
DEMO: Secure and Customizable Web
Development in the SAFE Activation Framework

Raphael M. Reischuk
Saarland University

Saarbrücken, Germany

Florian Schröder
Saarland University

Saarbrücken, Germany

Johannes Gehrke
Cornell University,

Ithaca, New York, USA

ABSTRACT
We propose a demonstration of SAFE with some of its newest
security features. SAFE is a framework for modern Web
application development with automated state consistency,
enforced security at various levels, and design for Web per-
sonalization and extensibility.

With the emerging complexity in (extensible) data-driven
Web application development, in particular in terms of con-
sistent data management with multiple clients (many Face-
book users), ownership preservation (various Facebook user
items with individual intellectual property), and data pri-
vacy (sensitive Facebook user data), we believe a demo of
a comprehensive data-centric and secure Web application
framework with declarative specifications for many modern
Web features will be of considerable interest to the security
community. In particular, we think it is interesting to see
a demonstration of how fast and how intuitive the secure
customization of a true multi-tier Web application can be.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance
and Enhancement—Extensibility ; K.6.5 [Management of
Computing and Information Systems]: Security and
Protection—Authentication

Keywords
extensibility; web security; access control

1. INTRODUCTION
More and more software is delivered through the Web, fol-
lowing today’s cloud idea of delivering software as a service.
The code of such rich internet applications is split into client
and server code, where the server code is run at the service
provider and the client accesses the application through a
Web browser. In data-driven Web applications, the state
of the application resides in a database system (or simply
in a key-value store), and users interact with this persistent

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2477-9/13/11.
http://dx.doi.org/10.1145/2508859.2512495.

state through Web clients, each having an individual (possi-
bly shared) state. More and more users wish to personalize
such Web applications, that is, they wish to customize the
functionality of a Web application to fit their individual ap-
plication needs.

In the development, and in particular, in the customiza-
tion of modern Web applications, it is more challenging than
ever before to cope with multiple tiers (various servers, mul-
tiple simultaneous clients, replicated databases, mobile de-
vices, etc.), the shared application state spread over multi-
ple devices, with complex security attack surfaces, and with
many subtle technical details. Moreover, huge amounts of
similar code are often rewritten from scratch. We believe
that high-level specifications in a declarative language and
compiler-generated application code can significantly sim-
plify and secure the entire Web development process.

We demonstrate the SAFE activation framework with its
efficient and elegant way of creating interactive and secure
Web applications composed of reusable software components.
One reason for the success of SAFE is its intuitive and still
expressive declarative modeling language SFW. The rough
idea behind specifications at a higher abstraction level in
SAFE and the production of computer-generated source code
thereof is motivated by the following facts.

First, Web applications often use common patterns which
are better taken from well-tested code libraries instead of be-
ing manually programmed every time from scratch. Typical
replication methods like copy & paste often introduce logical
or structural flaws that are hard to detect later. Second,
human errors in the programming process should generally
be detected and avoided at the earliest possible point in
time. Such errors introduce not only bugs in the function-
ality, but might also impose severe security threats. Third,
a restricted set of allowed operations simplifies the detec-
tion of malicious code or even prevents security holes which
might even be introduced on purpose. Assume for instance a
system-provided (and hence trusted) encryption function for
which all randomness is correctly chosen. A malicious pro-
grammer using the predefined function cannot bring his own
“pseudo-randomness” into play, and hence cannot introduce
a backdoor to decrypt confidential user data offline.

The two latter aspects are particularly relevant for data-
driven Web applications with sensitive and privacy-critical
user data. Not only is the programming of such security
checks vulnerable to bugs and attacks, but also is it quite te-
dious to program all necessary checks, to add error handling
for the reactive multi-tier code, to chose encryption/signa-
ture keys correctly, to establish database connections, etc.

1341

The automated compilation of higher-level languages hence
not only produces better program code, but also significantly
reduces the workload of a programmer.

