
Breaking Kernel Address Space Layout Randomization
with Intel TSX

Yeongjin Jang, Sangho Lee, and Taesoo Kim
School of Computer Science, Georgia Institute of Technology

{yeongjin.jang, sangho, taesoo}@gatech.edu

ABSTRACT
Kernel hardening has been an important topic since many applica-
tions and security mechanisms often consider the kernel as part of
their Trusted Computing Base (TCB). Among various hardening
techniques, Kernel Address Space Layout Randomization (KASLR)
is the most effective and widely adopted defense mechanism that
can practically mitigate various memory corruption vulnerabilities,
such as buffer overflow and use-after-free. In principle, KASLR
is secure as long as no memory leak vulnerability exists and high
entropy is ensured.

In this paper, we introduce a highly stable timing attack against
KASLR, called DrK, that can precisely de-randomize the mem-
ory layout of the kernel without violating any such assumptions.
DrK exploits a hardware feature called Intel Transactional Synchro-
nization Extension (TSX) that is readily available in most modern
commodity CPUs. One surprising behavior of TSX, which is es-
sentially the root cause of this security loophole, is that it aborts a
transaction without notifying the underlying kernel even when the
transaction fails due to a critical error, such as a page fault or an
access violation, which traditionally requires kernel intervention.
DrK turned this property into a precise timing channel that can
determine the mapping status (i.e., mapped versus unmapped) and
execution status (i.e., executable versus non-executable) of the priv-
ileged kernel address space. In addition to its surprising accuracy
and precision, DrK is universally applicable to all OSes, even in
virtualized environments, and generates no visible footprint, making
it difficult to detect in practice. We demonstrated that DrK can break
the KASLR of all major OSes (i.e., Windows, Linux, and OS X)
with near-perfect accuracy in under a second. Finally, we propose
potential countermeasures that can effectively prevent or mitigate
the DrK attack.

We urge our community to be aware of the potential threat of
having Intel TSX, which is present in most recent Intel CPUs—100%
in workstation and 60% in high-end Intel CPUs since Skylake—and
is even available on Amazon EC2 (X1).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c⃝ 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978321

Windows Vista
Kernel/User space

OS X 10.5
User-space

iOS 5
User-space

Android 4.0
User-space

OS X 10.8
Kernel-space

Linux 3.14
Kernel-space

Years2005 2007 20142011

iOS 6
Kernel-space

2012

Linux 2.6.12
User-space

Figure 1: The adoption status of both user-space and kernel-space ASLR in
popular operating systems, ordered by year [62].

1. INTRODUCTION
Enhancing the security of operating systems (OSes) has been

an active and important research topic since the underlying OS is
commonly considered to be the Trusted Computing Base (TCB) for
user applications and their security mechanisms. Among various
hardening techniques, Kernel Address Space Layout Randomization
(KASLR) is the most comprehensive and effective security mecha-
nism and raises a practical hurdle for exploiting memory corruption
vulnerabilities [31, 32], such as buffer overflow and use-after-free.
In this regard, today’s major commodity OSes (e.g., Windows, Linux
and OS X) as well as mobile OSes (e.g., Android and iOS) have
implemented and deployed KASLR to protect the core kernel image
and device drivers from exploitation (see Figure 1).

In principle, KASLR can effectively (i.e., statistically) mitigate
exploitation, as long as two assumptions hold: 1) no memory dis-
closure vulnerabilities exist and 2) enough randomization entropy
is guaranteed. Therefore, typical attacks against the kernel require
a preceding attack, which focuses either on leaking code or data
pointers [17, 40, 42] to directly figure out the memory layout, or
on exploiting implementation caveats to indirectly break the imper-
fect randomness [44], as a stepping stone for the ultimate control-
hijacking attack.

To the best of our knowledge, exploiting the cache-based timing
channel [27] is the first attempt to universally break KASLR without
violating these two fundamental assumptions. The key idea of the
cache-based timing attack is to exploit a timing difference (i.e., cache
miss and hit) for accessing mapped (i.e., cached) and unmapped (i.e.,
not-cached) pages to determine page mapping status. More precisely,
it deliberately fills or evicts certain cache lines to indirectly affect
the execution time in the kernel space. Such timing differences
can be observed by measuring how quickly a system call returns
from the kernel space, or how quickly a faulty access to the kernel
space gets to the OS page fault handler. Under a typical threat
model—local privilege escalation, this attack can break KASLR
(i.e., leaking the partial bits of a randomized address) in theory, but it
barely works in practice for three reasons. First, it generates strong
signals (e.g., segmentation faults and lots of system calls) that typical
system monitoring tools (e.g., fail2ban and sysdig) consider to be
abnormal behavior, thereby resulting in prompt mitigation.

380

http://dx.doi.org/10.1145/2976749.2978321

Grade/Generation Skylake Broadwell Haswell

Server/Workstation 17/17 (100.0%) 19/19 (100.0%) 37/85 (43.5%)
High-end Consumer 23/38 (60.1%) 11/22 (50.0%) 2/92 (2.2%)
Low-end Consumer 4/32 (12.5%) 2/16 (12.5%) 0/79 (0.0%)

Table 1: Commodity Intel CPUs supporting TSX, varying CPU grades and
generations (February 2016). Server CPUs include Xeon and Pentium D
server, high-end consumer CPUs include i5 and i7, and low-end consumer
CPUs include i3, m, and others. All recent CPUs for server/workstation and
more than half of high-end consumer CPUs support TSX [28].

Second, it requires a large page (2 MB) to accurately locate the
virtual address regions to intentionally generate cache conflicts to
the targeted physical pages, which unfortunately requires higher
privileges than a normal user in most commodity OSes: hugetlbfs
in Linux [57], and SeLockMemoryPrivilege in Windows [13, 63].

Lastly, the attack is neither accurate (i.e., reversely mapping a
conflicted cache line to its preimage set) nor fast enough (e.g., their
double page fault attack took 17.3–72.9 s to probe the entire kernel
space of 32-bit Windows 7 in a carefully controlled environment) for
practical use. In fact, these practical hurdles are the essential founda-
tion of currently proposed software-based mitigation schemes [27].

In this paper, we introduce a highly stable timing attack against
KASLR, called DrK ([dIræk] De-Randomize Kernel address space),
which is similar in spirit to the previous universal attack [27], but
with higher accuracy and better performance. To break KASLR in
an OS-agnostic way, DrK exploits a timing side-channel in a new
hardware feature, called Intel Transactional Synchronization Exten-
sion (Intel TSX), that is widely deployed in modern Intel CPUs—in
our survey, 100% of CPUs for server/workstation and 60% in high-
end computers since Skylake have Intel TSX (see Table 1). Our
attack has higher precision (e.g., executable bits of pages), higher
accuracy (e.g., near-prefect de-randomization of memory layout),
and is faster (e.g., under a second) than the state-of-the-art cache-
based attack. More importantly, DrK does not generate distinctive
footprints that look abnormal to system monitoring tools, and is uni-
versally applicable to all OSes, even under a virtualized environment
(e.g., Amazon EC2).

The key idea of DrK is to exploit an unusual behavior of TSX in
handling erroneous situations inside a transaction. When a transac-
tion aborts (typically due to read or write conflicts), the CPU directly
invokes an abort handler (specified by a user) to resolve it without
interrupting the underlying OS. However, even when an unrecov-
erable error happens inside a transaction (e.g., an access violation
or a page fault), the CPU similarly aborts the transaction without
informing the underlying OS, although these errors traditionally
require the intervention of the underlying OS.

In DrK, we turned this property into a better timing channel,
enabling us to precisely determine the mapping status (i.e., mapped
versus unmapped) and executable status (i.e., executable versus
non-executable) of the privileged address space, by intentionally
generating an access violation inside a transaction (e.g., accessing
or jumping into kernel address regions).

In this paper, we make three significant contributions:
• A practical attack. We demonstrate that DrK can break the

KASLR of popular OSes, including the latest Windows, Linux
and OS X, with near-perfect accuracy and high precision with
sub-second execution time.

• Analysis. We provide an in-depth analysis of the DrK attack
with our hypothesis and experiment designs. We show our
results in three major OSes to understand the root cause (i.e.,
CPU internal architecture) of the timing differences.

• Countermeasures. Although we believe it could be hard
to have a practical software-based mitigation, we propose

several countermeasures that can effectively prevent a DrK
attack.

The remainder of this paper is organized as follows. §2 introduces
KASLR and Intel TSX. §3 explains how our attack works. §4 shows
our evaluation results. §5 provides an in-depth analysis of DrK
to understand the hardware characteristics. §6 proposes possible
countermeasures. §7 discusses the limitations of DrK. §8 compares
it with other projects, and §9 concludes this paper.

2. BACKGROUND
In this section, we provide a technical overview of KASLR and

Intel TSX as a basis for understanding the technical details of the
DrK attack.

2.1 Kernel ASLR
ASLR is a comprehensive and popular defense mechanism that

mitigates memory corruption attacks in a probabilistic manner. To
exploit a memory corruption vulnerability, such as use-after-free,
attackers need to figure out the memory layout of a target process
or the system ahead of time. ASLR mitigates such attacks by incor-
porating a non-deterministic behavior in laying out the program’s
or system’s address space. More specifically, whenever a program
is loaded or a system is booted, the ASLR mechanism randomizes
their address spaces, including code and data pages.

