
PREREQUISITE CONFIDENTIALITY

John P. Nestor and E. S. Lee

Computer Systems Research Institute
University of Toronto
6 King’s College Road

Toronto, Ontario
Canada M5S lA4

{nestor,stew)Bhub.utoronto.ca

ABSTRACT

We introduce a new definition of confidentiality. It is
demonstrated that this new definition, called prerequisite
confidentiality, is more effective than previous definitions.

We have developed a modelling scheme that is based upon
event systems in order to study prerequisite confidentiality.
The structure of the event traces is captured by formal
languages and grammars. This provides a convenient and
mathematically well-founded means for dealing with
component specifications. The externally visible behaviour
of a component, including causal relationships between
events, and possible nondeterminism, is successfully
modelled using the approach. It is then possible to restrict
the grammatical specification in such a way that the desired
confidentiality property is satisfied. Since all of the
grammars used in the specification technique fall into a
particular class, we show that it is always possible to
construct a recognizer that can be used to identify valid
event sequences or determine whether an event sequence
satisfies a desired property.

1 INTRODUCTION

When the first computer systems were designed and built, it
was relatively easy to verify that the systems had all of the
properties intended by their designers. One could merely
exercise a system through manual testing. As the
complexity of the systems increased, and as different types
of systems were interconnected, a convincing
demonstration that a system had certain properties became
difficult. Researchers turned to a variety of formal
modelling techniques to describe systems and the desired
properties. These techniques were often based on
mathematical proofs that were used to increase confidence
that the system goals were met.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or dis!ributed for
direct commercial advantage, the ACM copyright nptlc? a?d the
title of the publication and its date appear,. and notice IS given
that copying is by permission of the Assocl?tion of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CCS ‘94 1 l/94 Fairfax Va., USA
0 1994 ACM O-89791 -732-4/94/0011..$3.50

No modelling strategy can provide complete assurance that
a real system behaves in a certain way. The act of
modelling itself involves a variety of abstractions of the
real system in order to create a workable model. It remains
possible that an abstraction made for modelling purposes
will conceal some detail that will allow for invalid
operation when the modellcd system is implemented. The
key is to show that the degree of abstraction chosen is
appropriate and does not adversely affect the result of the
exercise.

The first step in developing a good modclling technique for
computer systems is to create a representation that reflects
how a system is “put together” from its basic components.
The second step is to create a means of describing the way
that these components communicate or otherwise interact
with each other and the surrounding environment.

In this paper, we introduce a new definition of
confidentiality. It is demonstrated that this new definition,
called prerequisite confidentiality, is more effective than
previous definitions.

We begin our description of prerequisite confidentiality by
introducing a modelling scheme that is based upon event
systems. The structure of the event traces is captured by
formal languages and grammars. This provides a
convenient and mathematically well-founded means for
dealing with component specifications. The externally
visible behaviour of a component, including causal
relationships between events, and possible nondeterminism,
is successfully modelled using the approach. It is then
possible to restrict the grammatical specification in such a
way hat the desired confidentiality property is satisfied.
Since all of the grammars used in the specification
technique fall into a particular class, we show that it is
always possible to construct a recognizer that can be used
to identify valid event sequences or determine whether an
event sequence satisfies a desired property.

Given such a representation, the notion of prerequisite
confidentiality can easily be expressed and its
composability properties investigated and proven.

282

The remainder of this section introduces event systems and
the grammatical class that we will employ in our
specification. Section 2 introduces the component
specification method, and presents several sample
components. Section 3 considers some de&ability issues.
In Section 4, a general notion of properties is introduced.
Section 5 then considers prerequisite confidentiality as an
example of such a property. Section 6 compares
prerequisite confidentiality with several existing
approaches. Finally, Section 7 provides a summary and
some conclusions.

1.1 EVENT SYSTEMS

One way of representing the behaviour of a system uses
event systems. In this approach, the significant happenings
in the modclled system are represented by a time-ordered
sequence of events. The event system then describes the
set of all valid event sequences.

The modeller is free to choose those events that are of
interest and ignore those that are not relevant to a particular
analysis. What is considered “important** depends on the
particular situation being analyzed.

In addition, event systems allow for the representation of
computer and other “real world” systems at a wide range of
levels of detail. For example, events might map to the
change of digital levels on IC pins, or to the execution of
individual statements in a C program, or to the invocation
of an entire program. The choice as to the appropriate level
of detail depends on the goal of the particular modelling
effort being undertaken.

In such a representation, the absolute timing of a particular
event is not important, but its timing relative to the
occurrence of other events in the sequence is significant.
This relativistic timing notion corresponds closely to the
practical operation of most real computing systems. For
example, a typical C program running on a multi-user
system is usually guaranteed to execute its statements in a
particular order’, but the absolute timing of the execution
of each statement usually does not greatly concern the user.
If one wishes to introduce the notion of absolute timing into
the event trace formalism, this can generally be done by
creating “clock-tick” events.