We demonstrate how SAFE addresses all the aforemen-
tioned aspects and thereby significantly simplifies the over-
all development process, abstracting from technical details,
and preventing malicious code from harming the system or
sensitive user data. Moreover, we demonstrate how SAFE
achieves several other useful and mandatory properties such
as guaranteed state consistency, sandboxes for both users
and software components. Furthermore, we show how SAFE
enables new ways in the direction of customization and user
personalization.

2. SAFE
This section recaps the main features of the SAFE frame-
work [1, 2] for the development of secure Web applications
with automatic state consistency and safe extensibility. SAFE
provides a hierarchical programming model which naturally
builds upon the hierarchical DOM structure of Web pages.
The most constitutive components in SAFE are its so-called
f-units which cluster all code fragments for a specific func-
tionality within a Web page, including the business logic, the
visual appearance, and the interaction with users or other
f-units. This clustering provides a clear level of abstrac-
tion through well-defined interfaces for each f-unit. The
modularity of reusable f-units relieves the programmer from
struggling with variable scopes and their interference.

A Web page is modeled as an activation tree in which
f-units are organized hierarchically — resulting in a clean
abstraction and an elegant way of composing Web pages.
The integration of an f-unit F in the activation tree is re-
ferred to as activation of F . More precisely, an f-unit is
activated by its parent f-unit and thereby receives activa-
tion data through well-defined interfaces. The f-unit can
use the activation data or other data obtained directly from
the database through queries to display parts of the Web
page. Every f-unit can also activate other f-units, its child
f-units. Whenever an instance of an f-unit is activated, the
corresponding compiled HTML / JS / CSS code is made
available in the activation tree. Eventually, the activation
tree is linearized to a single HTML document by transform-
ing subtrees to nested HTML elements. After the activation
tree has been constructed, the corresponding code for HTML
/ JS / CSS is sent to the client.

Activations are expressed through activation calls in the
declarative modeling language SFW, a straight-forward ex-
tension of HTML: all HTML elements and also PHP and
JavaScript can be used as in traditional Web application
development. Activation calls are at the core of SFW and
can as such be used in any HTML context.

2.1 Database updates
Since today’s Web applications are not static pages (instead,
they contain a lot of reactive code for event-driven modifica-
tions of the shared application state), SAFE’s methodology
redeems the developer from all the technical inconveniences
of such updates and thereby automatically maintains state
consistency — even for concurrent updates. Assume the
client’s browser interacts with the delivered HTML page
and eventually sends some update request back to the server.
The corresponding f-unit in the activation tree processes this

1 <h1> Groups </h1>
2
3 The f o l l ow ing groups e x i s t :
4 <f o r query=”SELECT gid , name , owner=’$%me’ AS isowner ,
5 ismember FROM groups ”>
6 $$name
7 <form>
8 < i f $$ismember>
9 <input type=”button” value=”Leave ” onclick=

10 ”query :DELETE FROM groupmembers WHERE gid=’$$gid ’
11 AND uid=’$%me ’ ”>
12 <e l s e>
13 <input type=”button” value=”Join ” onclick=
14 ”query : INSERT INTO groupmembers SET gid=’$$gid ’ ,
15 uid=’$%me ’ ”>
16 </ i f>
17 < i f $$isowner>
18 <input type=”button” value=”Remove” onclick=
19 ”query :DELETE FROM groups WHERE gid=’$$gid ’ ”>
20 </ i f>
21 </form>
22 </ f o r>
23
24 <form>
25 <input type=”text ” name=”g t i t l e ”/>
26 <input type=”button” value=”Create Group” onclick=
27 ”query : INSERT INTO groups VALUES (’ $#g t i t l e ’ , $userID)”>
28 </form>

Figure 1: HTML buttons with concrete DB queries.

request and generates a database query for which SAFE au-
tomatically verifies various safety and security properties.
These include checks for state consistency, access control,
and prevention of code injection. After the query has been
executed, SAFE automatically triggers all f-units in the ac-
tivation tree which have an out-dated state. These f-units
are immediately rebuilt and refreshed at the client. The
shared application state is automatically synchronized with
all connected clients.

