follows. First, we estimate a clock-AEX alarm to be accu-

rate if at least one AEX of the clock thread preceded it by
at most δ clock cycles, where δ is empirically determined as
the longest execution time of any execution pathlet in the
CFG of the program (and so is the maximum duration be-
tween clock accesses by the application thread for measuring
the time to execute a pathlet). The precision of clock-AEX
alarms is then the ratio of the number of accurate clock-
AEX alarms to the total number of clock-AEX alarms. The
recall of clock-AEX alarms is the ratio of the number of
clock-thread AEXs that were followed within δ cycles by a
clock-AEX alarm (i.e., that were accurately detected) to the
total number of clock-thread AEXs.

The precision and recall of clock-AEX alarms are shown
in Fig. 7, when the shielded program (running on the appli-
cation thread) was one of ten nbench applications [4]. Each
bar represents an average calculated over ten runs. In each
run, about 5000 AEXs were triggered on the clock thread.
As can be seen there, the recall of clock-AEX alarms was
often close to 1.0 and is above 0.95 in all cases. Precision
was at least 0.83 in all cases but one (where it was 0.78).
The somewhat lower precision of clock-AEX alarms reflects
the fact that the clock thread’s TSX transactions can abort
for reasons other than AEXs, mainly due to effects of other
applications running alongside it. It remains future work to
mitigate these effects.

7.2.2 Detecting AEXs on the Application Thread

To show the shielded program cannot be preempted with-
out being detected, we conducted the following experiments.
The OS started the shielded application in the enclave and
then periodically injected an interrupt to induce AEXs on
the application thread. After each interrupt, the OS waited
for long enough time to make sure the shielded program
consulted its reference clock at least once (so that it had an
opportunity to detect the AEX) before triggering the next
interrupt.

Similarly to clock-AEX alarms, we measure the accuracy
of app-AEX alarms using precision and recall. We estimate

15

numeric
sort

strin
g sort

bitfi
eld

fp
emulatio

n
fourie

r

assignment
idea

huffm
an

neural net

lu
decompositio

n
0.90

0.95

1.00
Precision

Recall

Figure 8: Precision and recall of app-AEX alarms during
ten nbench applications.

an app-AEX alarm to be accurate if it was raised within δ

cycles following an AEX of the application thread. Then,
the app-AEX alarm precision was computed as the ratio of
the accurate app-AEX alarms to the total number of app-
AEX alarms. To define app-AEX alarm recall, we estimate
an application-thread AEX to have been undetectable if it
was followed within δ cycles by a clock-AEX alarm (and no
intervening app-AEX alarm), as the clock-AEX alarm sug-
gests that the clock thread was interrupted while the path-
let interrupted by the AEX was executing. The app-AEX
alarm recall was computed as the ratio of the accurately
detected application AEXs (i.e., followed by an app-AEX
alarm within δ cycles) to the total number of detectable ap-
plication AEXs.

In Fig. 8, we show the precision and recall of app-AEX
alarms for ten programs in the nbench benchmark suite.
The reported results are averages of ten runs. In each run,
about 5000 to 6000 AEXs were triggered on the application
thread. We can see from the figure that both precision and
recall were at least 0.95 for all applications.

7.2.3 Manipulated CPU Speeds

A more advanced adversary may slow down the reference-
clock CPU core to its minimum frequency fmin and speed up
the application core to its maximum frequency fmax, which
on our platform are fmin = 0.8GHz and fmax = 2.6GHz,
respectively. In this way, the attacker will minimize the
likelihood that its application-thread AEXs result in app-
AEX alarms. We made these adjustments by editing a file
in procfs5 and then re-ran the experiments in Sec. 7.2.2
again under this new setup. The results are shown in Fig. 9,
which suggest modest changes in app-AEX alarm precision
and recall. Even despite this manipulation, precision and
recall remained above 0.96 and 0.91, respectively. As such,
we conclude that the adversary manipulating core speeds is
not a significant threat to Déjà Vu.