283

Another way of describing the relativistic timing of event
traces relates to the possible “real” executions that such
traces capture. An event trace places no constraints on the
absolute timing of particular events. All executions with
the same relative ordering of events are captured and
represented by a single event sequence. Thus, when we
consider the properties of an event sequence, we are really
considering the properties of a whole class of executions.
This is represented graphically in Figure 1. In this case, the

lThis would not be the case with programs coded in a language
that supports parallel execution.

labelled circles represent different events, and their absolute
timing displayed on the scale from left to right. The first
three sequences have identical event trace representations,
“A, B, C, B”, while the fourth sequence differs.

4 b

Time
b

Figure 1: Relativistic Timing of Event Traces

One advantage of the event trace approach is that it
describes a system based only upon the externally visible
behaviour. As a result, it does not implicitly constrain the
internal behaviour of the modelled system in the same way
that other methods (such as state machines) sometimes do.

There has been fairly extensive research in the area of event
(or trace-based) systems. Many of these are based upon
Hoare’s notion of Communicating Sequential Processes
(CSP) [Hoa78]. In contrast with these approaches, we wish
to develop a representation for event systems where the
primary goal is that it must be possible to construct a
recognizer (or parser) that can determine whether a given
event sequence is valid. This will be accomplished through
the use of formal languages and grammars.

12 FORMAL LANGUAGES AND GRAMMARS

Formal languages and grammars form the basis of our
event-system model. This section will very briefly
introduce some of the standard definitions and
notation.[HU69,HU79]

A grammar G is denoted by the tuple (VN, VT, P, S) . The
symbols V,. VT, P, and S are, respectively, the 110n-
terminal symbols, terminal symbols, productions, and start
SpbOl.

The union V, u VT is often denoted by V. Let V* denote

the Kleene closure of V and V+ = V* \ {E). The set of
productions P consists of expressions of the form a + j?,

where a is a string in V+ and /I is a string in V*.
Finally, S is always a symbol in V, .

We now consider the language that a grammar
G = (VN, VT, P, S) generates. We first need to define the

Left Stack

Figure 2: Two Stack Machine

relations 2 and 2 between strings in V*. Specifically, if

a + p is a production of P and y and 6 are any strings

in V*, then* yaS2 YpS . We say that the production

a + j.3 is applied to the string ya6 to obtain $36. Thus
3 relates two strings exactly when the second is obtained
G

from the first by the applications of a single production.

Suppose that a,.a2,...,a,,, are strings in V*, and
a1~a2ra2*a3,...,am-l*a,.

G G
Then we say3

a,5a,.
G

We say that for two strings a and p that

a < /? if we can obtain /3 from a by application of some
G

number of productions in P. By convention, a G a for

each string a.

We define the language generated by G (denoted by

L(G))tobe wlwisinVTandS+w That is, a string

is in L(G) if and only if the string consists solely of
terminals and can be derived from S. Two grammars G’
and G2 are equivalent if L(G’) = L(G’).

*Say ya6 directly &rives @8 in grammar G.
3say a, &rives a,,, in grammar G.

Input

1.3 TURNBULL’S PARSING

In 1974, Tumbull proposed a new hierarchy of languages,
defined in terms related to formal languages and their
equivalent finite automata.[Tur74,TL79] The classes of
grammars were defined according to the ease by which
sentences generated by the grammars could be parsed.
Instead of basing the classes in terms of the form of
rewriting rules, the new classes were defined in terms of
constraints on the form and structure of canonical
derivations.

To this end, Tumbull developed a new parser model called
a deterministic two stack machine or D2SM, that is
displayed in Figure 2.

The finite control is always in one of several possible
states. Initially, the input is pushed into the Right Stack
(which acts as an output restricted queue) and the control is
in its initial state. The Left Stack is initially empty. At
each step in its operations, the two stack machine may
perform one of the following operations:

l Read - remove a symbol from the left end of the
Right Stack, push that symbol into the Left Stack and
change state.

l Look ahead - change state after looking at a bounded
number of symbols at the left end of the Right Stack.

. Reduce - pop some symbols from the Left Stack,
push some symbols into the left end of the Right Stack,
and change state. The new symbols in the Right Stack
have replaced the popped symbols and may be read or
looked at in future steps.

284

. Accept - if the Left Stack is empty and the Right
Stack contains the goal symbol, then accept the input.

. Reject - if none of the above moves can be made, the
reject the input as being erroneous.

The D2SM model is an extension of the LR(L)
model[Knu69] and has all of the standard properties of
f%(k) parsers. Such parsers:

1. halt on all inputs and accept exactly those strings
that are generated by the grammar;

2. use a parsing algorithm that is deterministic and
requires no backtracking;

3. perform a single left to right scan of the input; and,

4. detect errors as soon as possible in the parse.