SAFE completely alleviates the developer of an f-unit F

from caring about the freshness of its state while F is up-
dating parts of the application state. Moreover, the devel-
oper does not have to provide code for partial updates of any
f-units in the activation tree. The developer only specifies
the update query that is supposed to be executed for some
event attached to an HTML element inside the f-unit. We
will see examples in Section 3.

3. SAFE DEMONSTRATION
We have chosen two demonstration features which nicely
show how efficiently and securely the specifications in SAFE
are translated to full-fledged Web applications.

3.1 Sandboxing for f-units and users
A new and un-published feature we show in our demonstra-
tion is how SAFE provides two independent kinds of data
separation: every f-unit has its own database tables, which
can only be accessed by the f-unit itself; and every user
has its own data domain, in which only the user herself can
modify data. Dually, SAFE provides mechanisms for data
sharing : f-units can be wired together and user data can be
aggregated and delegated.

3.2 Declarative and secure specifications
We present various new declarative specifications of differ-
ent functionality and show the result of the compilation of
these specifications using the SAFE compiler. The code for
our test case applications generated by the compiler has an
average blow-up factor of 10.57 compared to the size of the
user-specified code. The generated code contains various
new consistency and security checks which we believe a user
would have to write manually in order to produce Web ap-
plications of comparable (high) quality.

1342

As an example, we consider the simple specification of
HTML buttons that are linked with the secure execution
of database queries. The code snippet in Figure 1 shows
the corresponding HTML-like specification in the SFW lan-
guage. The code is taken from an f-unit to administrate
groups in a social network application. The parts colored in
blue are SFW-specific deviations from standard HTML. The
code shows a list of groups whose entries are extracted from
the SELECT query as specified in the <for> tag in line 4.
The query selects four data fields each of which is available
in the subsequent scope via the SFW syntax $$field , e.g.,
$$name in line 6, or $$ismember in the <if> tag in line 8.
The content inside the <for> block is “executed” (or more
precisely: displayed) in the HTML document once for every
result tuple of the query execution. Depending on the values
of $$ismember and $$isowner, the buttons to join (line 13),
to leave (line 9), and to remove a group (line 18) are dis-
played. In the following, we will focus on the button to
create a new group (line 26).

Instead of specifying a JavaScript function for the onclick
event of a button, the developer simply specifies the actual
database query to be executed. The query for the button
in line 26 inserts two values in the specified table. The first
value is the user input as specified in the form. SFW offers
the syntactic placeholder $#gtitle to represent the value en-
tered in the HTML input element named gtitle . The second
value $userID is a dynamic value which is no direct user in-
put, but a standard PHP variable. All such dynamic values
occurring in the query need special attention: dynamic val-
ues must also be contained in the corresponding form in the
HTML document (in order to ensure the dynamically eval-
uated values end indeed up in the query). However, such
dynamic values cannot simply appear in the DOM tree in
plaintext since a malicious client could easily modify these
values, for instance by replacing the user ID Alice by the
user ID Eve. We demonstrate how SAFE automatically en-
sures the integrity and confidentiality of dynamic values by
new suitable security mechanisms.

The treatment of dynamic values is just one point on the
list of tasks a traditional Web developer would have to take
care of. We demonstrate and justify the blow-up factor of
roughly 10 after compilation, for which the following (in-
complete) list gives an intuition for the workload in case of
a traditional hand-written database update procedure:

1. Create a regular HTML form inside the current HTML docu-
ment. The protocol (GET, POST, etc.) and the recipient have
to be suitably specified.

