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ABSTRACT 

We introduce a new definition of confidentiality. It is 
demonstrated that this new definition, called prerequisite 
confidentiality, is more effective than previous definitions. 

We have developed a modelling scheme that is based upon 
event systems in order to study prerequisite confidentiality. 
The structure of the event traces is captured by formal 
languages and grammars. This provides a convenient and 
mathematically well-founded means for dealing with 
component specifications. The externally visible behaviour 
of a component, including causal relationships between 
events, and possible nondeterminism, is successfully 
modelled using the approach. It is then possible to restrict 
the grammatical specification in such a way that the desired 
confidentiality property is satisfied. Since all of the 
grammars used in the specification technique fall into a 
particular class, we show that it is always possible to 
construct a recognizer that can be used to identify valid 
event sequences or determine whether an event sequence 
satisfies a desired property. 

1 INTRODUCTION 

When the first computer systems were designed and built, it 
was relatively easy to verify that the systems had all of the 
properties intended by their designers. One could merely 
exercise a system through manual testing. As the 
complexity of the systems increased, and as different types 
of systems were interconnected, a convincing 
demonstration that a system had certain properties became 
difficult. Researchers turned to a variety of formal 
modelling techniques to describe systems and the desired 
properties. These techniques were often based on 
mathematical proofs that were used to increase confidence 
that the system goals were met. 
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No modelling strategy can provide complete assurance that 
a real system behaves in a certain way. The act of 
modelling itself involves a variety of abstractions of the 
real system in order to create a workable model. It remains 
possible that an abstraction made for modelling purposes 
will conceal some detail that will allow for invalid 
operation when the modellcd system is implemented. The 
key is to show that the degree of abstraction chosen is 
appropriate and does not adversely affect the result of the 
exercise. 

The first step in developing a good modclling technique for 
computer systems is to create a representation that reflects 
how a system is “put together” from its basic components. 
The second step is to create a means of describing the way 
that these components communicate or otherwise interact 
with each other and the surrounding environment. 

In this paper, we introduce a new definition of 
confidentiality. It is demonstrated that this new definition, 
called prerequisite confidentiality, is more effective than 
previous definitions. 

We begin our description of prerequisite confidentiality by 
introducing a modelling scheme that is based upon event 
systems. The structure of the event traces is captured by 
formal languages and grammars. This provides a 
convenient and mathematically well-founded means for 
dealing with component specifications. The externally 
visible behaviour of a component, including causal 
relationships between events, and possible nondeterminism, 
is successfully modelled using the approach. It is then 
possible to restrict the grammatical specification in such a 
way hat the desired confidentiality property is satisfied. 
Since all of the grammars used in the specification 
technique fall into a particular class, we show that it is 
always possible to construct a recognizer that can be used 
to identify valid event sequences or determine whether an 
event sequence satisfies a desired property. 

Given such a representation, the notion of prerequisite 
confidentiality can easily be expressed and its 
composability properties investigated and proven. 
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The remainder of this section introduces event systems and 
the grammatical class that we will employ in our 
specification. Section 2 introduces the component 
specification method, and presents several sample 
components. Section 3 considers some de&ability issues. 
In Section 4, a general notion of properties is introduced. 
Section 5 then considers prerequisite confidentiality as an 
example of such a property. Section 6 compares 
prerequisite confidentiality with several existing 
approaches. Finally, Section 7 provides a summary and 
some conclusions. 

1.1 EVENT SYSTEMS 

One way of representing the behaviour of a system uses 
event systems. In this approach, the significant happenings 
in the modclled system are represented by a time-ordered 
sequence of events. The event system then describes the 
set of all valid event sequences. 

The modeller is free to choose those events that are of 
interest and ignore those that are not relevant to a particular 
analysis. What is considered “important** depends on the 
particular situation being analyzed. 

In addition, event systems allow for the representation of 
computer and other “real world” systems at a wide range of 
levels of detail. For example, events might map to the 
change of digital levels on IC pins, or to the execution of 
individual statements in a C program, or to the invocation 
of an entire program. The choice as to the appropriate level 
of detail depends on the goal of the particular modelling 
effort being undertaken. 