Tumbull’s approach to subdividing the class of type-0
grammars4 led to the development of the deterministic
regular parsable (DRP) class. It was proven that DRP
languages were a proper superset of LR(L) languages and
suggested that DRP languages form a broad subset of
type-0 languages. Tumbull proved that for any D2SM, a
corresponding DRP grammar exists. He also demonstrated
the converse. Tumbull then went on to describe a parser
generator algorithm for DRP grammars, and showed that
many of the techniques for handling LR(L) grammars were
applicable to DRP grammars.

2 COMPONENT REPRESENTATION

This section will introduce our component representation.
We will employ grammars that are members of Tumbull’s
DRP class. The representational framework for
components will be described fist, followed by a number
of component examples.

2.1 REPRESENTATIONAL FRAMEWORK

The first step in developing our modelling methodology is
to present a technique for representing the basic
components of a system. These components are conceptual
objects that might map directly to parts of a real system
(like hardware or software components) or might be related
to abstract requirements placed on the system. The chosen
modelling technique should provide a mathematically
tractable means for dealing with the complexity of an event
system representation of components and systems.

4Type-0 grammars sometimes referred to as semi-The, phrase
sfrucfure, or unrestricted grammars. They are the largest family
of grammars in the Chomsky hierarchy.[Cho56,Cho59] All

productions are of the form 01+ p, where (II and p are

arbitrary strings of grammar symbols, with Q # E

We will use the term component for each representational
element in our modelling methodology. Viewed from the
external environment, a component has the ability to accept
input events in several distinct streams, and to generate
several distinct streams of output events. When
components are interconnected, the outputs of one
component may become the input of another. Unattached
streams of inputs come from the environment, while
unattached streams of outputs are sent to the environment.

A component operates by accepting one or more input
events. and possibly responding by generating one or more
output events. Conceptually, input events to a component
originate in the environment or from another component.
Output events are generated by the component and sent
somewhere else (either to another component or to the
external environment). Each stream of input events will be
called a component input, and each stream of output events
will be called a component output. In modelling a
particular system, the component inputs and outputs may
not necessarily correspond to physical channels. The
occurrence of certain input or output events might denote
the completion of abstractly-defined operations or
requirements.

Each component in our representation will have an
associated component grammar. Sentences in the language
generated from the compnent grammar will be valid event
sequences formed from a properly ordered succession of
input and output events for the specified component.

We will use the term complete transaction to describe a
complete set of input events and the corresponding,
causally related output events at a particular component. A
partial transaction is one in which output events are
pending, or in which only a partial set of inputs has been
provided to a component. Our component grammars will
generate sentences (i.e., valid event sequences) that are
made up of zero or more complete transactions. We denote
those grammatical productions that specify complete
transactions as transaction productions.

A component may be composed of a number of causally
independent substructures referred to as blocks (see
Figure 3). A block can be thought of as a sub-component
that has been composed with another sub-component, with
no connections between them. Each block receives input
events and generates output events independently of other
blocks within the component. The events that make up a
complete transaction are specific to each block. In this
sense, the activities of one block have no effect whatsoever
on the activities of another block within the component.

Although we consider the component to be the smallest,
stand-alone element in our modelling methodology, it is
necessary to maintain a component’s block structure in
order to allow composition with other components. This is

285

Component
Inputs

Input Event) Block 1 -

Stream 1 .

Input Event . ,
Stream 2

) Block 2 -
.

. .

\

Output
Stream 1

Output Event
Stream 2

Component
outputs

\
V

Component

I

Figure 3: A Component with Two Blocks

described in [Nes93] when the composition procedure is G and the prerequisite relation, we fully describe the
iUUOdUCd. component under the representation.

In order to describe component properties, we must add
some semantic information about the causal relationships
between events to the component grammar. This
information comes in the form of the binary prerequisite
r&tion between input and output events. The relation is
used to associate output events with the input events that
caused them.

In particular, if (c&p) E prereq, then it is possible that

output event p was caused by the occurrence of input
event a. We use the word “possible” because it may be
the case that another input event could result in output
event p, or that the occurrence of input event a might

result in another output event (i.e., not p). There is a
relationship between the prerequisite relation and the
specification of transaction productions in the component
grammar. If two events are related by the prerequisite
relation, then there must exist a corresponding transaction
production that couples them.

We have developed a method for composing the
specifications of two or more components. Given, for
example, grammars G, and G,, prerequisite relations
prereq, and prereq, , and an interconnection specification,
we can easily generate the grammar for the composite
system, G,, and the composite prerequisite relation
prereq,. In Section 4, this ability will allow us to consider
properties of components and to prove that those properties
are maintained under composition.

