
Heterogeneous Rainbow Table Widths Provide Faster
Cryptanalyses

Gildas Avoine
INSA Rennes / IRISA

gildas.avoine@irisa.fr

Xavier Carpent
Computer Science Department
University of California, Irvine

xcarpent@uci.edu

ABSTRACT
Cryptanalytic time-memory trade-offs are techniques intro-
duced by Hellman in 1980 to speed up exhaustive searches.
Oechslin improved the original version with the introduction
of rainbow tables in 2003. It is worth noting that this variant
is nowadays used world-wide by security experts, notably to
break passwords, and a key assumption is that rainbow ta-
bles are of equal width.

We demonstrate in this paper that rainbow tables are un-
derexploited due to this assumption never being challenged.
We stress that the optimal width of each rainbow table
should be individually – although not independently – calcu-
lated. So it goes for the memory allocated to each table. We
also stress that visiting sequentially the rainbow tables is no
longer optimal when considering tables with heterogeneous
widths.

We provide an algorithm to calculate the optimal con-
figuration and a decision function to visit the tables. Our
technique performs very well: it makes any TMTO based on
rainbow tables 40% faster than its classical version.

Keywords
time-memory tradeoff; rainbow tables

1. INTRODUCTION
A cryptanalytic time-memory trade-off is a technique to

find preimages of given outputs of a one-way function. They
were first introduced by Hellman in 1980 [9] and they have
been used in many practical attacks such as against A5/1
(used for GSM communications) in 2000 [7], or other stream
ciphers like LILI-128 in 2002 [15]. The rainbow tables tech-
nique [14], a variant on Hellman’s, has been illustrated by
the very efficient cracking of Windows LM Hash passwords
in 2003 [14] and Unix passwords (using FPGA) in 2005 [13].

Hellman’s technique has been improved upon in various
ways, mostly targeting the efficiency of the online phase.
The most impactful of these improvements arguably was
the aforementioned rainbow tables variant [14] introduced

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02-06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3053030

by Oechslin. Another notable variant is the distinguished
points [8] by Rivest in 1982. A recent analysis [12] shows
that the rainbow tables are the fastest variant known today.
Several improvements on the rainbow tables were published
during the last decade, including the checkpoints [4] and the
fingerprints[1], and techniques to optimize the ending points
storage [2] and to address non-uniform distributions [3].

Whatever the considered variant based on rainbow tables,
time-memory trade-offs consist of tables sharing the same
width. This assumption has never been challenged since the
original publication of rainbow tables.

We demonstrate in this paper that rainbow tables are un-
derexploited because considering tables of equal width is far
from being the optimal configuration. We show that the
width of each table – and so the memory allocated to each
of these tables – should be individually (but not indepen-
dently) calculated for each table. This approach lead to cre-
ate so-called “heterogeneous tables”, by opposition to “ho-
mogeneous tables”. We also show that the widely-used rule
that consists in visiting the tables sequentially is not the op-
timal one when considering heterogeneous tables. The paper
thus shows that heterogeneous tables are about 40% faster
than their homogeneous counterparts.

Section 2 provides the technical background that is needed
to understand our technique. Section 3 describes the tech-
nique, which includes the description of the heterogenous
tables and the interleaving exploring rule. Section 4 intro-
duces an algorithm to identify the optinal configuration, and
Section 5 finally evaluates the technique.

2. TECHNICAL BACKGROUND

2.1 Concept
A fundamental problem in cryptanalysis is finding the

preimage of a given output of a one-way function. A sim-
ple method is applying the function to all possible inputs
until finding the expected value. Such an exhaustive search
requires N operations in the worst case to find a preimage,
where N is the size of the input space. This becomes im-
practical when N is very large. The other extreme is to first
construct a look-up table including all the preimage values.
Afterwards, finding a preimage is done via a table look-up
operation which requires a negligible amount of time. The
precomputation process however requires an effort equal to
an exhaustive search, but is to be performed only once. Al-
though this method is quite fast during the online search
phase, it may require prohibitively large amounts of mem-
ory for large problems.