In such a representation, the absolute timing of a particular 
event is not important, but its timing relative to the 
occurrence of other events in the sequence is significant. 
This relativistic timing notion corresponds closely to the 
practical operation of most real computing systems. For 
example, a typical C program running on a multi-user 
system is usually guaranteed to execute its statements in a 
particular order’, but the absolute timing of the execution 
of each statement usually does not greatly concern the user. 
If one wishes to introduce the notion of absolute timing into 
the event trace formalism, this can generally be done by 
creating “clock-tick” events. 
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Another way of describing the relativistic timing of event 
traces relates to the possible “real” executions that such 
traces capture. An event trace places no constraints on the 
absolute timing of particular events. All executions with 
the same relative ordering of events are captured and 
represented by a single event sequence. Thus, when we 
consider the properties of an event sequence, we are really 
considering the properties of a whole class of executions. 
This is represented graphically in Figure 1. In this case, the 

lThis would not be the case with programs coded in a language 
that supports parallel execution. 

labelled circles represent different events, and their absolute 
timing displayed on the scale from left to right. The first 
three sequences have identical event trace representations, 
“A, B, C, B”, while the fourth sequence differs. 

4 b 

Time 
b 

Figure 1: Relativistic Timing of Event Traces 

One advantage of the event trace approach is that it 
describes a system based only upon the externally visible 
behaviour. As a result, it does not implicitly constrain the 
internal behaviour of the modelled system in the same way 
that other methods (such as state machines) sometimes do. 

There has been fairly extensive research in the area of event 
(or trace-based) systems. Many of these are based upon 
Hoare’s notion of Communicating Sequential Processes 
(CSP) [Hoa78]. In contrast with these approaches, we wish 
to develop a representation for event systems where the 
primary goal is that it must be possible to construct a 
recognizer (or parser) that can determine whether a given 
event sequence is valid. This will be accomplished through 
the use of formal languages and grammars. 

12 FORMAL LANGUAGES AND GRAMMARS 

Formal languages and grammars form the basis of our 
event-system model. This section will very briefly 
introduce some of the standard definitions and 
notation.[HU69,HU79] 

A grammar G is denoted by the tuple (VN, VT, P, S) . The 
symbols V,. VT, P, and S are, respectively, the 110n- 
terminal symbols, terminal symbols, productions, and start 
SpbOl. 

The union V, u VT is often denoted by V. Let V* denote 

the Kleene closure of V and V+ = V* \ {E). The set of 
productions P consists of expressions of the form a + j?, 

where a is a string in V+ and /I is a string in V*. 
Finally, S is always a symbol in V, . 

We now consider the language that a grammar 
G = (VN, VT, P, S) generates. We first need to define the 



Left Stack 

Figure 2: Two Stack Machine 

relations 2 and 2 between strings in V*. Specifically, if 

a + p is a production of P and y and 6 are any strings 

in V*, then* yaS2 YpS . We say that the production 

a + j.3 is applied to the string ya6 to obtain $36. Thus 
3 relates two strings exactly when the second is obtained 
G 

from the first by the applications of a single production. 

Suppose that a,.a2,...,a,,, are strings in V*, and 
a1~a2ra2*a3,...,am-l*a,. 

G G 
Then we say3 

a,5a,. 
G 

We say that for two strings a and p that 

a < /? if we can obtain /3 from a by application of some 
G 

number of productions in P. By convention, a G a for 

each string a. 

We define the language generated by G (denoted by 

L(G))tobe wlwisinVTandS+w That is, a string 

is in L(G) if and only if the string consists solely of 
terminals and can be derived from S. Two grammars G’ 
and G2 are equivalent if L(G’) = L(G’). 

*Say ya6 directly &rives @8 in grammar G. 
3say a, &rives a,,, in grammar G. 

Input 

1.3 TURNBULL’S PARSING 

In 1974, Tumbull proposed a new hierarchy of languages, 
defined in terms related to formal languages and their 
equivalent finite automata.[Tur74,TL79] The classes of 
grammars were defined according to the ease by which 
sentences generated by the grammars could be parsed. 
Instead of basing the classes in terms of the form of 
rewriting rules, the new classes were defined in terms of 
constraints on the form and structure of canonical 
derivations. 

To this end, Tumbull developed a new parser model called 
a deterministic two stack machine or D2SM, that is 
displayed in Figure 2. 

The finite control is always in one of several possible 
states. Initially, the input is pushed into the Right Stack 
(which acts as an output restricted queue) and the control is 
in its initial state. The Left Stack is initially empty. At 
each step in its operations, the two stack machine may 
perform one of the following operations: 

l Read - remove a symbol from the left end of the 
Right Stack, push that symbol into the Left Stack and 
change state. 

l Look ahead - change state after looking at a bounded 
number of symbols at the left end of the Right Stack. 