2.2 COMPONENT EXAMPLES

This section will take the general representation framework
described in Section 2.1 and instantiate it for a number of
particular component examples. The examples are not
exhaustive, but are presented to demonstrate the breadth of
processing elements that can be represented under this
framework. The grammars used in the specifications are
simplified versions of those described in [Nes93], but do
demonstrate the effectiveness of using grammars to
represent component behaviour.

We are concerned with what is possible because. when we
consider properties in Section 4, it will be necessary to
constrain input/output events wherever it is possible that a
particular input event caused a particular output event.

2.2.1 BASIC COMPONENT

The decision as to what event pairs to place in the prereq
relation is based upon the functional behaviour of the
component being modelled. Several examples are
presented in Section 2.2 to illustrate this process.

Input Stream

g Events

The formal definition of the above specification method can
be found in [Nes93]. The result is a grammar G that
generates a language whose sentences are each valid event
sequences for the component. By specifying the grammar

Figure 4: Basic Component

286

The Basic Component represents one of the simplest
elements available in the abstract representational structure.
A single input event, a,, triggers its operation. After a
possible processing delay, a corresponding output event,
p,, is generated. This delay may be a function of the
specific input event provided as input to the component.
As a result, it is possible to queue input events in a Basic
Component, while awaiting the occurrence of the
corresponding output. Section 2.2.3 will provide an
example demonstrating how such queuing can be limited if
an input buffer size restriction exists.

Because of its general nature, a Basic Component may
easily be used to represent a wide variety of real processing
elements. For example, an input event might represent the
triggering of the start of a mathematical calculation, and an
output event indicates that the operation had completed.

A possible grammatical specification for the Basic
Component is as follows: 5

G=

v, =

VT =

P=

prereq =

4J$,P,S)

The component is defined to have a single input, a single
output, and a single block.

The productions generate sequences with zero or more
complete transactions, in which input events (denoted by
a,) are immediately followed by their corresponding
output event (denoted by p,). The prerequisite relation
reflects the dcpcndcnce of p, events on a, events.

The following event sequences are examples of sentences
in the language generated by the production set without the
“delay” production ZY + YZ:

&
alPI

Next we consider the impact of the delay production.
Because of the possibility that the output event

5We are using the standard notation for specifying elements of a
formal grammar G, as described in [HU69].

corresponding to a particular input event may be delayed
until after an arbitrary number of new input events have
occurred, a special production is required. In effect, the
(context-sensitive) delay production ZY + YZ allows
output events to “percolate” past the following input events.
This makes sequences like the following possible:

The grammar with the delay production guarantees
sentences in which the number of output events is always
equal to the number of input events. With this restriction
on the event sequences, we have removed the possibility of
spontaneous events. Such events are generated by the
component itself, without any stimulus from the external
environment (via the input channel). Since a single input
event always occurs before each single output event,
spontaneous output events are not possible in this particular
component.

The prerequisite relation prereq = ((al,Pl)) indicates that

event a, is a prerequisite for event PI. In other words, it is
possible6 that the occurrence of an event al causes the
occurrence of an event PI. As noted in Section 2.1,
specifying the causal relationship between events in this
way will become important when we wish to describe
properties such as conlidentiality in Sections 4 and 5.

2.2.2 SWITCH COMPONENT

Given a single input event, the Switch Component
generates a corresponding output event on either of two
output lines. The choice as to which output event is
generated is dependent on whether an even or an odd
number of toggle events have occurred.

Input Stream A Output Stream
b *

~q Events fl, Events
Switch Component

Toggle Stream B Output Stream
b b

a, Event6 B, Event6

Figure 5: Switch Component

The component has two input streams and two output
streams. One input stream is made up of IX, events, the
other is made up of a, events. Likewise, there are two

output streams, with corresponding events p, and & . For
convenience, we number the streams sequentially, and
attach the stream number to the corresponding event

%n this particular case, it is more than merely possible, it is
guaranteed by description of the operation of the basic component.

287

terminal and non-terminal symbols. For example, a, and
q are the terminal and non-terminal symbols for input
stream 1.

A possible specification for the Switch Component is as
follows:

The component begins in a state in which it repeatedly
accepts a, input events and generates p, output events. If
a a, toggle input event is received, the component moves
into another state in which each a, input event causes a p2
output event. If a ag toggle input event is received, the
component moves into back into the first state, where the
cycle begins again.

The prerequisite relation prereq = ((a,,&),(al,p2)}

specifies that an a, event can cause either a p, event or a
& event (dcpcnding on the state of the component).

2.2.3 LIMITED BUFFER

All the previous examples have allowed the input events to
a particular component to queue up indefinitely. This is not
a realistic representation of many practical systems, since
usually the number of possible pending operations is
limited. In this section, we will consider the Basic
Component from Section 2.2.1 that has been modified so
that it has an input buffer of size ibs c =. This means that
only ibs “unprocessed” input events are allowed to queue
up at any given time, before the corresponding output
events are generated.