7.3 Performance Evaluation
We evaluated the performance overhead of Déjà Vu by

measuring the normalized execution time of each of the ten
nbench applications. Specifically, we compiled the nbench

suite with LLVM and Clang. The baseline execution time
was measured with the benchmark compiled without any in-
strumentation, and another version was compiled with Déjà

Vu’s instrumentation code for AEX detection. As both ver-
sions were compiled with LLVM, the increase in the runtime
of the instrumented version over that of the baseline version,
divided by the runtime of the baseline version, is the (rel-
ative) overhead of the instrumentation itself. The average

5
/sys/devices/system/cpu/cpu0/cpufreq/scaling setspeed

numeric
sort

strin
g sort

bitfi
eld

fp
emulatio

n
fourie

r

assignment
idea

huffm
an

neural net

lu
decompositio

n
0.80

0.85

0.90

0.95

1.00
Precision

Recall

Figure 9: Precision and recall of app-AEX alarms during ten
nbench applications when the application core and reference-
clock core were set to run at their maximum and minimum
frequencies, respectively.

numeric
sort

strin
g sort

bitfi
eld

fp
emulatio

n
fourie

r

assignment
idea

huffm
an

neural net

lu
decompositio

n
0.00

0.01

0.02

0.03

0.04

0.05

O
v
e
rh

e
a
d

Figure 10: Performance overhead of Déjà Vu on nbench

applications.

performance overheads are shown in Fig. 10. We can see
from the figure that the runtime overhead was less than 5%
for these applications. The instrumentation increases the
size of the enclave binary by roughly 64%, mostly due to the
Déjà Vu helper function library.

8. DISCUSSION

Core utilization. As discussed in Sec. 6, our design asks
that the OS pin enclave threads (both the application threads
and our reference-clock thread) to dedicated cores, so as to
minimize the frequency of interrupts (and so AEXs) incurred
by the enclave threads. This does not increase our trust of
the OS; the OS’ failure to abide by this contract will in-
crease the interrupts (and so AEXs) detected by Déjà Vu,
resulting in self-termination of the enclave (if that is what
the security policy specifies). A malicious OS could accom-
plish the same ends by simply never scheduling the enclave
threads in the first place.

Despite not requiring trust of the OS, this contract does
come with costs, specifically interfering with the normal
scheduling policy of the OS. Coupled with the fact that
our design adds an additional thread to the enclave (the
reference-clock thread), Déjà Vu does somewhat interfere
with optimally making use of all available cores on the com-
puter. That said, this contract also provides distinct ben-
efits. In particular, this contract isolates the enclave work-
load from the non-enclave workload. So, for example, a busy
web server running on (and incurring frequent interrupts on)
other cores will not interfere with Déjà Vu.

Training coverage. Déjà Vu requires dynamic training
of the execution time of each execution pathlet in the CFG
of the programs. Although the execution times of execution
pathlets are not very sensitive to inputs, coverage of training
data is a limitation of our training-based detection method.
However, as discussed in Sec. 6, a default timing threshold

16

is provided for each pathlet that is not covered in the train-
ing data. This threshold is basically the minimum time for
an AEX, which is typically much larger than the execution
time of the pathlets. Therefore, this threshold should lead
to few superfluous app-AEX alarms but should still ensure
detection of AEXs on the application thread, causing the de-
tection system to work reasonable well even when the train-
ing data does not completely cover every execution pathlet.
Nevertheless, future work will explore approaches to maxi-
mize the training coverage by exploiting techniques such as
concolic execution [17].

Security policy upon AEX detection. Similar to any
intrusion detector, Déjà Vu requires the users to specify
a policy that dictates how AEXs detections should be ad-
dressed. We anticipate two general categories of applications
that may need different treatment. The first category is ap-
plications that contain short secrets, such as cryptographic
keys, that may be leaked through privileged side channels
with relatively few side-channel observations. For these ap-
plications, it would be warranted to set AEX-detection thresh-
olds more conservatively to increase app-AEX alarm preci-
sion, and to take even a low number of AEX detections
as a serious indication of a threat (e.g., stopping the com-
putation or changing keys). The second category includes
applications like libjpeg and freetype that contain much
larger secrets that might eventually leak over the course of
a longer execution [53]. These applications may be toler-
ant of more AEXs, and so leaving the thresholds as, say,
set in Sec. 6 and alerting a remote administrator in case of
excessive AEXs might suffice.