Since ASLR is highly effective in practice, most real exploits first
have to bypass ASLR (or KASLR) before attempting to launch a
real control-hijacking attack, such as return-oriented programming
(ROP). For example, most web browser exploits demonstrated in
the latest Pwn2Own competition [41, 43] include one or more in-
formation leak vulnerabilities to bypass KASLR, thereby escaping
a user-level sandbox. For this reason, all major commodity OSes,
including Windows, Linux, and OS X, as well as mobile OSes, in-
cluding Android and iOS, have deployed ASLR in user space and
recently applied it to kernel space.
Adoption. Figure 1 shows the timeline of the ASLR deployment
in popular OSes. Microsoft started supporting KASLR in Win-
dows Vista (2007) and Apple started its support with iOS 5 and
OS X 10.8 (2012). Linux has provided KASLR as an option (i.e.,
CONFIG_RANDOMIZE_BASE=y) since kernel version 3.14 (2014) and,
recently, popular distributions (e.g., Ubuntu 15.04) have enabled
KASLR by default.
Implementation. Table 2 summarizes how 64-bit commodity
OSes implement KASLR for kernel text and modules in terms of
entropy (i.e., amount of randomness) and granularity (i.e., unit of
randomization). The entropy of KASLR is determined by the kernel
address range (e.g., 1 GB–16 GB) and the size of alignment, which
is usually a multiple of the page size (e.g., 4 KB–16 MB) for better
performance and memory utilization. For example, Linux’s kernel
address range is 1 GB (30 bits) and its alignment size for kernel text
is 16 MB (24 bits), so that its KASLR entropy is only 6 bits (i.e.,
64 slots for the location). In contrast, Windows 10’s kernel address
range is 16 GB (34 bits) and its alignment size for kernel text is
2 MB (21 bits), so that its KASLR entropy is 13 bits (i.e., 8,192
slots for the location). Thus, a set of all possible randomized base
addresses is

{base_address+ s× align_size : 0 ≤ s < #slots}.

2.2 Intel TSX
In this section, we explain the basic concept of Intel TSX to help

understand the DrK attack. Intel TSX is Intel’s implementation of
hardware transactional memory (HTM) [23, 36, 37, 58, 61]. HTM

381

OS Types Entropy #Slots Address Range Align Base Align Size Broken by DrK?

Linux Kernel 6 bits 64 0xffffffff80000000 – 0xffffffffc0000000 0x1000000 16 MB ✓ (100.00%)
Modules 10 bits 1,024 0xffffffffc0000000 – 0xffffffffc0400000 0x1000 4 KB ✓ (100.0%)

Windows Kernel *13 bits 8,192 0xfffff80000000000 – 0xfffff80400000000 0x200000 2 MB ✓ (100.0%)
Modules *13 bits 8,192 0xfffff80000000000 – 0xfffff80400000000 0x200000 2 MB ✓ (99.98%)

OS X Kernel 8 bits 256 0xffffff8000000000 – 0xffffff8020000000 0x200000 2 MB ✓ (100.0%)

Table 2: Summary of KASLR implementations in popular OSes. According to our experiment, all KASLR implementations we tested generate a random
address by adding a random offset to the fixed base address (i.e., kernel or module base) either at the booting time or when loading modules. The numbers
marked in blue color indicate varying, randomized ranges, so called entropy. (*) Johnson and Miller [31] reported that Windows has 17-bit worth of entropy for
the kernel and 19-bit for modules, but we have only observed 13-bit of entropy during our experiments.

1 // begin a transaction
2 if (_xbegin() == _XBEGIN_STARTED) {
3 // the transaction starts
4 ...
5 // this transaction successfully terminated
6 _xend();
7 } else {
8 // the transaction is aborted
9 abort_handler();

10 }

Figure 2: A minimal code snippet that derives TSX: this example executes
the code block in the if-statement transactionally, meaning that any error
inside the code block makes it roll back.

provides lock-less synchronization among threads by ensuring trans-
actional execution at the hardware level; i.e., it enables concurrent
access to shared memory by multiple threads and discards changes
if a read-write conflict, write-write conflict, or other error happens
during the transaction.

Note that this paper’s main concern is not how we effectively
use TSX to process transactions, but how we exploit the way it
handles an exception, which accidentally exposes a clear, stable
timing channel.
Example code. To explain our attack, we first introduce how
a transaction can be implemented by using TSX, which we will
use as a template for the actual attack. Figure 2 shows a minimal
source snippet to run a transaction. A transaction region starts with
_xbegin() and terminates when _xend() is invoked (i.e., commit-
ted). Then, all instructions (e.g., if-statement in Figure 2) in the
transactional region are guaranteed to be atomically executed. How-
ever, a transaction might fail (i.e., abort) as well: for example, when
two or more concurrent transactions affect each other during the
execution—a read-write or a write-write conflict, depending on how
they affect each other. In such a case, it automatically rolls back
the aborted transactions (e.g., cleaning up the overwritten memory
space) and invokes an abort handler specified by a user (e.g., else-
branch in Figure 2). The more interesting situation, in terms of
security, is when erroneous situations occur during the execution:
for example, segmentation faults, page faults, or even interrupts.
Suppressing exceptions. According to Intel’s manual ([30,
§15.3.7]), a transaction aborts when such a hardware exception
occurs during the execution of the transaction. However, unlike nor-
mal situations where the OS intervenes and handles these exceptions
gracefully, TSX instead invokes a user-specified abort handler with-
out informing the underlying OS. More precisely, TSX treats these
exceptions in a synchronous manner—immediately executing an
abort handler while suppressing the exception itself. In other words,
the exception inside the transaction will not be communicated to
the underlying OS. This allows us to engage in abnormal behavior
(e.g., attempting to access privileged, i.e., kernel, memory regions)
without worrying about crashing the program. In DrK, we break
KASLR by turning this surprising behavior into a timing channel
that leaks the status (e.g., mapped or unmapped) of all kernel pages.

3. THE DrK ATTACK
In this section, we provide a high-level description of the DrK

attack, which breaks KASLR by exploiting a timing channel in TSX.
As explained in §2.2, when an exception occurs inside a transaction,
TSX aborts its execution and, importantly, suppresses the exception
(i.e., no OS intervention). The key idea of DrK is to measure the
timing difference in handling a transaction abort when attempting
to access mapped kernel memory regions compared to unmapped
regions. Accessing the kernel space from a user process incurs an
access violation (i.e., a page fault), but TSX suppresses this excep-
tion and immediately invokes its abort handler. The mapping status
of the targeted kernel address results in a time difference (an order
of a few hundred cycles) in invoking the abort handler due to the
subtleties in TSX’s micro-architecture (see §5). More importantly,
this attack is not observable to the OS, as these exceptions are all
suppressed. Furthermore, unlike prior attacks that only try to dis-
tinguish between mapped and unmapped pages, the DrK attack can
even extract the executable and non-executable bit of every kernel
page.

3.1 Threat Model
The DrK attack is built on four realistic assumptions:

1. The attacker has unrestricted access to the local, user-level,
and non-root privilege execution environment of the target
system.

2. The attacker knows a memory corruption vulnerability in the
kernel space, but needs to bypass the KASLR deployed in the
target system in order to exploit this vulnerability.

3. The attacker does not have any explicit way to figure out the
kernel memory layout.

4. The attacker can gather the information of the target system:
for example, the OS version or CPU information.

This threat model is very realistic. For example, the platform-
as-a-service (PaaS) cloud services such as Heroku [25] provide a
local execution environment that satisfies all of the assumptions
above. Similarly, these assumptions hold true in exploiting the vul-
nerabilities in modern web browsers due to their user-level sandbox;
real exploits demonstrated in the Pwn2Own competition [41, 43]
are performed under the same threat model as the DrK attack.
Moreover, the operating systems disallow user-level code to ac-
cess to their kernel address space information. In Ubuntu, access
to /proc/kallsyms, which shows all mappings of kernel space, is
prohibited to non-root users. In Windows 10, there is a system call
NtQuerySystemInformation() which allows a normal user to see
the current mapping of the kernel. However, in the LOW or UNTRUSTED
integrity level that is generally set as the running level of sandboxed
applications (e.g., the renderer process of Google Chrome), it is not
allowed to access the system call to get the address layout of the

382

1 // The given argument addr is an address for a kernel page.
2 uint64_t do_probe_memory(void *addr, mode_fn fn)
3 {
4 // Timer starts
5 uint64_t beg = rdtsc_beg();
6 // initiate TSX region
7 if (_xbegin() == _XBEGIN_STARTED) {
8 // fn() performs either 1) or 2).
9 // 1) execute : mov rax, addr; jmp rax

10 // 2) read : mov rax, [addr]
11 fn(addr);
12 // commit TSX, which will never take place.
13 _xend();
14 } else {
15 // TSX aborted; end timer, return the timing.
16 return rdtsc_end() - beg;
17 }
18 errx(1, "Not reachable");
19 }
20 // probe the address for multiple times
21 uint64_t probe_memory(int ntimes, void *addr, mode_fn fn)
22 {
23 uint64_t min = (uint64_t)-1; // UINT64_MAX
24 while (ntimes --) {
25 uint64_t clk = do_probe_memory(addr, fn);
26 // Only record the minimum timing observed.
27 if (clk < min)
28 min = clk;
29 }
30 return min;
31 }

Figure 3: Code snippet that probes timing for a kernel address access. The
access on address through fn(addr) always raise an exception (i.e., access
violation) which makes the transaction abort. In the DrK attack, we measure
the minimum timing value from multiple trials of probing for determining
page mapping status (e.g., 215 cycles for mapped region and 245 cycles for
unmapped region).

kernel. We confirmed that DrK works in such restricted integrity
levels.

3.2 Overview
Figure 3 shows a code snippet that we ran to probe a kernel ad-

dress for its mapping status. We perform two types of access to
a kernel address addr inside a TSX region (if-statement, from
_xbegin() to _xend()): (1) try to execute on addr by running
mov rax, addr; jmp rax (exec), and (2) try to read a value from
addr by running mov rax, [addr] (read). Note that since addr is
a kernel address, the access is not performed, instead generating an
exception, which makes the transaction abort.

We measure the timing between the initialization of the TSX
region (_xbegin()) and the abort handler (line 15-16). Since the
DrK attack relies on the timing difference on the hardware critical
path (see §5), we measure the minimum timing for a memory page.

Figure 4 shows an example of how timing can determine the
mapping status of a kernel page. First, we attempted to read a given
kernel address. It took more than 235 cycles for unmapped pages
and less than 220 cycles for mapped pages. (see Figure 6a).

Next, we attempted to execute (i.e., mov rax, addr; jmp rax)
on a given kernel address. It took less than 200 cycles for the exe-
cutable pages and more than 220 cycles if the page is non-executable
(see Figure 6b).