A possible specification for the Limited Buffer Component
is as follows:

G=(V,,V,,RS)
v, ={~,~,,~,,T,,y,~z,~T,,y,,z,}

b = {ad,}

P=

prereq =

Here, we have defined a component that effectively has two
separate states, each of which operates in an identical
manner. The component has a single block. The
productions are dcfmed so that up to ibs input-output event
pairs may occur before the transition is made to the other
State.

The delay productions Z,y + <Z, and Z,Y, + Y,Z, allow
outputs to be delayed, but only within the events of each
state. Thus, an output event is never more than ibs steps
away from the input event that caused it. It can be shown
that as ibs grows large, the language generated by the
limited buffer specification approaches that for the
unlimited case described in Section 2.2.1.

3 DECIDABILITY ISSUES

An important consideration in the development of a
grammatical representation is the decidability of a number
of important issues. It is known that some classes of
languages or grammars have most relevant issues
decidable, such as the nature of the language that results
from language union and intersection. Another useful
attribute is the ability to construct a deterministic parser to
verify the validity of some event sequence under
consideration. Turnbull showed that these issues are
decidable for his DRP grammars. Practical and efficient
parsers can be constructed to recognize sentences in DRP
languages.

In [Nes93], we demonstrated that Tumbull’s D2SM was
capable of recognizing sentences in the language gcncrated
by an arbitrary component grammar G.

Tumbull showed that most questions that are decidable for
U(k) are also decidable for DRP. Thus, it is always
possible to construct a practical recognizer that will be able
to verify whether an event sequence is valid for the system
being modellcd.

This ability has important practical implications for the
model. The construction of an automated specification and
verification tool based on the model would require the
ability to quickly and easily verify whether an event
sequence was valid for a modelled system. By using
grammars from the DRP class, developing an algorithm to
do this is straightforward.

288

4 PROPERTIES

In the most general sense, a property is a (desired) quality
(of a system) that is relevant to the modelling exercise. In
our case, a property places constraints on the way that a
component operates. The property may only allow certain
types of behaviours to occur. Using our representation, we
shall umcentfate on the notion of a property as a restriction
on the possible event sequences corresponding to a
component.

We extend our model by including a set of event labels L .
Each event terminal and non-terminal symbol in a
component grammar is labelled with an element of L. We
indicate this label as a left-superscript on the event terminal
or non-terminal symbol. For example, an event labelled
“Secret” occurring on input stream 1 of a component would
have terminal symbol Secreta, . In general, we allow
events with different labels to occur on a single input or
output stream. For example, the set of events allowed on

inputstream i canbespecifiedas (‘a,lsEL}.

Given an arbitrary component grammar, a property will
restrict the possible combinations of labels that can occur in
each transaction for the component. The restrictions will be
expressed as relations whose domain is the set of labels. In
turn, this will limit the possible label combinations that are
possible in valid sentences of the component language.

In general, we have a transaction with a number of input
and output events. A component transaction property is
expressed as a transitive relation between the labels
associated with the input events and the labels associated
with the output events that make up a particular complete
transaction. Formally, the mathematical specification of a
property, based on transitive relation p, for a component
is:

tfs,,s, E&WE u{~a,),yE U(“p,),
ie[l.m] Alsl

(w,y) E prereq * s,psz

This specification implies that if an input event a is a
prerequisite for an output event /3, then the labels s, and
s, of events a and j3 must be such that s@,. If the
above holds for a component specification, then we can
conclude that the component in question satisfies the
desired property.

We have proven that all such component transaction
properties are preserved under composition INes931.

5 PREREQUISITE CONFIDENTIALITY

In this section we introduce a new confidentiality definition
that provides a number of significant improvements over
previous definitions. The definition is based upon the
grammatical component specification technique described
in Section 2. and is an example of a component transaction
property, as described in Section 4.

One of the most-studied properties in the area of formal
modelling of systems is confidentiality [GM82, GM84,
Sut86, McC87, McC88, LinBl]. Originally termed
(computer) security, confidentiality has now been classified
as one of several ideas involved in an overall notion of
computer security.[Par%,Hin93] Confidentiality ensures
that information is accessed for observation only by those
duly authorized to have such access. Attempts at
unauthorized access must be detected and prevented. This
simple definition has led to a variety of mathematical
formulations of confidentiality, all with varying abilities to
capture the behaviour of real systems. Many intuitively
reasonable confidentiality properties are not preserved by
implementation or by composition.[LBTS92]

We will develop a notion of confidentiality that is based
upon Sutherland’s deducibility[Sut86]. It will be shown
that our new confidentiality definition provides a number of
significant improvements over previous definitions.