. Reduce - pop some symbols from the Left Stack, 
push some symbols into the left end of the Right Stack, 
and change state. The new symbols in the Right Stack 
have replaced the popped symbols and may be read or 
looked at in future steps. 
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. Accept - if the Left Stack is empty and the Right 
Stack contains the goal symbol, then accept the input. 

. Reject - if none of the above moves can be made, the 
reject the input as being erroneous. 

The D2SM model is an extension of the LR(L) 
model[Knu69] and has all of the standard properties of 
f%(k) parsers. Such parsers: 

1. halt on all inputs and accept exactly those strings 
that are generated by the grammar; 

2. use a parsing algorithm that is deterministic and 
requires no backtracking; 

3. perform a single left to right scan of the input; and, 

4. detect errors as soon as possible in the parse. 

Tumbull’s approach to subdividing the class of type-0 
grammars4 led to the development of the deterministic 
regular parsable (DRP) class. It was proven that DRP 
languages were a proper superset of LR(L) languages and 
suggested that DRP languages form a broad subset of 
type-0 languages. Tumbull proved that for any D2SM, a 
corresponding DRP grammar exists. He also demonstrated 
the converse. Tumbull then went on to describe a parser 
generator algorithm for DRP grammars, and showed that 
many of the techniques for handling LR(L) grammars were 
applicable to DRP grammars. 

2 COMPONENT REPRESENTATION 

This section will introduce our component representation. 
We will employ grammars that are members of Tumbull’s 
DRP class. The representational framework for 
components will be described fist, followed by a number 
of component examples. 

2.1 REPRESENTATIONAL FRAMEWORK 

The first step in developing our modelling methodology is 
to present a technique for representing the basic 
components of a system. These components are conceptual 
objects that might map directly to parts of a real system 
(like hardware or software components) or might be related 
to abstract requirements placed on the system. The chosen 
modelling technique should provide a mathematically 
tractable means for dealing with the complexity of an event 
system representation of components and systems. 

4Type-0 grammars sometimes referred to as semi-The, phrase 
sfrucfure, or unrestricted grammars. They are the largest family 
of grammars in the Chomsky hierarchy.[Cho56,Cho59] All 

productions are of the form 01+ p, where (II and p are 

arbitrary strings of grammar symbols, with Q # E 

We will use the term component for each representational 
element in our modelling methodology. Viewed from the 
external environment, a component has the ability to accept 
input events in several distinct streams, and to generate 
several distinct streams of output events. When 
components are interconnected, the outputs of one 
component may become the input of another. Unattached 
streams of inputs come from the environment, while 
unattached streams of outputs are sent to the environment. 

A component operates by accepting one or more input 
events. and possibly responding by generating one or more 
output events. Conceptually, input events to a component 
originate in the environment or from another component. 
Output events are generated by the component and sent 
somewhere else (either to another component or to the 
external environment). Each stream of input events will be 
called a component input, and each stream of output events 
will be called a component output. In modelling a 
particular system, the component inputs and outputs may 
not necessarily correspond to physical channels. The 
occurrence of certain input or output events might denote 
the completion of abstractly-defined operations or 
requirements. 

Each component in our representation will have an 
associated component grammar. Sentences in the language 
generated from the compnent grammar will be valid event 
sequences formed from a properly ordered succession of 
input and output events for the specified component. 

We will use the term complete transaction to describe a 
complete set of input events and the corresponding, 
causally related output events at a particular component. A 
partial transaction is one in which output events are 
pending, or in which only a partial set of inputs has been 
provided to a component. Our component grammars will 
generate sentences (i.e., valid event sequences) that are 
made up of zero or more complete transactions. We denote 
those grammatical productions that specify complete 
transactions as transaction productions. 

A component may be composed of a number of causally 
independent substructures referred to as blocks (see 
Figure 3). A block can be thought of as a sub-component 
that has been composed with another sub-component, with 
no connections between them. Each block receives input 
events and generates output events independently of other 
blocks within the component. The events that make up a 
complete transaction are specific to each block. In this 
sense, the activities of one block have no effect whatsoever 
on the activities of another block within the component. 

Although we consider the component to be the smallest, 
stand-alone element in our modelling methodology, it is 
necessary to maintain a component’s block structure in 
order to allow composition with other components. This is 
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. 

. . 

\ 

Output 
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\ 
V 

Component 

I 

Figure 3: A Component with Two Blocks 

described in [Nes93] when the composition procedure is G and the prerequisite relation, we fully describe the 
iUUOdUCd. component under the representation. 