We observed a significant timing difference (±10%) that can be
used for a timing channel to precisely identify the mapping and
executable permission status for a given kernel address.
Probing strategy. Figure 5 shows how DrK works. Basically, it
consists of two steps: (1) collect timing information for the memory
(probing step) and (2) determine the kernel map using the timing
information.

In (1) we first analyze the target OSes to determine some invariant
of the kernel address space layout. This step is essential to avoid

addr

[read]★

[jmp]★

>235 cycles <220 cycles

unmapped
(U)

<200 cycles >220 cycles

executable
(X)

non-executable
(NX)

def probe(addr):
 beg = rdtsc()
 if _xbegin():
 [mode]★

 else
 end = rdtsc()
 return end - beg

mapped
(M)

Figure 4: An overview of the timing attack in DrK. From the timing
differences in calling TSX abort handler for read access (U/M) and execution
access (X/NX) inside a transaction, the DrK attack can infer the memory
layout of the OS, as well as their permission status (i.e., executable or non-
executable). The numbers are collected on a system running Ubuntu 16.04
LTS (kernel 4.4.0), on Intel Core i7-6700K (Skylake) 4.0 GHz processor.

❶ Probing
memory

addrResource
budget

(e.g., time)

 OS Memory Spec. CPU Model
Knowledge Base

❷ Determining
U/X/NX

db Memory
maps

input output

Probe Analysis
Figure 5: Our attack consists of two steps: 1 Probing and 2 Analysis.
1 Given resource budgets provided by users (e.g., time or iteration) and
memory specification of the target OS (e.g., maps, types, and page size), we
first probe the timing of the TSX aborts in each memory region. 2 Then,
with the pre-measured knowledge base on the timing characteristics of each
CPU model, we determine the memory layout (e.g., mapped regions) and
status (e.g., executable regions).

searching the entire 64-bit address space. For example, we can
use the information in Table 2 to largely reduce the random search
space.

In the analysis step (2), we determine the mapping status of the
kernel address using the timing information gathered in step (1).
Note that the timing information largely depends on the hardware
characteristics (e.g., CPU generation and clock frequency, see Ta-
ble 3), so we need to know such information for the CPU. We can
collect such information during an offline analysis and store it in a
database.
Summary. The benefits of DrK, accuracy, covertness, and OS-
independence, come from the characteristics of TSX. On accessing
a kernel address, the occurrence of a page fault inside the TSX
region will directly call an abort-handling procedure in the user-
space process without notifying the operating system. This shortcut
not only minimizes measuring noise but also probes any kernel
address without the OS being aware of it and does not rely on how
an OS interrupt handler is implemented. This is a clear advantage
over Hund et al.’s attack against KASLR [27], which relies on an
OS interrupt handler, leading to high noise, OS-awareness, and
OS-dependency.

4. ATTACK EVALUATION
We attempt to answer the following questions to evaluate DrK:
• How different are the TSX timing characteristics across vari-

ous CPU and OSes? (§4.1)
• How effectively can DrK break KASLR of the popular OSes?

(§4.2, §4.2.3)
• How does DrK work in a virtualized environment (§4.3)?
• With what configuration does DrK give high precision (§4.4)?
• How much better is DrK than prior attacks on KASLR (§4.5)?

383

(a) Mapped vs. Unmapped

(b) Executable vs. Non-executable

Figure 6: Two timing graphs for measuring timings on Linux kernel mod-
ules area, running on a Skylake (Core i7-6700K) processor. The graph
shows that the difference in the minimum timing (see Table 3) is suffi-
cient to set the threshold (the red line in each graph) for determining page
mappings. In the upper graph, the red line placed at 235 cycles clearly
distinguishes the mapped from the unmapped pages of the modules. Simi-
larly, the red line placed at 210 cycles in the lower graph clearly separates
the executable pages from the non-executable ones (including unmapped
pages). We probed the timing on accessing each page in the Linux ker-
nel module area 100 times, while running kernel version 4.4.0. Modules
are loaded from 0xffffffffc0347000 to 0xffffffffc0bf9000, and the DrK
attack breaks KASLR with perfect (100%) accuracy.

4.1 Characteristics of the Timing Channel
The DrK attack uses timing information as an oracle for deter-

mining the mapping status of kernel memory pages. We rely on the
timing difference on accessing each type of kernel page mappings:
unmapped, mapped, and executable. A necessary condition that
enables such a distinction is that there should be a prominent timing
gap to determine different mappings.

We observed that the timing channel measured with a TSX abort
handler has a significant timing gap between the different mappings.
Table 3 shows the minimum timing that we could observe on ac-
cessing each type of page mapping, across 4 types of processors
over 1,000 times. There are significant timing differences between
mapped (fast) versus unmapped (slow) pages, and executable (fast)
versus non-executable (slow, including unmapped) pages. When we
attempted to access to arbitrary kernel memory pages using a mov
instruction, the timing differences between unmapped and mapped
pages were 18–31 cycles1. Similarly, when we attempted to ex-

1There was no difference between read and write attempts.

CPU/Types
READ JMP

(mov rax,[addr]) (mov rax,addr; jmp rax)

X NX <U X< NX U

i7-6700K (4.0G, Skylake) 209 209 240 181 226 226
i5-6300HQ (2.3G, Skylake) 164 164 188 142 178 178
i7-5600U (2.6G, Broadwell) 149 149 173 134 164 164
E3-1271v3 (3.6G, Haswell) 177 177 195 159 189 189

Table 3: The minimum observed timings over 1,000 iterations of probing for
the known kernel mappings, for each CPU. In the DrK attack, we use timing
differences to determine the mapping status of the page. We measured the
timings using mov and jmp instructions, to observe the minimum timings for
unmapped (U), non-executable (NX), and executable (X) pages. The value
indicates that having access with a mov instruction on unmapped pages takes
18–31 more cycles (marked in red color) than the mapped pages. Likewise,
the timing for executable pages on accessing with a jmp instruction takes
30–44 fewer cycles (marked in blue color) than non-executable or unmapped
pages. Note that the values are observed minimums, namely, we cannot
observe the timings below the values per each mapping status during the
experiment.

ecute arbitrary kernel memory pages using a jmp instruction, the
timing differences between executable and non-executable pages
were 30–44 cycles.

While the timings depend on the architecture or clock rate of the
processor, the common characteristics of the timing is that there is
always a timing gap for the page mapping types across different
types of processors. Furthermore, the minimum timing does not
depend on OS settings. By running the experiment over multiple
environments (different OSes, or under the Xen hypervisor), we
discovered that the timing is characteristic of the processor and did
not depend on the software settings (see §4.4).

The difference between minimum timings for each page mapping
type can be exploited to determine the memory mapping status. For
example, on an Intel Core i7-6700K Skylake processor, probing
unmapped pages always took more than 240 cycles. In contrast,
probing on mapped pages took less than that, with a minimum of 209
cycles. If a page was probed in 230 cycles, then it is a mapped page
because for unmapped pages, it is impossible for probing to take less
than 240 cycles. Thus, we set the threshold to use in determining
page mapping status as a value less than the minimum timing of
an unmapped page. We also took a value less than the minimum
timing of non-executable page as the threshold for distinguishing
executable and non-executable pages.

Figure 6 shows how the timing is measured for the actual memory
pages, for 100 iterations of probing. On probing mapped and un-
mapped pages (Figure 6(a)), we set the horizontal (red) line at 235
cycles (less than the minimum of U), and used it as the threshold
for mapped pages. The line clearly separates the unmapped pages
(the upper half) from the mapped pages (the lower half), and there
is a clear gap of about 30 cycles between the halves. On probing the
executable permission status (Figure 6(b)), we set 210 cycles (less
than the minimum of NX) as the threshold for executable pages.
The red line on the threshold clearly separates the non-executable
or unmapped pages (the upper half) from the executable pages (the
lower half), and there is a clear gap of about 40 cycles between
them.

As shown in the graph, the timing channel is highly consistent.
Using this timing channel, the DrK attack can clearly determine the
mapping status of a page and its executable permission by comparing
measured timings to the minimum threshold for the types of pages.
On evaluating DrK for breaking KASLR in the commodity OSes (in
§4.2), we observed that the DrK attack can achieve 100% accuracy
in determining page mapping and executable status across multiple
runs of the attacks.

384

4.2 Breaking KASLR in Popular OSes
To demonstrate the feasibility of the DrK attack in realistic set-

tings, we evaluated the attack on commodity 64-bit OSes that use
KASLR, namely, Linux kernel 4.4.0, Windows 10 10.0.10586, and
Mac OS X El Capitan 10.11.4 2. Furthermore, we also mounted
the DrK attack on a Linux virtual machine (VM) running on a Xen
hypervisor, and a cloud environment (an X1 instance of Amazon
EC2), to test DrK against cloud environment settings.

Table 4 summarizes the result of the DrK attack on various
hardware and software configurations. In short, the DrK attack
demonstrates around 99%–100% accuracy—not just mapped and
unmapped pages, but also executable pages, independent to the OS—
for determining kernel address mappings in all major OSes and
even in a virtualized environment, in few seconds with near-perfect
accuracy. To the best of our knowledge, this level of accuracy, speed,
and generality in a cache timing side-channel attack has never been
demonstrated before.

1. Accuracy. The DrK attack is highly accurate. It can identify
the mapping status of a kernel address at the page-level gran-
ularity. In comparing the result from the DrK attack with the
ground truth page table mappings, we achieved 100% accu-
racy in detecting the correct page mapping across the OSes
and CPUs.
The high accuracy of DrK lets the attacker infer more infor-
mation about the kernel; for example, the mapping addresses
can be used for detecting the exact location of some kernel
modules. The DrK attack can accurately identify the location
of the driver code in Windows, by correctly determining the
base address of 97 specific drivers among a total 141 loaded
drivers using the unique signature of X/NX/U mapping size
information.

2. Speed. DrK can scan the entire possible kernel allocation
space of 64-bit OSes very quickly. For attacking the start
address of the kernel image, i.e., getting ASLR slide, DrK
is very fast: it only took 5 ms to successfully identify the
base address of the Linux Kernel. For the full scanning of the
Linux kernel and modules pages (more than 6,000 pages), it
took less than a second while achieving 100% accuracy.