Informally, our definition of confidentiality, called
prerequisite conjiienf ialily, is as follows:

Given an execution sequence with events of
varying confidentiality levels, knowledge of low
level events in the sequence provides no
information about when or if higher level events
occur.

We can easily express this contidentiality notion within the
component framework by requiring that high-level input
events to a component never result in lower level output
events being generated. If an input event a is a
prerequisite for output event p, then our knowledge that p
has occurred might allow us to deduce that event a has
(previously) occurred. Therefore, the confidentiality label
attached to p must dominate the label of event a, in order
to prevent our knowledge of p’s occurrence giving us
information about higher-level events. In other words, if it
is possible that the occurrence of an input event result in the
occurrence of an output event, then the required
relationship between confidentiality levels of the two
events must hold.

Consider a set of partially ordered confidentiality labels L,
with the dominates relation Do. Then a component
specification has the prerequisite confidentiality property if
and only if

289

Input Stream

‘la, Events Output Stream
AND Component b

Input Stream “P, Events

‘b2 Events

Figure 6: AND Component with Prerequisite Property

This requires that the confidentiality level of the output
events dominate the confidentiality level of any prerequisite
input events.

As an example, Figure 6 shows an AND Component, with
the prerequisite confidentiality property imposed. Each of
the input and output events has an attached confidentiality
label

Define the event label set L, = { TS, S, U) to correspond to
confidentiality levels “Top Secret”, “Secret”, and
“Unclassified”, with TS DC s DC U . The specification iS as
follows:

G=(V,,V,,P,S)
V, =~S,T}uu{‘~,‘r,,‘~,}

JG
v, = u{J~,rJa*rJP,}

Jh

prereq = U((“a,,“~,),(“n,,‘P,)}

The prerequisite relation is defined so that the labels
attached to output events always dominate those of the two
input events that were prerequisites. The transaction
production T+JY,‘2 Y2 “Z, is defined in an analogous
manner.

Prerequisite confidentiality, as defined in this section,
provides a simple, intuitive notion of confidentiality. The

definition is grounded in the relationship between particular
groups of input and output events. By enforcing the
confidentiality constraint at the place where the causal
relationships between events is most visible, we greatly
simplify the understanding and application of the property.
In addition, the grammatical expression of prerequisite
confidentiality allows us to easily construct a mechanical
recognizer for event sequences that satisfy the property.
This ability is not available with other models or
confidentiality definitions.

Since the dominates operator used in the definition of
prerequisite confidentiality is clearly a transitive relation,
prerequisite confidentiality is an example of a component
transaction property. Therefore, prerequisite confidentiality
is preserved under composition.

6 COMPARISON WITH OTHER DEFINITIONS

In this section we will compare prerequisire confidentiality
to several previous definitions of confidentiality.

6.1 SUTHERLAND’S DEDUCIBILITY

In 1986, David Sutherland took a different approach lo

solving the security modelling problem.[Sut86] He made
the claim that his model was “a generalization of the
Goguen-Meseguer Model.” The basis of the model is a
standard state machine representation. Each distinct
execution of the system being modelled is an element of the
set of possible worlds. A piece of information about the
system is represented by an information function whose
domain is the set of possible worlds. For example, one
information function might represent all of the information
that is available for observation by a particular user.

Sutherland then defines inference in terms of these
concepts:

Given a set of possible worlds R and two
[information] functions J and fi with domain
R, we say that information flows from f; to f2 if
and only if there exists some possible world 0
and some element z in the range of fi such mat
z is achieved by f2 [i.e., f2 = z] in some possible

290

world, but in every possible world w’ such that

fiW)=f,(~),fz(~‘)~z.

In other words, information flows from fi to f, if knowing
the value of f, rules out (or eliminates from consideration)
even a single possible value of f, .

Using these definitions, he formalized the notion of
security. The binary relation fegal_ to _ get z Ix Z (where
Z is the set of information functions) defines those entities
that are entitled to obtain certain pieces of information, as
required by the security policy. The security requirement
was then stated as follows:

For all f, and f2 in I, if information flows from

fi to fi then legal-to-get(f,,f,).

Sutherland then instantiated the model using a state
machine framework as its basis. One of the key
information functions used is view(l), that, given a possible
world, returns the subsequence of the execution sequence
consisting of those inputs (to the state machine) whose
security levels are I I. Conversely, the hidden- from(r)
function returns the subsequence of inputs whose levels arc
not I 1. Security is then specified by making it illegal for
information to flow from hidden _ from(l) to view(l) for
any 1. This essentially requires that every possible
observation must be compatible with every conceivable
secret. This prevents the observer from deducing the secret
based on his or her observations.

Deducibility is often thought to be excessively optimistic.
If a high-level input is reproduced exactly as a low-level
output, but with a, say, 1 in lo9 chance that the output is
not an accurate copy of the input, the system is deemed lo
be secure.