In order to describe component properties, we must add 
some semantic information about the causal relationships 
between events to the component grammar. This 
information comes in the form of the binary prerequisite 
r&tion between input and output events. The relation is 
used to associate output events with the input events that 
caused them. 

In particular, if (c&p) E prereq, then it is possible that 

output event p was caused by the occurrence of input 
event a. We use the word “possible” because it may be 
the case that another input event could result in output 
event p, or that the occurrence of input event a might 

result in another output event (i.e., not p). There is a 
relationship between the prerequisite relation and the 
specification of transaction productions in the component 
grammar. If two events are related by the prerequisite 
relation, then there must exist a corresponding transaction 
production that couples them. 

We have developed a method for composing the 
specifications of two or more components. Given, for 
example, grammars G, and G,, prerequisite relations 
prereq, and prereq, , and an interconnection specification, 
we can easily generate the grammar for the composite 
system, G,, and the composite prerequisite relation 
prereq,. In Section 4, this ability will allow us to consider 
properties of components and to prove that those properties 
are maintained under composition. 

2.2 COMPONENT EXAMPLES 

This section will take the general representation framework 
described in Section 2.1 and instantiate it for a number of 
particular component examples. The examples are not 
exhaustive, but are presented to demonstrate the breadth of 
processing elements that can be represented under this 
framework. The grammars used in the specifications are 
simplified versions of those described in [Nes93], but do 
demonstrate the effectiveness of using grammars to 
represent component behaviour. 

We are concerned with what is possible because. when we 
consider properties in Section 4, it will be necessary to 
constrain input/output events wherever it is possible that a 
particular input event caused a particular output event. 

2.2.1 BASIC COMPONENT 

The decision as to what event pairs to place in the prereq 
relation is based upon the functional behaviour of the 
component being modelled. Several examples are 
presented in Section 2.2 to illustrate this process. 

Input Stream 

g Events 

The formal definition of the above specification method can 
be found in [Nes93]. The result is a grammar G that 
generates a language whose sentences are each valid event 
sequences for the component. By specifying the grammar 

Figure 4: Basic Component 
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The Basic Component represents one of the simplest 
elements available in the abstract representational structure. 
A single input event, a,, triggers its operation. After a 
possible processing delay, a corresponding output event, 
p,, is generated. This delay may be a function of the 
specific input event provided as input to the component. 
As a result, it is possible to queue input events in a Basic 
Component, while awaiting the occurrence of the 
corresponding output. Section 2.2.3 will provide an 
example demonstrating how such queuing can be limited if 
an input buffer size restriction exists. 

Because of its general nature, a Basic Component may 
easily be used to represent a wide variety of real processing 
elements. For example, an input event might represent the 
triggering of the start of a mathematical calculation, and an 
output event indicates that the operation had completed. 

A possible grammatical specification for the Basic 
Component is as follows: 5 

G= 

v, = 

VT = 

P= 

prereq = 

4J$,P,S) 

The component is defined to have a single input, a single 
output, and a single block. 

The productions generate sequences with zero or more 
complete transactions, in which input events (denoted by 
a,) are immediately followed by their corresponding 
output event (denoted by p,). The prerequisite relation 
reflects the dcpcndcnce of p, events on a, events. 

The following event sequences are examples of sentences 
in the language generated by the production set without the 
“delay” production ZY + YZ: 

& 
alPI 

Next we consider the impact of the delay production. 
Because of the possibility that the output event 

5We are using the standard notation for specifying elements of a 
formal grammar G, as described in [HU69]. 

corresponding to a particular input event may be delayed 
until after an arbitrary number of new input events have 
occurred, a special production is required. In effect, the 
(context-sensitive) delay production ZY + YZ allows 
output events to “percolate” past the following input events. 
This makes sequences like the following possible: 

The grammar with the delay production guarantees 
sentences in which the number of output events is always 
equal to the number of input events. With this restriction 
on the event sequences, we have removed the possibility of 
spontaneous events. Such events are generated by the 
component itself, without any stimulus from the external 
environment (via the input channel). Since a single input 
event always occurs before each single output event, 
spontaneous output events are not possible in this particular 
component. 

The prerequisite relation prereq = ((al,Pl)) indicates that 

event a, is a prerequisite for event PI. In other words, it is 
possible6 that the occurrence of an event al causes the 
occurrence of an event PI. As noted in Section 2.1, 
specifying the causal relationship between events in this 
way will become important when we wish to describe 
properties such as conlidentiality in Sections 4 and 5. 