3. Generality. DrK does not depend on software settings. The
attack works well over the latest version of all three commod-
ity OSes (Windows, Linux, and OS X), and even works on in
virtualized environments (Linux guest under Xen HVM). The
root cause of the timing channel in the DrK attack bounds to
the hardware specifications; therefore, if the processor sup-
ports TSX, then the system is vulnerable to the attack. This
also indicates that the attack would be very difficult to defeat
using software-level countermeasures.

Attack strategy. The DrK attack consists of two stages. First, we
scan all possible slots of kernel pages mentioned in Table 2 to find
the base and the end address of both kernel and drivers (modules).
In this step, the base address (ASLR slide) is found. The second
step is to obtain more accurate mapping information at a page-level
granularity. We try to measure the permission of each page starting
from the base address to the end address. Then, we compare the
result with the ground truth mapping information extracted from
page table entries to evaluate the accuracy of the DrK attack.

In the following, we describe in detail the experiment configura-
tion, settings, and interesting issues and tricks specific to each OS
and virtualized environment.
2All tested operating systems are the latest version as of May 2016.

4.2.1 Finding the Base and End Address
We used the following OS-specific information to get the current

mapping range of the running OS (see Table 2).
Linux. In Linux, kernel and modules addresses are mapped
in different regions. The base address of the kernel is in
the 0xffffffff80000000–0xffffffffc0000000 address range, and
there are only 64 slots where the kernel can start (aligned with
16 MB mask). For the module addresses, the base address can
start in the range of 0xffffffffc0000000–0xffffffffc0400000,
and 1,024 slots are available for base addresses for the modules
(aligned with 4 KB mask). To find the base address of each region,
we sequentially scan those slots from start to end.

After successfully determining the base address of the region,
we find the end address of each region as follows. For the kernel,
since it is always mapped as a whole chunk in Linux, we set the
end address as the first unmapped page that can be found starting
from the kernel base address. For the modules, while each module
is mapped as a chunk, there is a region of unmapped pages between
the modules. Thus, finding unmapped pages in the region can only
tell the number of modules loaded in the area. To identify the end of
module mapping area from this information, we use the number of
modules that is currently loaded in the OS. This is available through
a user level program lsmod, which shows the list of currently loaded
modules. If the number of detected unmapped region matches the
total number of modules, we set the end address at that point.
Windows. Unlike Linux, Windows does not have separated ar-
eas for kernel and driver mappings. Specifically, kernel pages
and driver pages can both lie in the same address range of
0xfffff80000000000–0xfffff80400000000. To distinguish be-
tween kernel pages and drivers, we use the following facts: 1) all
kernel pages in Windows are mapped with executable permission,
2) the kernel uses a page size of 2 MB, and its total size is at most 6
pages (12 MB in size for the tested version of Windows 10), and 3)
the kernel can either come in front of drivers or come after.

Knowing this, we scan the whole available address space from
one end to the other, to find the first and the last mapped pages
in the area. If first and the last pages are found, we look for a
consecutive 12 MB area mapped with executable permissions at
either end. This area contains kernel pages. After the kernel page
range is determined, we know the remaining space that is mapped
to be the module area.
OS X. For OS X, we only launched the attack to find the
base address (i.e., ASLR slide) of the kernel image. Since
the kernel can be mapped in the range of 0xffffff8000000000–
0xffffff8020000000 over 256 slots, we scan them to find the first
mapped address.

On all tested operating systems, finding the kernel base and end
address can be done very quickly. All scans were completed within
several milliseconds (5 ms, 31 ms, and 797 ms in Linux, OS X and
Windows, respectively).

4.2.2 Accuracy: Detecting Page Mappings
After discovering the base and the end address of kernel mappings,

we performed accuracy testing of the DrK attack. Basically, we
probed all mapped areas with DrK, then compared the result from
the attack to the ground truth mappings extracted from the page
tables.

Table 4 shows the result of our accuracy testing.
Linux. For Linux, we ran the attack on three different CPUs (i7-
6700K, i5-6300HQ, and E3-1271 v3), and on the kernel version
4.4.0 running Ubuntu 16.04 LTS. DrK measured 6,147 pages in
total (3,075 for kernel and 3,072 pages for the modules) and it was

385

Accuracy

OS CPU Type # Pages M/U M/U X/NX/U X/NX/U Max M Max X # Iter Time (s) Clock

Kernel Module Kernel Module

Linux
Skylake (i7-6700K) Kernel/Modules 6,147 100.00% 100.00% 100.00% 100.00% 235 210 100 0.16 3.9 GHz

Skylake (i5-6300HQ) Kernel/Modules 6,147 100.00% 100.00% 100.00% 100.00% 183 163 20 0.09 3.0 GHz
Skylake (i5-6300HQ) Kernel/Modules 6,147 100.00% 100.00% 100.00% 100.00% 183 163 100 0.21 3.0 GHz
Haswell (E3-1271 v3) Kernel/Modules 6,147 100.00% 100.00% 100.00% 100.00% 192 177 100 0.19 3.9 GHz

Windows
Skylake (i5-6300HQ) Kernel/Driver 34,258 100.00% 100.00% See (a) 90.45% 183 163 100 4.96 2.8 GHz
Skylake (i5-6300HQ) Kernel/Driver 34,258 100.00% 100.00% See (a) 98.60% 183 163 500 22.5 2.8 GHz
Skylake (i5-6300HQ) Kernel/Driver 34,258 100.00% 100.00% See (a) 99.28% 183 163 1,000 45.9 2.8 GHz

Linux Xen Skylake (i5-6300HQ) Kernel/Modules 5,633 100.00% 100.00% 99.98% 99.98% 580 (b) 530 (b) 100 0.65 2.3 GHz
Skylake (i5-6300HQ) Kernel/Modules 5,633 100.00% 100.00% 100.00% 100.00% 580 (b) 530 (b) 500 2.61 2.3 GHz

Amazon EC2 Haswell (E7-8880 v3) Kernel/Modules 6,147 100.00% 100.00% 100.00% 100.00% 181 165 100 0.27 2.7 GHz

Linux Skylake (i7-6700K) Kernel Base Addr 64 100.00% - - - 235 - 100 5ms 3.9 GHz
Windows Skylake (i5-6300HQ) Kernel Base Addr 8,192 100.00% - - - 183 - 100 797ms 3.0 GHz
OS X Skylake (i7-6700K) Kernel Base Addr 256 100.00% - - - 235 - 100 31ms 3.9 GHz

Table 4: Summary of the evaluation results of the DrK attack. To calculate the accuracy, we ran the full attack 10 times, then calculated the geometric mean to
show the consistency of the result over multiple runs. To break KASLR in Linux, it took around 0.2 seconds with 100% accuracy in detecting the mapping status
of each page. For Windows, while the attack on determining mapped / unmapped address resulted 100% accuracy over 100 probing iterations, the attack on the
executable permission did not. Running more iterations gives better accuracy: 98.60% and 99.28% on 500, and 1,000 iterations respectively. The DrK attack
also works well in a virtualized environment. We ran Linux over a Xen hypervisor and in cloud environment on an X1 instance of Amazon EC2, and both
resulted 100% of accuracy. For the last three rows, we only ran the DrK attack to find the base address of the kernel. It only took 5 ms for Linux, 31 ms for OS
X, and 797 ms for Windows to find the ASLR slide. (a) In Windows, all pages of the kernel (HAL and ntkrnlmp.exe) are mapped with executable permissions.
Therefore, we did not run X/NX detection for the pages. (b) See §4.3 and §4.4 for the effect of frequency scaling on the timings.

able to identify their mappings with 100% accuracy. In total, the
attack took around 0.2 seconds (from retrieving the base address to
determining all page permissions).
Windows. For Windows, we ran the DrK attack on Skylake i5-
6300HQ processor running Windows 10 version 10.0.10586. Both
kernel and drivers consisted of 34,258 pages (probing 8,192 of
2 MB pages for the base and end addresses, and 26,066 pages for
measuring 4 KB pages for the module addresses) to be scanned.
The total attack, including scanning slots for the base address and
measuring each page, completed in under five seconds with 100
iterations of probing, which yields 100% (mapping) and 90.45%
(executable) accuracy in detecting module mappings.

Running more iterations on Windows gives better results in find-
ing executable pages. When running 1,000 iterations on each page, it
yields 99.28% accuracy in detecting executable pages, while taking
long (45.9 s) for probing.

4.2.3 Detecting Module Addresses

1 // BASE_ADDR - END_ADDR PERM NAME SIZE
2 0xffffffffc035b000-0xffffffffc0360000 U
3 0xffffffffc0360000-0xffffffffc0364000 X libahci 4000
4 0xffffffffc0364000-0xffffffffc0368000 NX libahci 4000
5 0xffffffffc0368000-0xffffffffc036c000 U
6 0xffffffffc036c000-0xffffffffc036e000 X i2c_hid 2000
7 0xffffffffc036e000-0xffffffffc0371000 NX i2c_hid 3000
8 0xffffffffc0371000-0xffffffffc0376000 U
9 0xffffffffc0376000-0xffffffffc039a000 X drm 24000

10 0xffffffffc039a000-0xffffffffc03cc000 NX drm 32000
11 0xffffffffc03cc000-0xffffffffc03cd000 U

Figure 7: List of module mappings in Linux kernel 4.4.0. Note that the
mapping is always done in the following sequence: X, NX, U, and a chunk
of unmapped pages separates the mappings of consecutive modules. The
sizes of X and NX pages are diverse by the modules.

Fine-grained module detection. The DrK attack allows for a very
accurate picture of the kernel address space layout. This can be
further exploited to identify the exact location of a specific module
(driver). For example, from the mapping information, we can infer
the addresses of modules such as raid, drm, and libahci in Linux,
and locating the drivers such as NTFS, pci, and msrpc in Windows.

The DrK attack uses the size information of executable and non-
executable pages of the module as a signature. Figure 7 shows the
list of module mappings in Linux. In Linux, module mapping always
start with a code area (.text), which has executable permission.
Subsequently, areas such as .bss, .rodata with NX permission are
mapped. Note that the size of any single module is likely different
from that of the others. We set the size of X/NX areas as the
signature (e.g., X:0x2000 and NX:0x3000 for i2c_hid module).