Prerequisite confidentiality improves upon that proposed by
Sutherland by more realistically describing
nondeterministic b-ehaviour. If it is possible for an input
event to be a prerequisite for an output event, then
prerequisite confidentiality requires that the desired event
label relationship hold. Thus, contidcntiality violations, no
matter how unlikely, are made visible by the model.

6.2 MCCULLOUGH’S HOOK-UP SECURITY AND
RESTRICTIVENESS

The first significant work in the area of security
composition was done by Daryl McCullough
in 1987.lMcC871

McCullough’s definition of hook-up security is based upon
execution traces. Given a trace 7, modify it by adding or
deleting some high-level inputs to result in a sequence cr ,
which is not necessarily a valid trace. It may be possible to

construct a valid trace 0” from cr by adding or deleting
high-level outputs after the last input in, or immediately
following, the modified input sequence. With this, hook-up
security can then be defined as:

A system is hook-up secure if, for every 7 and for
every cr that can be formed from it, at least one
7” exists.

Intuitively, this requires that no high-level input can have
an effect on low-level events and that the “fixing” of high-
level outputs must wait until after any immediately
following inputs.

The following theorem is then presented:

If a system is hook-up secure, then it is
deducibility secure, and it has the non-interference
property. If systems A and B are both hook-up
secure, then any composite system formed by
identifying outputs of A with inputs of B with
the same security level, and vice-versa, is hook-up
secure.

The validity of this result has been questioned in the
literature.KBL+88] In a later paper McCullough redefined
his property as reslrictiveness, and improved its abilities to
handle nondeterministic systems.[McC88]

It is not clear how one might describe hook-up security
using the grammatical method, since the definition is not
based upon a relationship between causally related input
and output events, as is the case with prerequisite
confidentiality. In fact, it may be impossible to construct
an appropriate recognizer that determines whether an event
system satisfies the hook-up security property.

6.3 SECURITY AND MACHINE COMPOSITION

In 1988, Johnson and Thayer presented a new security
property that is composable, but which is demonstrably
weaker (less restrictive) than McCullough’s hook-up
security.[JT88] Event traces are used as the basis for
Johnson and Thayer’s model. Informally, a perturbation of
a trace is a sequence formed by inserting, modifying, or
deleting high-level inputs in the trace. A correction of a
sequence is a trace obtained by inserting, modifying, or
deleting high-level non-inputs (i.e., outputs or internal
events) in the sequence. A system is correclable if every
perturbation has a correction that is a valid trace. In
general, correctability is not prescrvcd by composition.

They then introduce a restricted form of correctability,
denoted n -fonvurd correcfubility, that is a composable
property. The additional restrictions are as follows:

. It must be possible to correct every perturbation by
modifying the sequence only after the perturbed part (if
at all) to form a valid trace.

291

. If the perturbation happens to be immediately followed
by n or fewer low-level inputs, it must be possible to
delay any correction until after those inputs (and form
a valid trace).

As in the case of hook-up security, it seems unlikely that an
appropriate recognizer could be constructed to determine
whether an event system satisfies the required n-@ward
correctability property.

6.4 LIN’S BEHAVIORAL SECURITY

In 1991, Ping Lin proposed a new security property,
behavioral security, that is a form of
noninterference.[Ling 1 I A system algebra, based upon
many-sorted algebras, was introduced to allow a
representation of the input/output behaviour of systems and
the effects of composition. The security property was then
expressed within the system algebra to prevent the
disclosure of both high-level inputs and outputs to low-
level observers. The low-level behaviour of the system had
to remain the same, regardless of whether high-level
activity was present or not. It was proven that behavioral
security was composable.

Our event system explication of prerequisite confidentiality
is analogous to the algebraic definition of behavioral
security. Prerequisite confidentiality requires that high-
level input events never be prerequisites for low-level
output events. Thus, if high-level input activity is removed,
the low-level activity remains unchanged.

The connection between prcrcquisite confidentiality and
behavioral security is based upon the fact that both are
simply-expressed notions of input/output causality that are
preserved under composition. Further work would need to
be done to determine whether a mechanical algorithm exists
for recognizing components/event sequences that have the
behavioral security property.

7 SUMMARY AND CONCLUSIONS

This paper began by introducing the notion of event
systems that describe all possible valid event sequences for
a component being modelled. It was then proposed that
formal grammars be used to specify the structure of the
valid event sequences of modelled components. The
overall behaviour of the component is represented by a
component grammar G and prerequisite relation prereq .
Valid event sequences for a component correspond to
sentences in the language generated from G.

A good representational technique should allow the
modelling of a wide range of practical situations. Through
the general nature of our technique, it should be clear that
we can easily model virtually any component that reacts to
input events by generating output events. Most real
systems can be represented in this way.