Especially for the first category above, however, it is im-
portant to note that some AEXs will occur even when no at-
tacks are underway, owing to the normal interrupts and page
faults that occur on computers (even if the enclave threads
are pinned to their own cores). So, a zero-tolerance policy is
unlikely to be viable, even in conjunction with a very high
precision. For this reason, particularly fragile applications
might need to incorporate additional defenses (e.g., frequent,
proactive key updates) to compensate for the fundamentally
ambiguous situation (with respect to side-channel attacks)
that the enclave is in.

Other side-channel threats. While Déjà Vu is an effec-
tive defense against side-channel attacks that induce AEXs
(e.g., controlled-channel attacks, and side channels in per-
core caches), there remains the possibility of other side-
channel attacks against an enclave. For example, last-level
cache side-channel attacks [25, 33], which do not require the
attacker to preempt the victim to conduct, should be equally
potent against an enclave and, since existing system-level
defenses (e.g., [27, 61]) presume a trusted OS, these attacks
require additional research to address in this context (or
hardware support, e.g., [51, 26]).

9. CONCLUSION
In this paper we detailed the design and implementation

of Déjà Vu, a system for detecting privileged side-channel
attacks mounted by an untrusted OS on an SGX enclave.
Déjà Vu detects AEXs that could give rise to such attacks,
by timing each execution pathlet of the enclave application
and detecting when its execution timing suggests that it was
interrupted. The key challenge that Déjà Vu addresses is
the lack of any reliable time source accessible to the en-

clave to measure pathlet execution times. To fill this need,
Déjà Vu builds a novel reference clock leveraging hardware
transactional support now available on Intel platforms. This
transactional support allows us to construct a reference clock
that will incur a transaction abort with high probability
when the reference-clock thread is interrupted. Moreover,
when it is not interrupted, the reference clock can be used
to effectively delineate between when a pathlet suffered an
AEX and when it did not. Our evaluations showed Déjà Vu

reliably detects AEXs during pathlet executions. While the
best policy for reacting to detections is application-specific,
the detections supported by Déjà Vu are an important in-
gredient in defending SGX enclaves against privileged side-
channel attacks.

Acknowledgements. This research was supported in part
by NSF grants 1330599 and 1566444.

10. REFERENCES

[1] Intel 64 and IA-32 architectures software developer’s manual,
combined volumes:1,2A,2B,2C,3A,3B and 3C.
http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html. version 052,
retrieved on Dec 25, 2014.

[2] Intel 64 and IA-32 architectures software developer’s manual
volumes 3d: System programming guide, part 4. http://www.
intel.eu/content/www/eu/en/architecture-and-technology/
64-ia-32-architectures-software-developer-vol-3d-part-4-manual.
html. Order Number: 332831-059US, June 2016.

[3] Intel Software Guard Extensions programming reference.
https://software.intel.com/sites/default/files/managed/48/88/
329298-002.pdf. October 2014.

[4] nbench-byte benchmarks.
http://www.math.cmu.edu/˜florin/bench-32-64/nbench/.

[5] O. Aciiçmez. Yet another microarchitectural attack: exploiting
I-Cache. In 2007 ACM Workshop on Computer Security
Architecture, 2007.

[6] O. Aciiçmez, B. B. Brumley, and P. Grabher. New results on
instruction cache attacks. In 12th International Conference on
Cryptographic Hardware and Embedded Systems, 2010.

[7] A. Baumann, M. Peinado, and G. Hunt. Shielding applications
from an untrusted cloud with Haven. ACM Transactions on
Computer Systems, 33(3), Aug. 2015.