Among a total of 80 modules loaded in Ubuntu 16.04 LTS, we
can determine the exact location of 29 modules that have a unique
size signature. However, the method cannot detect modules with the
same size. For example, for the worst case, there were 27 modules
with minimal size that have one page (0x1000) of X area and three
pages (0x3000) of NX area. Despite such a limitation, this module
detection can still be useful in attacks because the attacker can
reduce the uncertainty of the address (from targeting 80 modules to
only targeting 27 modules in the worst case).

For Windows, we can uniquely detect 97 drivers among a total
of 141 drivers using size-based driver signatures. Since the kernel
drivers of Windows have discardable mappings after initialization,
we cannot directly use the same signature for detecting Linux kernel
modules. Instead, we use two sizes that are unchanging during the
lifetime of the module to build the signature: 1) the total size of
the driver memory region (from start of the driver, but before the
start address of the next mapped driver), and 2) the size of first
contiguous executable region. Via experimentation, we observed 97
unique size signatures for detecting the driver addresses.

A prior work [27] tried a similar method for detecting kernel
drivers on Windows. However, since the work could not distinguish
X pages from NX pages, their detection result was far smaller (21)
than ours (97). Detection of X/NX gives much better precision for
determining the location of the drivers since it provides unique size
signatures for the drivers.

4.3 DrK in Virtualized Environment
To test the feasibility of the DrK attack in virtual and cloud

environments, we carried out the attack on Linux running under Xen
hypervisor 4.4, as well as an X1 instance of Amazon EC2 [2] to
check if the attack can be launched in such an environment.

386

Iterations 2 5 20 50 100

incorrect 239 70 18 8 0
Accuracy (%) 92.22 97.72 99.41 99.74 100.0

Table 5: Achieved accuracy over the number of iterations for the modules
pages (3,072 pages in total) of Linux Kernel 4.4.0 on Haswell (Xeon E3-1271
v3) processor. Probing the address with more iterations gives better accuracy.
For measuring with only 2 iterations (minimum iterations to measure TLB
cache hit), 239 mapped pages were detected as unmapped pages, which
renders 92.22% of accuracy. With more iterations, such as 20, 50, and
100, the number of incorrectly measured pages decreases as 18, 8, and 0,
respectively. With 100 iterations, the DrK attack achieves perfect accuracy
on breaking KASLR.

Results. The DrK attack can detect 99.99%–100% of kernel
mappings in a virtualized environment. The accuracy is slightly
lower than the bare-metal result. We believe that the difference in
accuracy is caused by factors that can affect TSX execution, such as
virtual interrupts generated by the hypervisor (e.g., VMEXIT).

Interestingly, we observed that a Skylake laptop processor (Core
i5-6300HQ) with Xen resulted in timings that were very different
from other environments (Table 4). We believe that this was due
to speed throttling, i.e., Intel Speed Step and Turbo Boost, because
its clock rate was lower than the same processor in a bare-metal
environment (2.3 GHz versus 3.0 GHz). We cover more issues with
clock speed in §4.4.

4.4 Controlling the Noise
Since DrK is a cache-based timing channel attack, it is not free

from the noise of the channel. On determining page mapping status
and executable status, we used the minimum cycle observed when
probing the pages as the threshold. However, occasionally, we ob-
served measurement errors, possibly due to hardware characteristics
(e.g., cache coherence traffic and cache conflict).

We minimized such measurement errors by probing a certain
address multiple times. Table 5 shows how the accuracy changes
by the number of iterations. With 2 iterations, 239 mapped pages
were detected as unmapped, among 3,072 pages in the scanned
area (92.22% of accuracy). However, as the number of iterations
increased to 5, 20, and 50, the number of mis-detected pages was
drastically reduced, 70, 18, and 8, respectively. Finally, probing
with 100 iteration, the accuracy reached 100%.

Note that the number of iterations to achieve the perfect accu-
racy depends on the environment, such as processor generation or
software settings for generating interrupts that is asynchronously
handled in TSX. For example, unlike Haswell that needed 100 it-
erations to get the 100% accuracy on Linux, Skylake only required
20 iterations to achieve perfect accuracy (see the second row on
Table 4). For the virtualized environment, the measured accuracy is
slightly lower than running bare-metal with the same number (100)
of iterations (100% vs 99.98%). However, still, we can manage the
noise by increasing the number of iterations: e.g., 500 iterations
achieved 100% accuracy.

Dynamic frequency scaling (i.e., Intel Speed Step or Intel Turbo
Boost) also affects the timings. Since we use the number of clock
cycles (using rdtscp) to measure timing, a change in the clock
frequency would affect the timing measurements [30, §17.14].

We solved this problem by keeping the processor busy. We em-
pirically observed that running two dummy loops consuming 100%
CPU time was enough to maximize the processor clock rate, and
achieve perfect accuracy. This also implies that the DrK attack
works well with processors with high workload; i.e., when the pro-
cessor runs jobs other than the attacks.

READ JUMP

Trace point M U X NX U

dTLB-loads 3,021,847 3,020,043 3,018,191 3,018,857 3,025,769
dTLB-load-misses 84 2,000,086 64 91 109
iTLB-loads 267 425 590 1,000,247 272
iTLB-load-misses 6 6 31 12 1,000,175
L1-icache-load-misses 1,092 1,027 1,157 1,190 1,391
L1-dcache-loads 3,021,885 3,020,081 3,018,229 3,018,895 3,025,807
L1-dcache-load-misses 1,000,856 1,000,787 1,002,456 1,000,603 1,002,539

Table 6: The number of TLB and cache loads and misses when DrK probes
single kernel memory page 1,000,000 times, measured by hardware perfor-
mance counters. Probing methods are reading mapped (M) and unmapped
(U) pages, and jumping into executable (X), non-executable (NX), and un-
mapped (U) pages. Tracepoints are data TLB loads/misses, instruction TLB
loads/misses, L1 instruction cache misses, and L1 data cache load/misses.
Reading of U page generated data TLB misses. In addition, while jumping
into X pages does not generate hit/miss counts on an instruction TLB (iTLB),
jumping into NX page incurs hit on iTLB, but jumping into U page generated
an iTLB miss. The remaining tracepoints were similar to each other.

4.5 Comparison with the Prior Attack
We summarize the evaluation result of the DrK attack by compar-

ing it with the prior attack presented by Hund et al. [27].
Speed and accuracy. The DrK attack took about 0.5 seconds in
Linux and about 5 seconds in Windows to achieve 100% accuracy of
detecting the full mapping information of kernel and driver space. In
contrast, the prior attack requires 17 seconds to obtain 96% accuracy.
Noise of the channel. Compare to the prior attack, DrK is strong
against measurement noise. As shown in Figure 6, the timing dif-
ference between mapped and unmapped pages was over 10% in
DrK. In contrast, in the prior attack, the timing difference between
mapped and unmapped pages was only around 1% (30–50 cycles
from 5,000 cycle), which can easily fluctuate.
Executable page detection. Unlike the prior attack, DrK can
distinguish executable pages from non-executable pages. Our new
finding is to demonstrate an accurate way of distinguishing exe-
cutable pages from the mapped pages, which allows an attacker
to effectively break KASLR, especially when detecting the exact
location of kernel drivers.
Module detection. As mentioned in §4.2.3, DrK detected a larger
number of drivers (97) than the prior attack (5–21). This is because
DrK has better accuracy than the prior attack and DrK is able to use
not only size signatures but also executable mapping status.

5. IN-DEPTH ANALYSIS OF DrK
In this section we figure out what causes DrK observe timing

differences. Since the internal characteristics of Intel processors
are barely documented, we first take a look into detailed measure-
ments on hardware events during the DrK attack using the hardware
performance counter (HPC) (§5.1). Then, we analyzed the measure-
ment results to figure out what causes the time difference between
mapped and unmapped pages (§5.2), and between executable and
non-executable pages (§5.3), in accordance with a simplified Intel
CPU architecture diagram (Figure 8).

5.1 Measuring Hardware Events
We probed a memory page 1,000,000 times while measuring

hardware events using the HPC. We tested the following five of
memory probings:

1. read a mapped kernel page
2. read an unmapped kernel page
3. jump into an executable kernel page
4. jump into a non-executable kernel page
5. jump into an unmapped kernel page.

387

Execution
Unit

Instruction
Scheduler

Fetch

Decode

Memory
Unit

Decoded
icache

L1
icache

L1
iTLB

L2
TLB

L1
dcache

L1
dTLB

L2
cache

Memory
(page table)

X

NX

M

U

Figure 8: Simplified Intel Skylake architecture including pipeline and cache
hierarchy. We omitted L2, last level, and any other page table caches for
simplicity. Each M, U, X, and NX indicates the locations where page faults
are checked according to our measurements. Note that decoded icache,
which caches decoded micro-ops, is inside L1 icache [30, 49] and it is a
virtually-indexed and virtually tagged (VIVT) cache, which does not requires
an iTLB access for address translation.

On probing, we set tracepoints to measure:

1. dTLB-loads: the total number of attempts to load data trans-
lation lookaside buffer (dTLB), including cache hit on dTLB.

2. dTLB-load-misses: the number of failed attempts to load
dTLB; cache miss on dTLB.

3. iTLB-loads: the total number of attempts to load instruction
TLB (iTLB), including cache hit on iTLB.

4. iTLB-load-misses: the number of failed attempts to load
iTLB; cache miss on iTLB.

5. L1-icache-load-misses: the number of failed attempts to
load L1 instruction cache (icache), cache miss on icache.

6. L1-dcache-loads: the total number of attempts to load L1
data cache (dcache), including dcache hit.

7. L1-dcache-load-misses: the number of failed attempts to
load L1 dcache; dcache miss.

Note that we were unable to measure L1-icache-loads because all
tested CPUs that support TSX (listed in Table 3) did not support the
counter for it. Table 6 summarizes the results measured in the Linux
machine with Intel Core i7-6700K (Skylake) 4.0 GHz CPU.