2.2.2 SWITCH COMPONENT 

Given a single input event, the Switch Component 
generates a corresponding output event on either of two 
output lines. The choice as to which output event is 
generated is dependent on whether an even or an odd 
number of toggle events have occurred. 

Input Stream A Output Stream 
b * 

~q Events fl, Events 
Switch Component 

Toggle Stream B Output Stream 
b b 

a, Event6 B, Event6 

Figure 5: Switch Component 

The component has two input streams and two output 
streams. One input stream is made up of IX, events, the 
other is made up of a, events. Likewise, there are two 

output streams, with corresponding events p, and & . For 
convenience, we number the streams sequentially, and 
attach the stream number to the corresponding event 

%n this particular case, it is more than merely possible, it is 
guaranteed by description of the operation of the basic component. 
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terminal and non-terminal symbols. For example, a, and 
q are the terminal and non-terminal symbols for input 
stream 1. 

A possible specification for the Switch Component is as 
follows: 

The component begins in a state in which it repeatedly 
accepts a, input events and generates p, output events. If 
a a, toggle input event is received, the component moves 
into another state in which each a, input event causes a p2 
output event. If a ag toggle input event is received, the 
component moves into back into the first state, where the 
cycle begins again. 

The prerequisite relation prereq = ((a,,&),(al,p2)} 

specifies that an a, event can cause either a p, event or a 
& event (dcpcnding on the state of the component). 

2.2.3 LIMITED BUFFER 

All the previous examples have allowed the input events to 
a particular component to queue up indefinitely. This is not 
a realistic representation of many practical systems, since 
usually the number of possible pending operations is 
limited. In this section, we will consider the Basic 
Component from Section 2.2.1 that has been modified so 
that it has an input buffer of size ibs c =. This means that 
only ibs “unprocessed” input events are allowed to queue 
up at any given time, before the corresponding output 
events are generated. 

A possible specification for the Limited Buffer Component 
is as follows: 

G=(V,,V,,RS) 
v, ={~,~,,~,,T,,y,~z,~T,,y,,z,} 

b = {ad,} 

P= 

prereq = 

Here, we have defined a component that effectively has two 
separate states, each of which operates in an identical 
manner. The component has a single block. The 
productions are dcfmed so that up to ibs input-output event 
pairs may occur before the transition is made to the other 
State. 

The delay productions Z,y + <Z, and Z,Y, + Y,Z, allow 
outputs to be delayed, but only within the events of each 
state. Thus, an output event is never more than ibs steps 
away from the input event that caused it. It can be shown 
that as ibs grows large, the language generated by the 
limited buffer specification approaches that for the 
unlimited case described in Section 2.2.1. 

3 DECIDABILITY ISSUES 

An important consideration in the development of a 
grammatical representation is the decidability of a number 
of important issues. It is known that some classes of 
languages or grammars have most relevant issues 
decidable, such as the nature of the language that results 
from language union and intersection. Another useful 
attribute is the ability to construct a deterministic parser to 
verify the validity of some event sequence under 
consideration. Turnbull showed that these issues are 
decidable for his DRP grammars. Practical and efficient 
parsers can be constructed to recognize sentences in DRP 
languages. 

In [Nes93], we demonstrated that Tumbull’s D2SM was 
capable of recognizing sentences in the language gcncrated 
by an arbitrary component grammar G. 

Tumbull showed that most questions that are decidable for 
U(k) are also decidable for DRP. Thus, it is always 
possible to construct a practical recognizer that will be able 
to verify whether an event sequence is valid for the system 
being modellcd. 

This ability has important practical implications for the 
model. The construction of an automated specification and 
verification tool based on the model would require the 
ability to quickly and easily verify whether an event 
sequence was valid for a modelled system. By using 
grammars from the DRP class, developing an algorithm to 
do this is straightforward. 
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4 PROPERTIES 

In the most general sense, a property is a (desired) quality 
(of a system) that is relevant to the modelling exercise. In 
our case, a property places constraints on the way that a 
component operates. The property may only allow certain 
types of behaviours to occur. Using our representation, we 
shall umcentfate on the notion of a property as a restriction 
on the possible event sequences corresponding to a 
component. 