815

http://dx.doi.org/10.1145/3052973.3053030


Time-memory trade-offs are an intermediate solution to
this problem. They consist in an offline precomputation
phase, and an online search phase, and require some mem-
ory. The efficiency of the online phase is proportional to
N2/M2 where M is the memory associated to the trade-off.
Typically, this translates into both time and memory being
O(N2/3), but ultimately the more memory is dedicated to
the trade-off, the faster the search phase goes. The memory
required is typically much smaller than for exhaustive stor-
age, and the online phase is on average typically much faster
than for exhaustive search. The precomputation phase how-
ever is more expensive than for the exhaustive storage solu-
tion.

We now introduce the notation used in this paper. Let
h : A → B be a one-way function. Let ri : B → A be the
reduction function used in column i. The goal of a reduction
function is to map a point in B to an arbitrary point in A
in an efficient and uniformly distributed fashion. A typical
reduction function is ri : y 7→ (y + i) mod N , with N = |A|.
The rainbow tables method is divided into two phases: the
offline (or precomputation) and the online phases.

2.2 Offline phase
During this step, the rainbow tables are computed and

stored in memory. A table consists in a series of chains
built by iterating alternatively h and ri. The first points of
the chains (called the starting points) are chosen arbitrarily
(usually incremental values, see e.g. [2]). Chains are of fixed
length t and once all chains are completed, only the starting
points and the ending points (the last point of each chain)
are saved. Tables are then usually filtered so as to only
keep one chain per different ending point (clean tables1).
The computation of chains stops when the number of chains
with different ending points m is deemed satisfactory. See
Figure 1 for a depiction of the structure of a rainbow table.
Multiple clean rainbow tables are usually built for a given
problem (see Section 3.1).

A table of maximal size is obtained when all (or almost
all) the possible ending points are reached, which happens
when the number of chains computed is sufficiently large (i.e.
when any new chain would have a negligible probability of
having a new ending point). Clean tables of maximal size are
the most memory-efficient version of the rainbow tables [12].
See for instance [5, 12] for an analysis of clean tables and
tables of maximal size (the results relevant for the analysis
of heterogeneous tables are also presented in this paper).

2.3 Online phase
During this step, the rainbow tables are loaded in mem-

ory and searched through to find the preimage of a given
hash. Given a hash y = h(x), the goal is to find x. The first
step consists in computing rt−1(y) and searching through the
ending points list for a j such that Ej = rt−1(y). If such an
ending point exists, a chain is rebuilt from the correspond-
ing starting point Sj in order to compute Xj,t−1 and verify
whether h(Xj,t−1) = y. If it is the case, the attack succeeds
with x = Xj,t−1, and if not, this match was a false alarm. In
the case of a false alarm, or when no matching endpoint is
found, the attack proceeds to the next table. Once all tables
are cycled, the attack proceeds to the next column, com-
puting rt−1(h(rt−2(y))), and again checking for a matching

1Tables are said to be perfect [14, 5] or clean [2, 3] when
they do not contain any merge.

ending point. Then computing rt−1(h(rt−2(h(rt−3(y))))),
and so on until either the search succeeds or all columns are
have been searched through.

The search procedure for rainbow tables works in parallel.
That is, all tables are searched through for each column
rather than sequentially. The reason for this is that the
search is increasingly more expensive towards the left of the
tables. Result 1 (from [14]) quantifies that cost, in terms of
number of cryptographic operations.

Result 1. The average number of h evaluations during
a search in column k (column 0 being the rightmost one) of
a clean rainbow table of maximal size with chains of size t
is:

Ck = k + (t− k + 1)qt−k+1,

with

qi = 1− i(i− 1)

t(t+ 1)
.

It is relatively easy to observe numerically that the quantity
written in Result 1 is increasing, but one can be convinced
by observing that the negative term in k is multiplied by
qt−k+1, which is both smaller than 1 and decreasing.

3. OUR TECHNIQUE

3.1 Heterogeneous Tables
In order to obtain a clean table, many chains need to be

thrown out, which reduces the coverage and thus the prob-
ability of success during the online phase. Even tables of
maximal size have a bounded probability of success, pro-
vided in Result 2 and proved in [14].

Result 2. The probability of success of a set of ` clean
rainbow tables of maximal size is:

P ∗ ≈ 1− e−2`.