[8] S. Checkoway and H. Shacham. Iago attacks: Why the system
call API is a bad untrusted RPC interface. In 18th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2013.

[9] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, and
W. Mao. Tamper-resistant execution in an untrusted operating
system using a virtual machine monitor. Technical report,
Fudan University, Aug. 2007.

[10] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Bohen, J. Dwoskin, and D. R. K. Ports.
Overshadow: A virtualization-based approach to retrofitting
protection in commodity operating systmes. In 13th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 2–13.

[11] Y. Cheng, X. Ding, and R. H. Deng. AppShield: Protecting
applications against untrusted operating system. Technical
report, Singapore Management University, October 2013.

[12] J. V. Cleemput, B. Coppens, and B. De Sutter. Compiler
mitigations for time attacks on modern x86 processors. ACM
Trans. Archit. Code Optim., 8(4), Jan. 2012.

[13] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz.
Thwarting cache side-channel attacks through dynamic
software diversity. In 2015 Network and Distributed System
Security (NDSS) Symposium, 2015.

[14] J. Criswell, N. Dautenhahn, and V. Adve. Virtual ghost:
Protecting applications from hostile operating systems. In 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2014.

[15] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and
D. Ponomarev. Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks. ACM Trans. Archit.
Code Optim., 8(4), Jan. 2012.

17

[16] G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke.
Cacheaudit: A tool for the static analysis of cache side
channels. In 22nd USENIX Security Symposium, 2013.

[17] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed
automated random testing. SIGPLAN Not., 40(6):213–223,
June 2005.

[18] D. Gruss, R. Spreitzer, and S. Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In
24th USENIX Security Symposium, 2015.

[19] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang. Protecting
private keys against memory disclosure attacks using hardware
transactional memory. In 36th IEEE Symposium on Security
and Privacy, 2015.

[20] D. Gullasch, E. Bangerter, and S. Krenn. Cache games –
bringing access-based cache attacks on AES to practice. In
32nd IEEE Symposium on Security and Privacy, 2011.

[21] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. SIGARCH
Comput. Archit. News, 21(2):289–300, May 1993.

[22] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. InkTag: Secure applications on an untrusted
operating system. In 18th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2013.

[23] R. Hund, C. Willems, and T. Holz. Practical timing side
channel attacks against kernel space ASLR. In 34th IEEE
Symposium on Security and Privacy, 2013.

[24] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar. Seriously, get off my cloud! Cross-VM RSA key
recovery in a public cloud. Cryptology ePrint Archive, Report
2015/898, 2015. http://eprint.iacr.org/.

[25] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A shared cache
attack that works across cores and defies VM sandboxing—and
its application to AES. In 36th IEEE Symposium on Security
and Privacy, 2015.

[26] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and
S. Kaxiras. Non deterministic caches: A simple and effective
defense against side channel attacks. Design Automation for
Embedded Systems, 12(3), 2008.

[27] T. Kim, M. Peinado, and G. Mainar-Ruiz. STEALTHMEM:
system-level protection against cache-based side channel attacks
in the cloud. In 21st USENIX Security Symposium, 2012.

[28] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis and transformation. In International
Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization. IEEE Computer
Society, 2004.

[29] P. Li, D. Gao, and M. K. Reiter. Mitigating access-driven
timing channels in clouds using StopWatch. In 43rd
IEEE/IFIP International Conference on Dependable Systems
and Networks, 2013.

[30] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and
W. Drewry. Minibox: A two-way sandbox for x86 native code.
In 2014 USENIX Annual Technical Conference, 2014.

[31] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an
untrusted operating system on trusted hardware. In 19th ACM
Symposium on Operating Systems Principles. ACM, 2003.

[32] F. Liu and R. B. Lee. Random fill cache architecture. In 47th
Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 2014.

[33] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level
cache side-channel attacks are practical. In 36th IEEE
Symposium on Security and Privacy, 2015.