We extend our model by including a set of event labels L . 
Each event terminal and non-terminal symbol in a 
component grammar is labelled with an element of L. We 
indicate this label as a left-superscript on the event terminal 
or non-terminal symbol. For example, an event labelled 
“Secret” occurring on input stream 1 of a component would 
have terminal symbol Secreta, . In general, we allow 
events with different labels to occur on a single input or 
output stream. For example, the set of events allowed on 

inputstream i canbespecifiedas (‘a,lsEL}. 

Given an arbitrary component grammar, a property will 
restrict the possible combinations of labels that can occur in 
each transaction for the component. The restrictions will be 
expressed as relations whose domain is the set of labels. In 
turn, this will limit the possible label combinations that are 
possible in valid sentences of the component language. 

In general, we have a transaction with a number of input 
and output events. A component transaction property is 
expressed as a transitive relation between the labels 
associated with the input events and the labels associated 
with the output events that make up a particular complete 
transaction. Formally, the mathematical specification of a 
property, based on transitive relation p, for a component 
is: 

tfs,,s, E&WE u{~a,),yE U(“p,), 
ie[l.m] Alsl 

(w,y) E prereq * s,psz 

This specification implies that if an input event a is a 
prerequisite for an output event /3, then the labels s, and 
s, of events a and j3 must be such that s@,. If the 
above holds for a component specification, then we can 
conclude that the component in question satisfies the 
desired property. 

We have proven that all such component transaction 
properties are preserved under composition INes931. 

5 PREREQUISITE CONFIDENTIALITY 

In this section we introduce a new confidentiality definition 
that provides a number of significant improvements over 
previous definitions. The definition is based upon the 
grammatical component specification technique described 
in Section 2. and is an example of a component transaction 
property, as described in Section 4. 

One of the most-studied properties in the area of formal 
modelling of systems is confidentiality [GM82, GM84, 
Sut86, McC87, McC88, LinBl]. Originally termed 
(computer) security, confidentiality has now been classified 
as one of several ideas involved in an overall notion of 
computer security.[Par%,Hin93] Confidentiality ensures 
that information is accessed for observation only by those 
duly authorized to have such access. Attempts at 
unauthorized access must be detected and prevented. This 
simple definition has led to a variety of mathematical 
formulations of confidentiality, all with varying abilities to 
capture the behaviour of real systems. Many intuitively 
reasonable confidentiality properties are not preserved by 
implementation or by composition.[LBTS92] 

We will develop a notion of confidentiality that is based 
upon Sutherland’s deducibility[Sut86]. It will be shown 
that our new confidentiality definition provides a number of 
significant improvements over previous definitions. 

Informally, our definition of confidentiality, called 
prerequisite conjiienf ialily, is as follows: 

Given an execution sequence with events of 
varying confidentiality levels, knowledge of low 
level events in the sequence provides no 
information about when or if higher level events 
occur. 

We can easily express this contidentiality notion within the 
component framework by requiring that high-level input 
events to a component never result in lower level output 
events being generated. If an input event a is a 
prerequisite for output event p, then our knowledge that p 
has occurred might allow us to deduce that event a has 
(previously) occurred. Therefore, the confidentiality label 
attached to p must dominate the label of event a, in order 
to prevent our knowledge of p’s occurrence giving us 
information about higher-level events. In other words, if it 
is possible that the occurrence of an input event result in the 
occurrence of an output event, then the required 
relationship between confidentiality levels of the two 
events must hold. 

Consider a set of partially ordered confidentiality labels L, 
with the dominates relation Do. Then a component 
specification has the prerequisite confidentiality property if 
and only if 
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Input Stream 

‘la, Events Output Stream 
AND Component b 

Input Stream “P, Events 

‘b2 Events 

Figure 6: AND Component with Prerequisite Property 

This requires that the confidentiality level of the output 
events dominate the confidentiality level of any prerequisite 
input events. 

As an example, Figure 6 shows an AND Component, with 
the prerequisite confidentiality property imposed. Each of 
the input and output events has an attached confidentiality 
label 

Define the event label set L, = { TS, S, U) to correspond to 
confidentiality levels “Top Secret”, “Secret”, and 
“Unclassified”, with TS DC s DC U . The specification iS as 
follows: 

G=(V,,V,,P,S) 
V, =~S,T}uu{‘~,‘r,,‘~,} 

JG 
v, = u{J~,rJa*rJP,} 

Jh 

prereq = U(( “a,,“~,),(“n,,‘P,)} 

The prerequisite relation is defined so that the labels 
attached to output events always dominate those of the two 
input events that were prerequisites. The transaction 
production T+JY,‘2 Y2 “Z, is defined in an analogous 
manner. 