This modelling methodology was then applied to a new
definition of confidentiality, called prerequisite
confidentiality. By comparison with several existing
definitions, it was demonstrated that this definition is
superior. It provides a simple, intuitive notion of
confidentiality that is based upon causally-related events.
Because it is based upon a grammatical specification, it is
always possible to construct a recognizer that will identify
those event sequences that satisfy the property.

This ability has important practical implications for the
model. The construction of an automated specification and
verification tool based on the model would require the
ability to quickly and easily verify whether an event
sequence was valid for a modelled system or if it satisfied
prerequisite confidentiality. By using grammars from
Turnbull’s DRP class, developing an algorithm to do this is
straightforward. This is not the case with most other
confidentiality definitions.

8 ACKNOWLEDGEMENTS

This work was baed upon doctoral research by J.P. Nestor
in the Department of Electrical and Computer Engineering
at the University of Toronto, under the supervision of
Professors E.S. Lee and P.I.P. Boulton. The work was
supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC). The authors would
also like to thank the reviewers for their valuable comments
and suggestions.

9 REFERENCES

[Cho56]

[Cho59]

[GM821

[GM841

[Hin93]

Chomsky, N. Three Models for the
Description of Language. IRE Transactions
on Information 7’heory, 2(3): 113-124.

Chomsky, N. On Certain Formal Properties
of Grammars. Information and Control,
2(2):137-167.

Goguen, Joseph A., and Jose Meseguer.
Security Policies and Security Models.
Proceedings of the 1982 IEEE Symposium on
Securiry and Privacy, April 1982, pp. 1 I-20.

Goguen, Joseph A., and JosC Meseguer.
Unwinding and Inference Control.
Proceedings of the 1984 IEEE Symposium on
Security and Privacy, April 1984, pp. 75-86.

Hinton, IIeather M. An Environment-Based
Approach to the Composition of Safe
Systems. Master’s thesis, Department of
Electrical and Computer Engineering,
University of Toronto, Toronto, Ontario,
January 1993.

292

[Hoa78]

MJ@l

[HU791

IKnu691

lLin9 11

rLBL+88]

PBTS92]

[MdX'l

lJ4~881

[Nes93]

Hoare, C.A.R. Communicating Sequential
Processes. Communicarions of the ACM.
21(8):666-677, August 1978.

Hopcroft, John E. and Jeffrey D. Ullman.
Formal Languages and their Relation to
Automata. Series in Computer Science and
Information Processing, Addison-Wesley,
1969.

Hopcroft, John E. and Jeffrey D. Ullman.
Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Series in
Computer Science, Addison-Wesley, 1979.

Knuth, D.E. On the Translation of Languages
from Left to Right. Information and
Co#rol8,1965, pp. 607-639.

Lin. Ping. The Composability of
Behaviorally Secure Systems, Ph.D. Thesis,
Department of Electrical Engineering,
University of Toronto, 1991.

Lee, E.S., P.I.P. Boulton, D.M. Lewis, M.
Stumm, and B.W. Thomson. A Trusted
Network Architecture. Technical Report
CSRI-228, Computer Systems Research
Institute, University of Toronto, Toronto,
Ontario, Canada, 1988.

Lee,E.S., P.I.P. Boulton, B.W.Tbomson, and
R.E. Soper. Composable Trusted Systems.
Technical Report ‘CSRI-272, Computer
Systems Research Institute, University of
Toronto, Toronto, Ontario, May 1992.

McCullough, Daryl. Specifications for Multi-
Level Security and a Hook-Up Property.
Proceedings of the 1987 IEEE Symposium on
Security and Privacy, 1987, pp. 161-166.

McCullough, Daryl. Noninterference and the
Composability of Security Properties.
Proceedings of the I988 IEEE Symposium on
Security and Privacy, 1988, pp. 177-186.

Nestor, John P. The Composition of
Property-Preserving Event Systems. Ph.D.
Thesis. Department of Electrical and
Computer Engineering, University of
Toronto, Toronto, Ontario, November, 1993.
Also available as Technical Report CSRI-290,
Computer Systems Research Institute,
University of Toronto, Toronto, Ontario,
November, 1993.

ITfill Parker, Donn B. Restating the Foundation of
Information Security. Proceedings of the
Second Annual North American System
Security Symposium, Toronto, Ontario,
October 1991.

[Sut86] Sutherland, David. A Model of Information.
Proceedings of the 9th National Computer
Security Conference, 1986, pp. 175-183.

[Tur74] Turnbull, Christopher J.M. Deterministic Left
to Right Parsing. Ph.D. Thesis, Department
of Electrical Engineering, University of
Toronto, 1974.

In791 Turnbull, Christopher J.M. and ES. Lee.
Generalized Deterministic Left to Right
Parsing. Acta Informatica 12, 1979,
pp. 187-207.

293