[34] Y. Liu, Y. Xia, H. Guan, B. Zang, and H. Chen. Concurrent
and consistent virtual machine introspection with hardware
transactional memory. In 20th International Symposium on
High Performance Computer Architecture, 2014.

[35] H. Mantel and A. Starostin. Transforming Out Timing Leaks,
More or Less. Springer International Publishing, 2015.

[36] R. Martin, J. Demme, and S. Sethumadhavan. Timewarp:
rethinking timekeeping and performance monitoring
mechanisms to mitigate side-channel attacks. In 39th Annual
International Symposium on Computer Architecture, 2012.

[37] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for TCB
minimization. In 3rd ACM European Conference on Computer
Systems, 2008.

[38] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. The
program counter security model: Automatic detection and
removal of control-flow side channel attacks. In 8th

International Conference on Information Security and
Cryptology. Springer-Verlag, 2006.

[39] M. Neve and J.-P. Seifert. Advances on access-driven cache
attacks on AES. In 13th International Conference on Selected
Areas in Cryptography, 2007.

[40] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis. The spy in the sandbox: Practical cache attacks in
javascript and their implications. In 22nd ACM Conference on
Computer and Communications Security. ACM, 2015.

[41] C. Percival. Cache missing for fun and profit. In 2005
BSDCan, 2005.

[42] D. R. K. Ports and T. Garfinkel. Towards application security
on untrusted operating systems. In 3rd Workshop on Hot
Topics in Security, 2008.

[43] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In 24th USENIX
Security Symposium, 2015.

[44] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX:
Eradicating controlled-channel attacks against enclave
programs. In ISOC Network and Distributed System Security
Symposium, 2017.

[45] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.
Preventing page faults from telling your secrets. In 11th ACM
Asia Conference on Computer and Communications Security,
2016.

[46] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Making
trust between applications and operating systems configurable.
In 7th USENIX Symposium on Operating Systems Design and
Implementation, 2006.

[47] E. Tromer, D. A. Osvik, and A. Shamir. Efficient cache attacks
on AES, and countermeasures. J. Cryptol., 23(2):37–71, Jan.
2010.

[48] V. Varadarajan, T. Ristenpart, and M. Swift. Scheduler-based
defenses against cross-VM side-channels. In 23th USENIX
Security Symposium, 2014.

[49] B. C. Vattikonda, S. Das, and H. Shacham. Eliminating fine
grained timers in Xen. In 3rd ACM Workshop on Cloud
Computing Security, 2011.

[50] Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In 34th annual
international symposium on Computer architecture, 2007.

[51] Z. Wang and R. B. Lee. A novel cache architecture with
enhanced performance and security. In 41st IEEE/ACM
International Symposium on Microarchitecture, 2008.

[52] J. C. Wray. An analysis of covert timing channels. In IEEE
Symposium on Security and Privacy, 1991.

[53] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In
36th IEEE Symposium on Security and Privacy. IEEE, 2015.

[54] J. Yang and K. G. Shin. Using hypervisor to provide data
secrecy for user applications on a per-page basis. In 4th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE). ACM, 2008.

[55] Y. Yarom and K. E. Falkner. FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack. In 23rd
USENIX Security Symposium, 2014.

[56] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor:
Retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization. In 23rd ACM Symposium on
Operating Systems Principles. ACM, 2011.

[57] T. Zhang, Y. Zhang, and R. Lee. Cloudradar: A real-time
side-channel attack detection system in clouds. In 19th
International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2016.

[58] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM
side channels and their use to extract private keys. In ACM
Conference on Computer and Communications Security,
2012.

[59] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. In ACM
Conference on Computer and Communications Security,
2014.

[60] Y. Zhang and M. K. Reiter. Düppel: Retrofitting commodity
operating systems to mitigate cache side channels in the cloud.
In 20th ACM Conference on Computer and Communications
Security, 2013.

[61] Z. Zhou, M. K. Reiter, and Y. Zhang. A software approach to
defeating side channels in last-level caches. In 23rd ACM
Conference on Computer and Communications Security,
2016.

18