Prerequisite confidentiality, as defined in this section, 
provides a simple, intuitive notion of confidentiality. The 

definition is grounded in the relationship between particular 
groups of input and output events. By enforcing the 
confidentiality constraint at the place where the causal 
relationships between events is most visible, we greatly 
simplify the understanding and application of the property. 
In addition, the grammatical expression of prerequisite 
confidentiality allows us to easily construct a mechanical 
recognizer for event sequences that satisfy the property. 
This ability is not available with other models or 
confidentiality definitions. 

Since the dominates operator used in the definition of 
prerequisite confidentiality is clearly a transitive relation, 
prerequisite confidentiality is an example of a component 
transaction property. Therefore, prerequisite confidentiality 
is preserved under composition. 

6 COMPARISON WITH OTHER DEFINITIONS 

In this section we will compare prerequisire confidentiality 
to several previous definitions of confidentiality. 

6.1 SUTHERLAND’S DEDUCIBILITY 

In 1986, David Sutherland took a different approach lo 

solving the security modelling problem.[Sut86] He made 
the claim that his model was “a generalization of the 
Goguen-Meseguer Model.” The basis of the model is a 
standard state machine representation. Each distinct 
execution of the system being modelled is an element of the 
set of possible worlds. A piece of information about the 
system is represented by an information function whose 
domain is the set of possible worlds. For example, one 
information function might represent all of the information 
that is available for observation by a particular user. 

Sutherland then defines inference in terms of these 
concepts: 

Given a set of possible worlds R and two 
[information] functions J and fi with domain 
R, we say that information flows from f; to f2 if 
and only if there exists some possible world 0 
and some element z in the range of fi such mat 
z is achieved by f2 [i.e., f2 = z ] in some possible 
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world, but in every possible world w’ such that 

fiW)=f,(~),fz(~‘)~z. 

In other words, information flows from fi to f, if knowing 
the value of f, rules out (or eliminates from consideration) 
even a single possible value of f, . 

Using these definitions, he formalized the notion of 
security. The binary relation fegal_ to _ get z Ix Z (where 
Z is the set of information functions) defines those entities 
that are entitled to obtain certain pieces of information, as 
required by the security policy. The security requirement 
was then stated as follows: 

For all f, and f2 in I, if information flows from 

fi to fi then legal-to-get(f,,f,). 

Sutherland then instantiated the model using a state 
machine framework as its basis. One of the key 
information functions used is view(l), that, given a possible 
world, returns the subsequence of the execution sequence 
consisting of those inputs (to the state machine) whose 
security levels are I I. Conversely, the hidden- from(r) 
function returns the subsequence of inputs whose levels arc 
not I 1. Security is then specified by making it illegal for 
information to flow from hidden _ from(l) to view(l) for 
any 1. This essentially requires that every possible 
observation must be compatible with every conceivable 
secret. This prevents the observer from deducing the secret 
based on his or her observations. 

Deducibility is often thought to be excessively optimistic. 
If a high-level input is reproduced exactly as a low-level 
output, but with a, say, 1 in lo9 chance that the output is 
not an accurate copy of the input, the system is deemed lo 
be secure. 

Prerequisite confidentiality improves upon that proposed by 
Sutherland by more realistically describing 
nondeterministic b-ehaviour. If it is possible for an input 
event to be a prerequisite for an output event, then 
prerequisite confidentiality requires that the desired event 
label relationship hold. Thus, contidcntiality violations, no 
matter how unlikely, are made visible by the model. 

6.2 MCCULLOUGH’S HOOK-UP SECURITY AND 
RESTRICTIVENESS 

The first significant work in the area of security 
composition was done by Daryl McCullough 
in 1987.lMcC871 

McCullough’s definition of hook-up security is based upon 
execution traces. Given a trace 7, modify it by adding or 
deleting some high-level inputs to result in a sequence cr , 
which is not necessarily a valid trace. It may be possible to 

construct a valid trace 0” from cr by adding or deleting 
high-level outputs after the last input in, or immediately 
following, the modified input sequence. With this, hook-up 
security can then be defined as: 

A system is hook-up secure if, for every 7 and for 
every cr that can be formed from it, at least one 
7” exists. 

Intuitively, this requires that no high-level input can have 
an effect on low-level events and that the “fixing” of high- 
level outputs must wait until after any immediately 
following inputs. 