5.2 Mapped versus Unmapped Pages
We conjecture that dTLB makes timings for mapped and un-

mapped kernel pages differently, by its different caching behavior
on page mappings. As introduced in §3 and §4, a TSX abort handler
for a violation of reading mapped kernel memory (M) was called
faster than that for a violation of reading unmapped kernel memory
(U). We believe that the timing difference is originated by dTLB
hit on accessing a mapped memory (fast), and dTLB miss for an
unmapped memory (slow, because it requires a page table walk).

Table 6 supports this hypothesis: while reading an unmapped
(U) page generated a lot of (over two millions) dTLB misses
(dTLB-load-misses, marked in red), accessing a mapped (M) page
did not. The counter shows that the access to a mapped kernel mem-
ory caches its page table entry in dTLB. On the subsequent probing,
the page table entry can be retrieved by just accessing the dTLB.
Then, the page privilege is checked without having page table walk,
thus it results in faster determination of the page fault exception.
In contrast, the access to an unmapped kernel memory cannot be
cached into dTLB, because it has no corresponding physical address.
After suffering dTLB-miss, the probing should wait until the proces-
sor seek the page table entry then figuring out the page fault. Thus,
a read attempt to an unmapped page always requires a page table
walk, so it takes longer to raise the page fault exception (and calling
TSX abort handler).

We note that this explanation corresponded to Hund et al. [27]’s
finding.

5.3 Executable versus Non-executable Pages
We conjecture that decoded icache is the hardware components

that creates the side channel by handling executable and non-
executable kernel pages differently, as shown in timing differences.
In the DrK attack, timing of probing executable (X) pages was mea-
sured as faster than that of non-executable (NX) and unmapped (U)
pages. While it seems caching in iTLB would generate such timing
difference, nonetheless, it is not true.

Table 6 supports the hypothesis as follows.
iTLB is not the origin. Unlike the result on mapped/unmapped
pages, jumping into an X page did not generate any additional
iTLB-loads (590 in iTLB-loads on 1 M accesses). This means that
iTLB hit did not even happen on probing. Moreover, although iTLB
actually hits on probing NX pages (only 12 misses on 1 M accesses),
the timing of NX pages is not as fast as X. Further, although probing
on U pages generates many iTLB misses, the timing of NX pages
and U was the same (see Table 3). This proves that iTLB is not the
origin of the timing channel.
Decoded icache for faster timing on X. Table 6 also implies that,
unlike executing on NX and U pages, probing X pages does not
need to translate the virtual address to the physical address to fetch
instructions. From this observation, we came up with a hypothesis
that decoded icache is the origin of the timing channel; decoded
icache is the place in which fetched and decoded micro-ops are
cached (Figure 8). And it is virtually-indexed, and virtually-tagged
(VIVT) cache, which does not require address translation on its
access according to a patent document [49] published by Intel Cor-
poration.

On probing an executable memory page, once the instructions in
the address are decoded and cached, the processor no longer needs
to translate the address. Instead, it directly fetches the instructions
from the decoded icache, however, the actual execution fails due to
the access violation. Since the probing does not go through iTLB
nor page table walk, the exception is generated relatively faster than
probing other page mappings.
Page table walk is required for both NX and U. We conjecture
that page faults for both NX and U pages are generated after the pro-
cessor finished the page table walk, since their timings are the same
(Table 3). And, we hypothesize missing of coherency mechanism in
TLB in Intel processor makes those two access must go through the
page table walk.

On probing non-executable (NX) pages, the processor will cache
the corresponding page table entry into iTLB, and the entry is
marked as non-executable. However, the processor cannot deter-
mine the page fault by just inspecting the NX bit on the page table
entry from iTLB since TLB is not a coherent cache in Intel architec-
ture [24]. That is, there could be a case that other cores have updated
the permission on the page table as executable, but the current core
has a mismatched page table entry in its TLB. In such a case, on
(trying) execution on the page, the processor is required to resolve
the latest page table entry from the page table to check if there has
been any update. Therefore, on the subsequent probing, despite
iTLB hits, but the entry set with the NX bit; then, the processor
walks through the page table, and get the results that latest entry:
the entry is set with the NX bit. Finally, the processor can generates
a page fault exception.

U pages take the same path as the mapped versus unmapped case.
After the iTLB miss, the processor walks through the page table,
figures out the address is not mapped, and generates a page fault.

In summary, while executable pages (X) do not walk through the
page table on the subsequent probing (fast), both mapped (M) and

388

unmapped (U) pages always make processor walks through the page
table (slow) to determine the page fault.

6. POTENTIAL COUNTERMEASURES
We discuss potential countermeasures against the DrK attack. In

summary, we see there are no effective countermeasures that can
prevent DrK without hurting usability and performance.

6.1 Eliminating Timing Channel
One of the most fundamental countermeasures against DrK is

eliminating any timing differences when probing the kernel ad-
dresses at the user-level execution. When the Intel CPU handles
exceptions for unprivileged accesses, it takes different hardware
paths according to whether the accessed memory region is exe-
cutable, mapped, or unmapped. §5 shows our measurements about
the differences in terms of the loads and misses of cache and TLB.
Hardware modification. One possible way to flatten the timing
differences is modifying the hardware. For example, we can change
the CPU to not cache unprivileged accesses to kernel addresses,
which makes every unprivileged memory access take the same hard-
ware path. Any timing channel attacks, including DrK and Hund et
al. [27], cannot observe timing differences and would therefore fail.
However, since this solution demands hardware modifications, it
cannot protect already deployed CPUs from DrK.
Kernel page table separation. Another countermeasure against
DrK is separating the kernel page table from a user page table. If
no kernel memory is mapped into a user page table, DrK would
have no chance to break KASLR. However, the kernel address
space is mapped into a user page table to minimize the execution
overhead of privileged instructions (e.g., system call). Without
this, the system would need to flush TLBs whenever a user process
invokes a system call, which would significantly reduce the overall
system performance [6, 27]. For example, Xen uses separated page
tables for kernel and user processes when a guest machine is a
64-bit para-virtualized machine (PVM), but this degrades system
performance such that the 64-bit PVM is not recommended [46] for
use. Therefore, It is impractical to adopt this countermeasure due to
performance degradation.

6.2 Monitoring Hardware Events
Modern CPUs provide HPC interfaces to monitor hardware events

that occur inside a CPU, such as the numbers of retired instructions,
taken branches, and cache loads/misses. Although the OS cannot
observe any page faults while being attacked by DrK, it can infer
whether DrK is being performed by using the hardware event in-
formation. For example, we identified that during the DrK attack,
a CPU generates lots of loads/misses on both TLBs and the L1
i-cache (see Table 6). Further, the HPC provides information about
the number of transactional aborts (tx-abort) generated by a CPU.
This number would be large when the system is under attack by DrK
because each memory probing generates an abort.

However, monitoring hardware events has limitations to detect
DrK in terms of accuracy and performance. First, a benign program
can show a similar behavior to DrK when it randomly accesses
different memory regions or heavily uses TSX. Further, DrK can
cloak its behavior by decreasing the frequency of memory probing.
Thus, the system cannot avoid false detection problems. Next,
monitoring all processes of the OS is unrealistic due to the overhead
of checking HPC: about 20% performance overhead [60]. System-
wide monitoring could reduce the overhead, but, in that case, it is
difficult to determine which process engages in suspicious behavior.

6.3 Live Re-randomization and Fine-grained
KASLR

One possible approach to cope with DrK is to use fine-grained
ASLR and live re-randomization [21]. They not only adjust the
base addresses of kernel code and modules, but also randomize all
kernel code, static data, stack, dynamic data, and modules while
re-randomizing them periodically.

However, as shown in Table 4, DrK took less than 0.2 seconds in
Linux to detect full page mappings with 100% accuracy. Moreover,
by detecting a single module rather than the whole space, the attack
can be even faster (proportional to the scan size). This implies that
the OS needs to re-randomize its address space more than once per
second, which is problematic due to performance overhead.

In case of fine-grained KASLR, adding base offset within a page
can defeat DrK since the finest granularity that DrK can detect
the mapping is a page. However, this would have implementation
challenges, e.g., a compatibility issue on misaligned pages.

6.4 Other Countermeasures
Lastly, we introduce a few mechanisms that can prevent or miti-

gate DrK, but these are less practical.
Disabling TSX. The strongest countermeasure against DrK, though
a naïve one, is disabling TSX. Unlike other instructions that can be
disabled through model-specific registers (MSRs) or BIOS settings
(e.g. VM extensions), TSX cannot be disabled in such manner.
However, as a CPU manufacturer, Intel can disable the feature
via a microcode update or product line change. In fact, Intel had
already disabled TSX in the Haswell CPU due to a hardware bug
(Erratum HSD136 in [29]). Nonetheless, this solution is problematic
because TSX is already widely used; e.g., glibc uses TSX in its
pthread library for synchronization and Java uses TSX for thread
scheduling [34, 45].
Different caching policy. TSX only works with memory regions
configured as write-back ([30, §15.3.8.2]), which is a default con-
figuration due to its efficiency. In our experiment, we observed a
few (288 pages among 26,066 pages in Windows) memory pages
in driver area configured as write-through or uncacheable and DrK
misjudged them as unmapped pages. Although those pages do not
belong to any kernel drivers, (i.e., it does not affect the accuracy
evaluation) this implies that if an OS makes the entire kernel mem-
ory either write-through or uncachable, it can be secure against
DrK. However, this configuration is impractical, as it results in huge
performance degradation [6].
Noisy timer. Finally, a noisy timer or coarse-grained timer is a well-
known countermeasure against timing attacks. The system can add
some noise when returning a timer value or prevent a user program
from using a fine-grained timer (e.g., rdtsc). However, the noisy
timer is just a work-around such that it cannot completely prevent
DrK. Also, many benign programs need to use the fine-grained
timer, e.g., to precisely measure performance.