2. Create a PHP file to answer the submitted form and mention
the URI of the file in the form.

3. In the PHP file, authenticate yourself at the database and es-
tablish a secure connection.

4. For each variable transmitted via the form, escape special char-
acters to prevent SQL injection attacks.

5. Insert escaped values in the query.
6. Verify that the authenticated user of the application has suffi-

cient permission to execute the query with the current values.
7. Verify that the query can be executed in terms of data con-

sistency, i.e., has the query been issued from a state which is
sufficiently fresh?

8. Send query to the database for execution.
9. Process the result, output a status message, and refresh parts of

the Web application. Here, it will be necessary to determine the
parts of the Web application which must be updated. Hence,
all relevant dependencies must be derived.

10. Specify event-driven AJAX code to send the form values to the
PHP handler, and to receive the data updates for all corre-
sponding elements in the DOM tree.

11. Implement a comprehensive error handling which takes into ac-
count all possible kinds of errors (database connection errors,

Figure 2: Functional extensions: (left) incremental
search engine, and (right) navigation via tabs.

query execution errors, invalid values, etc.). This error han-
dling has to be specified at all tiers; hence in PHP, JavaScript,
and possibly also at the database.

We demonstrate how the state update mechanisms of SAFE
implement a superset of the above steps and thereby signifi-
cantly reduce the burden of the developer down to a concise
declarative specification as simple as the one shown in Fig-
ure 1. We discuss the compiled code (roughly 248 LOC) for
the example in Figure 1 in the demonstration.

3.3 Customization
In the landscape of application ecosystems, today’s Web 2.0
users wish to personalize not only their browsers with var-
ious extensions or their smartphones with various applica-
tions, but also the various extensions and applications them-
selves. This next generation of platform-independent Web
applications is expected to be customizable not only in style
(how they are displayed), but also extensible in functionality
(what application logic is exposed).

The key to success in SAFE is the encapsulation of func-
tionality within f-units: Every f-unit bundles the code for
all tiers (PHP server code, HTML client code, JavaScript
client code, CSS client code). We demonstrate the complex
integration of a fresh f-unit into an application. We show
how the SAFE tool suite easily manages the f-units for our
social network application (Figure 2).

Moreover, we demonstrate how SAFE addresses the need
for comprehensive personalization and thereby provides var-
ious security guarantees. We show how to securely extend
an existing social network application in two ways: First, we
demonstrate how new functionality is added to an existing
application. This new functionality constitutes an incre-
mental search engine (Figure 2 left), and as such, it must
be integrated deeply into the system. The search engine
shall provide the user with a comfortable experience, and
hence contains a lot of reactive JavaScript code. Moreover,
the search engine needs constraint access to the database
with access control policies and a clear description of which
fields shall be searched. Finally, the search results have to
be presented in a structured and formatted way using PHP,
HTML, and CSS. Second, we show how to change the navi-
gation inside the social network: the scrolling navigation is
turned into a navigation using tabs (Figure 2 right).

4. REFERENCES
[1] R. M. Reischuk. The official SAFE user manual.

http://www.safe-activation.org/, 2013.

[2] R. M. Reischuk, M. Backes, and J. Gehrke. SAFE
extensibility for data-driven web applications. In
WWW ’12, Lyon, France, 2012.

1343

http://www.safe-activation.org/

	Introduction
	SAFE
	Database updates

	SAFE Demonstration
	Sandboxing for f-units and users
	Declarative and secure specifications
	Customization

	References

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 169.53, 87.05 Width 106.04 Height 9.82 points
 Origin: bottom left

 1
 0
 BL

 31
 CurrentPage
 33

 CurrentAVDoc

 169.528 87.0514 106.0368 9.8182

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 3
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 170.18, 87.05 Width 104.73 Height 10.47 points
 Origin: bottom left

 1
 0
 BL

 31
 CurrentPage
 33

 CurrentAVDoc

 170.1826 87.0514 104.7277 10.4728

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 3
 1
 1

 1

 HistoryList_V1
 qi2base