The following theorem is then presented: 

If a system is hook-up secure, then it is 
deducibility secure, and it has the non-interference 
property. If systems A and B are both hook-up 
secure, then any composite system formed by 
identifying outputs of A with inputs of B with 
the same security level, and vice-versa, is hook-up 
secure. 

The validity of this result has been questioned in the 
literature.KBL+88] In a later paper McCullough redefined 
his property as reslrictiveness, and improved its abilities to 
handle nondeterministic systems.[McC88] 

It is not clear how one might describe hook-up security 
using the grammatical method, since the definition is not 
based upon a relationship between causally related input 
and output events, as is the case with prerequisite 
confidentiality. In fact, it may be impossible to construct 
an appropriate recognizer that determines whether an event 
system satisfies the hook-up security property. 

6.3 SECURITY AND MACHINE COMPOSITION 

In 1988, Johnson and Thayer presented a new security 
property that is composable, but which is demonstrably 
weaker (less restrictive) than McCullough’s hook-up 
security.[JT88] Event traces are used as the basis for 
Johnson and Thayer’s model. Informally, a perturbation of 
a trace is a sequence formed by inserting, modifying, or 
deleting high-level inputs in the trace. A correction of a 
sequence is a trace obtained by inserting, modifying, or 
deleting high-level non-inputs (i.e., outputs or internal 
events) in the sequence. A system is correclable if every 
perturbation has a correction that is a valid trace. In 
general, correctability is not prescrvcd by composition. 

They then introduce a restricted form of correctability, 
denoted n -fonvurd correcfubility, that is a composable 
property. The additional restrictions are as follows: 

. It must be possible to correct every perturbation by 
modifying the sequence only after the perturbed part (if 
at all) to form a valid trace. 
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. If the perturbation happens to be immediately followed 
by n or fewer low-level inputs, it must be possible to 
delay any correction until after those inputs (and form 
a valid trace). 

As in the case of hook-up security, it seems unlikely that an 
appropriate recognizer could be constructed to determine 
whether an event system satisfies the required n-@ward 
correctability property. 

6.4 LIN’S BEHAVIORAL SECURITY 

In 1991, Ping Lin proposed a new security property, 
behavioral security, that is a form of 
noninterference.[Ling 1 I A system algebra, based upon 
many-sorted algebras, was introduced to allow a 
representation of the input/output behaviour of systems and 
the effects of composition. The security property was then 
expressed within the system algebra to prevent the 
disclosure of both high-level inputs and outputs to low- 
level observers. The low-level behaviour of the system had 
to remain the same, regardless of whether high-level 
activity was present or not. It was proven that behavioral 
security was composable. 

Our event system explication of prerequisite confidentiality 
is analogous to the algebraic definition of behavioral 
security. Prerequisite confidentiality requires that high- 
level input events never be prerequisites for low-level 
output events. Thus, if high-level input activity is removed, 
the low-level activity remains unchanged. 

The connection between prcrcquisite confidentiality and 
behavioral security is based upon the fact that both are 
simply-expressed notions of input/output causality that are 
preserved under composition. Further work would need to 
be done to determine whether a mechanical algorithm exists 
for recognizing components/event sequences that have the 
behavioral security property. 

7 SUMMARY AND CONCLUSIONS 

This paper began by introducing the notion of event 
systems that describe all possible valid event sequences for 
a component being modelled. It was then proposed that 
formal grammars be used to specify the structure of the 
valid event sequences of modelled components. The 
overall behaviour of the component is represented by a 
component grammar G and prerequisite relation prereq . 
Valid event sequences for a component correspond to 
sentences in the language generated from G. 

A good representational technique should allow the 
modelling of a wide range of practical situations. Through 
the general nature of our technique, it should be clear that 
we can easily model virtually any component that reacts to 
input events by generating output events. Most real 
systems can be represented in this way. 

This modelling methodology was then applied to a new 
definition of confidentiality, called prerequisite 
confidentiality. By comparison with several existing 
definitions, it was demonstrated that this definition is 
superior. It provides a simple, intuitive notion of 
confidentiality that is based upon causally-related events. 
Because it is based upon a grammatical specification, it is 
always possible to construct a recognizer that will identify 
those event sequences that satisfy the property. 

This ability has important practical implications for the 
model. The construction of an automated specification and 
verification tool based on the model would require the 
ability to quickly and easily verify whether an event 
sequence was valid for a modelled system or if it satisfied 
prerequisite confidentiality. By using grammars from 
Turnbull’s DRP class, developing an algorithm to do this is 
straightforward. This is not the case with most other 
confidentiality definitions. 
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