7. DISCUSSIONS
Limitations. DrK has some limitations. First, DrK always treats
uncachable, write-through, and paged-out memory regions as un-
mapped. DrK relies on Intel TSX, which only works with memory
pages configured as write-back ([30, §15.3.8.2]). Thus, it cannot
probe memory pages configured as uncachable or write-through;
its access to such memory pages always aborts. DrK also treats
swapped-out pages as unmapped because access to such pages gen-
erates a page fault which aborts the transaction ([30, §15.3.8.2]).

However, we did not observe write-through pages for the code
and data areas of the kernel and drivers, in both Linux and Win-

389

dows, because write-through pages are slower than write-back pages.
Due to the performance issues, kernel developers do not use write-
through pages in general. Further, most of the important kernel
pages, such as kernel text, data, and drivers, are frequently used, so
they are usually kept in memory (i.e., not paged out). Therefore,
these limitations are negligible.
Breaking “security by memory obscurity”. DrK can also be
applied to launch an undetectable, crash-resistant memory map-
ping probing [19]. Some system protection mechanisms, such as
CPI [35], ASLR-Guard [39], and Kenali [54], assume a secret mem-
ory location that the attacker cannot know to store sensitive in-
formation for integrity protection. However, using DrK, such an
assumption could be broken if such a secret address is not selected
carefully, because the DrK attack can fully search for the address
space without any crash. We plan to figure out how we can use DrK
to break such protection mechanisms.

8. RELATED WORK
In this section, we provide a comprehensive landscape of past

research related to the DrK attack.
ASLR: Attacks and defenses. Since the most modern OSes
adapt W⊕X and ASLR to prevent code injection and code reuse
attacks [12, 48, 51, 52], attackers and defenders continuously find
new attacks to break ASLR and develop countermeasures against
them. Researchers find that many ASLR implementations are in-
secure because they do not fully randomize address spaces (e.g.,
shared libraries without ASLR and fixed memory allocation) and do
not provide enough entropy (e.g., limited mapping range and large
alignment size) to avoid performance degradation. These make the
ASLR implementations vulnerable to prediction and brute-force
attacks [9, 12, 18, 51, 52]. To prevent such attacks, researchers pro-
pose fine-grained ASLR technologies that randomize the location
of functions [7, 33], basic blocks [59], and even instructions and
registers [26, 47].

On the other hand, researchers also discover that even fine-grained
ASLR can be broken by information leak vulnerabilities [50, 55],
since they let attackers know de-randomized addresses. By using
it, Snow et al. [53] break the fine-grained ASLR. To mitigate such
an attack, three kinds of schemes have been proposed: (1) dynamic
(re-)randomization [4, 8, 16, 20, 21, 38] to make leaked information
useless, (2) execution-only memory [3, 11, 15] and destructive code
read [56] to prevent attackers from reading any code gadgets, and (3)
pointer integrity [14, 35, 39] to prevent code pointer manipulation.

In addition, researchers recently found that memory de-
duplication can be used to break ASLR without information leak
vulnerabilities [5, 10].
Timing attacks against KASLR. Hund et al. [27] present a timing
side channel attack against kernel space ASLR, which is the work
most relevant to DrK. The main advantage of these timing attacks
over the previous ASLR attacks is that they neither relies on weak
implementations of ASLR nor information leak vulnerabilities.

Hund et al.’s attack and DrK focus on similar timing differences
caused by how a processor handles a page fault for mapped com-
pared to unmapped kernel memory pages. However, unlike DrK,
Hund et al.’s attack should call the OS page fault handler whenever
probing each kernel memory page, which suffers from high noise
due to a long execution path inside the OS. Furthermore, this lets
the OS know which user process frequently accesses kernel memory
pages, so that the OS can easily detect the attack.

In contrast, DrK uses a TSX abort handler to probe a kernel
memory page, whose execution path is shorter than that of OS
page fault handler, making it less error-prone and even able to

recognize the small difference between accessing executable and
non-executable pages. Also, it is difficult for the OS to detect DrK
because it cannot directly observe the behavior of DrK (§4).

Recently, Gruss et al. [22] exploit the prefetch instruction on the
processor, which loads a specific address into a certain cache level,
to probe mapping information without causing exceptions. However,
since the prefetch instruction targets data, this attack cannot identify
whether an address is executable or non-executable, unlike DrK.
Crash-resistant memory probing. One of the advantages of
DrK is that it does not generate a crash when probing the kernel’s
address space. Recently, Gawlik et al. [19] have shown a similar
web attack for crash-resistant memory probing. They found that
memory access violations by some JavaScript methods do not crash
modern web browsers having fault-tolerant functionality, which
allows for memory probing without a browser crash. However,
OSes can identify whether such an attack is performed because it
cannot suppress the exception, unlike DrK. Also, as the authors
mention, this attack can be mitigated by limiting the number of
faults that can be caused, checking the exception information, using
guard pages, and using memory safety solutions. However, none of
these approaches can mitigate DrK.
TSX timing channel. We found two blog articles [1, 64] that
depicted kernel timing attacks using TSX while we conducted this
research. Note that although this paper and the two blog articles are
based on similar observations, this work makes the following impor-
tant contributions, unlike the blog articles which only conjecture that
such an attack is possible. First, we did comprehensive evaluations.
We demonstrated and analyzed DrK with three different Intel CPU
generations (§4.1) in all major OSes (§4.2 and §4.2.3). Moreover,
we give instructions on controlling the noise of timing channel to get
the best precision (§4.4). Second, we showed what causes this tim-
ing channel through experiments. We studied the architecture of the
modern Intel CPU in depth and discovered which execution paths
lead to such a timing channel (§5). We monitored the behavior of
the Intel CPU in detail using the HPC and checked its architectural
details to figure out the root cause. Lastly, we discovered that the
TSX timing channel can be used to determine whether a memory
page is executable or non-executable (§3 and §4). Note that neither
the two blog articles nor Hund et al. [27]’s work discovered this
timing channel.

9. CONCLUSION
To protect the kernel memory from attacks in the wild, commod-

ity OSes have adopted KASLR, which is proven to be a practical
defense mechanism against many memory corruption attacks. In
this paper, we introduced DrK, a timing side channel attack that
almost perfectly de-randomizes KASLR using the Intel CPU’s new
instruction set, TSX. Our evaluation shows DrK is much better
than the prior side channel attack in terms of precision, platform
independence, covertness, and speed. We further analyzed which
architectural characteristics exposed such timing differences and
proposed some countermeasures to eliminate it.

Acknowledgments
We thank the anonymous reviewers, for their helpful feedback, as
well as GTISC lab members for their proofreading efforts. This
research was supported by the NSF award DGE-1500084, CNS-
1563848, CRI-1629851 ONR under grant N000141512162, DARPA
TC program under contract No. DARPA FA8650-15-C-7556, and
DARPA XD3 program under contract No. DARPA HR0011-16-C-
0059, and ETRI MSIP/IITP[B0101-15-0644].

390

Responsible vulnerability disclosure. Following the guidance
of responsible vulnerability disclosure, We confidentially reported
the vulnerability to through US-CERT (VU#954695) and Microsoft
Security Response Center (MSRC, Case 32737, TRK:0001003139),
and shared this manuscript with affected vendors to resolve the
newly discovered security threat. After the public disclosure, we
will release the source code of the DrK attack available to the public.

References
[1] Anababa. What Does Transactional Synchronization

Extensions (TSX) Processor Technology Mean to
Vulnerability Exploits (e.g. Brute Forcing)?,.
http://hypervsir.blogspot.com/2014/11/
what-does-transactional-synchronization.html.

[2] AWS Blog. Amazon EC2 X1 Instances.
https://aws.amazon.com/ec2/instance-types/x1/.

[3] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger,
and J. Pewny. You Can Run but You Can’t Read: Preventing
Disclosure Exploits in Executable Code. In Proceedings of
the 21st ACM Conference on Computer and Communications
Security (CCS), Scottsdale, Arizona, Nov. 2014.

[4] M. Backes and S. Nürnberger. Oxymoron: Making
Fine-Grained Memory Randomization Practical by Allowing
Code Sharing. In Proceedings of the 23rd USENIX Security
Symposium (Security), San Diego, CA, Aug. 2014.

[5] A. Barresi, K. Razavi, M. Payer, and T. R. Gross. CAIN:
Silently breaking ASLR in the cloud. In 9th USENIX
Workshop on Offensive Technologies (WOOT), Washington,
D.C., Aug. 2015.

[6] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm.
Implications of CPU caching on byte-addressable non-volatile
memory programming, 2012.

[7] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
Techniques for Comprehensive Protection from Memory Error
Exploits. In Proceedings of the 14th USENIX Security
Symposium (Security), Baltimore, MD, Aug. 2005.

[8] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi.
Timely Rerandomization for Mitigating Memory Disclosures.
In Proceedings of the 22nd ACM Conference on Computer
and Communications Security (CCS), Denver, Colorado, Oct.
2015.

[9] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and
D. Boneh. Hacking Blind. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA,
May 2014.

[10] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. Dedup Est
Machina: Memory Deduplication as an Advanced
Exploitation Vector. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA,
May 2016.

[11] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen,
C. Liebchen, and A.-R. Sadeghi. Leakage-Resilient Layout
Randomization for Mobile Devices. In Proceedings of the
2016 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2016.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-Oriented Programming
without Returns. In Proceedings of the 17th ACM Conference
on Computer and Communications Security (CCS), Chicago,
IL, Oct. 2010.

[13] R. Chen. Some remarks on VirtualAlloc and
MEM_LARGE_PAGES. https://blogs.msdn.microsoft.com/
oldnewthing/20110128-00/?p=11643.

[14] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuardTM: Protecting Pointers From Buffer Overflow
Vulnerabilities. In Proceedings of the 12th USENIX Security
Symposium (Security), Washington, DC, Aug. 2003.

[15] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R.
Sadeghi, S. Brunthaler, and M. Franz. Readactor: Practical
Code Randomization Resilient to Memory Disclosure. In
Proceedings of the 36th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2015.

[16] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and
F. Monrose. Isomeron: Code Randomization Resilient to
(Just-In-Time) Return-Oriented Programming. In Proceedings
of the 2015 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2015.

[17] S. Esser. mach_port_kobject() and the Kernel Address
Obfuscation. https:
//sektioneins.de/en/blog/14-12-23-mach_port_kobject.html.

[18] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi.
Missing the Point(er): On the Effectiveness of Code Pointer
Integrity. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (Oakland), San Jose, CA, May 2015.

[19] R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and T. Holz.
Enabling Client-Side Crash-Resistance to Overcome
Diversification and Information Hiding. In Proceedings of the
2016 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2016.

[20] J. Gionta, W. Enck, and P. Ning. HideM: Protecting the
Contents of Userspace Memory in the Face of Disclosure
Vulnerabilities. In Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy (CODASPY),
2015.

[21] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced
Operating System Security Through Efficient and
Fine-grained Address Space Randomization. In Proceedings
of the 21st USENIX Security Symposium (Security), Bellevue,
WA, Aug. 2012.

[22] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard.
Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR. In Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS), Vienna,
Austria, Oct. 2016.

[23] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang. Protecting
Private Keys against Memory Disclosure Attacks using
Hardware Transactional Memory. In Proceedings of the 36th
IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2015.

[24] Henry. TLB and Pagewalk Coherence in x86 Processors.
http://blog.stuffedcow.net/2015/08/pagewalk-coherence/.

[25] Heroku. Heroku: Cloud Application Platform.
https://www.heroku.com/.

[26] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson. ILR: Where’d My Gadgets Go? In Proceedings of
the 33rd IEEE Symposium on Security and Privacy (Oakland),
San Francisco, CA, May 2012.

[27] R. Hund, C. Willems, and T. Holz. Practical Timing Side
Channel Attacks Against Kernel Space ASLR. In Proceedings
of the 34th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2013.

[28] Intel. ARK | Your Source for Intel Protect Specifications.
http://ark.intel.com.

391

http://hypervsir.blogspot.com/2014/11/what-does-transactional-synchronization.html
http://hypervsir.blogspot.com/2014/11/what-does-transactional-synchronization.html
https://aws.amazon.com/ec2/instance-types/x1/
https://blogs.msdn.microsoft.com/oldnewthing/20110128-00/?p=11643
https://blogs.msdn.microsoft.com/oldnewthing/20110128-00/?p=11643
https://sektioneins.de/en/blog/14-12-23-mach_port_kobject.html
https://sektioneins.de/en/blog/14-12-23-mach_port_kobject.html
http://blog.stuffedcow.net/2015/08/pagewalk-coherence/
https://www.heroku.com/
http://ark.intel.com

[29] Intel Corporation. Desktop 4th Generation Intel CoreTM
Processor Family, Desktop Intel Pentium Processor Family,
and Desktop Intel Celeron Processor Family, 2015.

[30] Intel Corporation. Intel 64 and IA-32 Architectures
Developer’s Manual, 2015.

[31] K. Johnson and M. Miller. Exploit Mitigation Improvements
in Windows 8. In Black Hat USA, 2012.

[32] D. Keuper. XNU: a security evaluation. 2012.

[33] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space
layout permutation (ASLP): Towards fine-grained
randomization of commodity software. In Proceedings of the
Annual Computer Security Applications Conference (ACSAC),
Chicago, IL, Dec. 2006.

[34] A. Kleen. Lock elision in the GNU C library, 2013.
https://lwn.net/Articles/534758/.

[35] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song. Code-Pointer Integrity. In Proceedings of the
11th Symposium on Operating Systems Design and
Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

[36] V. Leis, A. Kemper, and T. Neumann. Exploiting Hardware
Transactional Memory in Main-Memory Databases. In
Proceedings of the 30th IEEE International Conference on
Data Engineering Workshop, Chicago, IL, Mar.–Apr. 2014.

[37] Y. Liu, Y. Xia, H. Guan, B. Zang, and H. Chen. Concurrent
and Consistent Virtual Machine Introspection with Hardware
Transactional Memory. In Proceedings of the 20th IEEE
Symposium on High Performance Computer Architecture
(HPCA), Orlando, FL, USA, Feb. 2014.

[38] K. Lu, S. Nurnberger, M. Backes, and W. Lee. How to Make
ASLR Win the Clone Wars: Runtime Re-Randomization. In
Proceedings of the 2016 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb.
2016.

[39] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee.
ASLR-Guard: Stopping Address Space Leakage for Code
Reuse Attacks. In Proceedings of the 22nd ACM Conference
on Computer and Communications Security (CCS), Denver,
Colorado, Oct. 2015.

[40] MITRE Corporation. CVE-2015-1097. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1097.

[41] MITRE Corporation. CVE-2015-1674. http://www.cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2015-1674.

[42] MITRE Corporation. CVE-2015-8569. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8569.

[43] MITRE Corporation. CVE-2016-0175. http://www.cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2016-0175.

[44] NES CONSEIL. Bypassing Windows 7 Kernel ASLR.
https://dl.packetstormsecurity.net/papers/bypass/
NES-BypassWin7KernelAslr.pdf.

[45] Oracle. Java Platform, Standard Edition Tools Reference.
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/
java.html.

[46] Oracle. Oracle VM Performance and Tuning - Part 5.
https://blogs.oracle.com/jsavit/entry/oracle_vm_
performance_and_tuning4.

[47] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing
the Gadgets: Hindering Return-Oriented Programming Using
In-Place Code Randomization. In Proceedings of the 33rd
IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2012.

[48] PaX Team. PaX address space layout randomization (ASLR),
2003. https://pax.grsecurity.net/docs/aslr.txt.

[49] L. Rappoport, C. Koren, F. Sala, O. Lempel, I. Ouziel, I. Kim,
R. Gabor, L. Libis, and G. Pribush. Method and Apparatus for
Pipeline Inclusion and Instruction Restarts in a Micro-op
Cache of a Processor, June 2010. US Patent App. 12/317,959.

[50] F. J. Serna. The info leak era on software exploitation. In
Blackhat USA, 2012.

[51] H. Shacham. The Geometry of Innocent Flesh on the Bone:
Return-into-libc without Function Calls (on the x86). In
Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS), Alexandria, VA, Oct.–Nov.
2007.

[52] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the Effectiveness of Address-Space
Randomization. In Proceedings of the 11th ACM Conference
on Computer and Communications Security (CCS),
Washington, DC, Oct. 2004.

[53] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A.-R. Sadeghi. Just-In-Time Code Reuse: On the
Effectiveness of Fine-Grained Address Space Layout
Randomization. In Proceedings of the 34th IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May
2013.

[54] C. Song, B. Lee, K. Lu, W. R. Harris, T. Kim, and W. Lee.
Enforcing Kernel Security Invariants with Data Flow Integrity.
In Proceedings of the 2016 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb.
2016.

[55] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,
S. Lachmund, and T. Walter. Breaking the Memory Secrecy
Assumption. In Proceedings of the Second European
Workshop on System Security (EUROSEC), 2009.

[56] A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte:
Thwarting Memory Disclosure Attacks using Destructive
Code Reads. In Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS), Denver,
Colorado, Oct. 2015.

[57] The Linux Kernel Archives. Huge Pages. https:
//www.kernel.org/doc/Documentation/vm/hugetlbpage.txt.

[58] Z. Wang, H. Qian, J. Li, and H. Chen. Using Restricted
Transactional Memory to Build a Scalable In-Memory
Database. In Proceedings of the ACM EuroSys Conference,
Amsterdam, The Netherlands, Apr. 2014.

[59] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
Stirring: Self-randomizing Instruction Addresses of Legacy
x86 Binary Code. In Proceedings of the 19th ACM
Conference on Computer and Communications Security
(CCS), Raleigh, NC, Oct. 2012.

[60] V. Weaver. Linux perf event Features and Overhead, 2013.
http://researcher.watson.ibm.com/researcher/files/us-ajvega/
FastPath_Weaver_Talk.pdf.

[61] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast
In-memory Transaction Processing using RDMA and HTM.
In Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP), Monterey, CA, Oct. 2015.

[62] Wikiwand. Address space layout randomization. http://www.
wikiwand.com/en/Address_space_layout_randomization.

[63] Windows Dev Center. Creating a File Mapping Using Large
Pages. https://msdn.microsoft.com/en-us/library/windows/
desktop/aa366543(v=vs.85).aspx.

[64] R. Wojtczuk. TSX Improves Timing Attacks Against KASLR.
https://labs.bromium.com/2014/10/27/
tsx-improves-timing-attacks-against-kaslr/.

392

https://lwn.net/Articles/534758/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1097
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1097
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1674
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1674
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8569
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8569
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0175
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0175
https://dl.packetstormsecurity.net/papers/bypass/NES-BypassWin7KernelAslr.pdf
https://dl.packetstormsecurity.net/papers/bypass/NES-BypassWin7KernelAslr.pdf
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://blogs.oracle.com/jsavit/entry/oracle_vm_performance_and_tuning4
https://blogs.oracle.com/jsavit/entry/oracle_vm_performance_and_tuning4
https://pax.grsecurity.net/docs/aslr.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
http://researcher.watson.ibm.com/researcher/files/us-ajvega/FastPath_Weaver_Talk.pdf
http://researcher.watson.ibm.com/researcher/files/us-ajvega/FastPath_Weaver_Talk.pdf
http://www.wikiwand.com/en/Address_space_layout_randomization
http://www.wikiwand.com/en/Address_space_layout_randomization
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366543(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366543(v=vs.85).aspx
https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/

	Introduction
	Background
	Kernel ASLR
	Intel TSX

	The DrK Attack
	Threat Model
	Overview

	Attack Evaluation
	Characteristics of the Timing Channel
	Breaking KASLR in Popular OSes
	Finding the Base and End Address
	Accuracy: Detecting Page Mappings
	Detecting Module Addresses

	DrK in Virtualized Environment
	Controlling the Noise
	Comparison with the Prior Attack

	In-depth Analysis of DrK
	Measuring Hardware Events
	Mapped versus Unmapped Pages
	Executable versus Non-executable Pages

	Potential Countermeasures
	Eliminating Timing Channel
	Monitoring Hardware Events
	Live Re-randomization and Fine-grained KASLR
	Other Countermeasures

	Discussions
	Related Work
	Conclusion