This implies that in order to obtain a higher probability of
success while using maximal size clean tables, one must use
` independent tables, i.e., tables that use different reduction
function families. A typical number for ` is 4, which achieves
a total probability of success of about 99.97%. As explained
in Section 2, these tables are built separately to one another,
and explored in parallel during the online phase.

In the original paper [14] and subsequently, these ` ta-
bles are considered to have the same width and number of
chains. What is suggested in this paper is to instead allow
tables of different configurations, or heterogeneous tables,
by opposition to homogeneous tables. Let2 [m]k and [t]k be
respectively the number of chains and the length of chains
in table k. Since each table is considered to be clean and
of maximal size, these quantities are related to one another
through Result 3, proved in [14].

Result 3. The average number m of chains of length t
in a clean table of maximal size built for an input space of
size N is:

m =
2N

t+ 1
.

2The brackets are used to specify quantities specific to ta-
bles, and also in order to avoid confusion with quantities
such as mi that appear for instance in [14].

816



S1 = X1,1
r1◦h−−−→ X1,2

r2◦h−−−→ . . .
rt−2◦h−−−−→ X1,t−1

rt−1◦h−−−−→ X1,t = E1

S2 = X2,1
r1◦h−−−→ X2,2

r2◦h−−−→ . . .
rt−2◦h−−−−→ X2,t−1

rt−1◦h−−−−→ X2,t = E2

...
...

. . .
...

...

Sj = Xj,1
r1◦h−−−→ Xj,2

r2◦h−−−→ . . .
rt−2◦h−−−−→ Xj,t−1

rt−1◦h−−−−→ Xj,t = Ej

...
...

. . .
...

...

Sm = Xm,1
r1◦h−−−→ Xm,2

r2◦h−−−→ . . .
rt−2◦h−−−−→ Xm,t−1

rt−1◦h−−−−→ Xm,t = Em

Figure 1: Structure of a rainbow table. The framed columns, respectively the starting points and the ending points, are the
parts stored in memory.

3.2 Interleaving

3.2.1 Rationale
When visiting homogeneous tables, the optimal order of

search is to go through each table at the same pace. The
reason for this is that searching through a table gets increas-
ingly costly the further one goes (see Result 1).

For heterogeneous tables however, the optimal order of
search might be different. Intuitively, it is better on average
to start with the table that has the most/shortest chains. It
is indeed in this table that the probability of success per step
is highest, and the cost of verifying false alarms is lowest.
However, after a while, the increasing cost in this table might
overcome the benefit and it might be better to switch to the
second table, possibly to return to the first table afterwards,
or switch to the third and so on.

This idea of interleaving the order of search in multiple
rainbow tables was explored for non-uniformly distributed
input [3]. The premise of [3] is that rainbow tables are de-
signed to work with uniformly distributed input, yet in some
cases (notably for password cracking), the input is not uni-
formly distributed. The idea is to partition the input space
into several subsets that each are considered to be individ-
ually uniformly distributed, and to build a set of ` rainbow
tables for each of them. During the online phase, the ` ta-
bles of each subset are explored in parallel as one step of
the search, but the order in which the subsets are explored
is interleaved and tailored such that the average searching
time is minimized.

The idea discussed in this paper works on the level of
one rainbow table set, with input considered uniformly dis-
tributed. The technique is thus completely independent and
compatible with the one discussed in [3] for non-uniformly
distributed input.

3.2.2 Order of visit
This section discusses the order in which the columns

in the ` tables should be visited. As mentionned in Sec-
tion 3.2.1, this order of visit is not necessarily straightfor-
ward. The approach suggested here is the same as the one
in [3], namely that at each step, a decision is made as to
in which table the next search should be made, in order to
minimize the average time.

This decision has a negligible impact on the overal com-
putation. It is based on measuring a metric for each table,
and picking the table in which this metric is highest. This
metric for each table is defined as the ratio of the probabil-
ity to find a solution divided by the average amount of work
(Definition 1).

Definition 1. The metric associated to the i-th step in
the k-th table is defined as:

η(i, k) =
Pr(x found at the i-th step in table k)

E[work for the i-th step in table k]
,

with x, an answer in the online phase.

In the case of clean rainbow tables, this metric is quanti-
fied in Theorem 1.

Theorem 1. The metric associated to the i-th step in the
k-th table is:

η(i, k) =
[m]k
N [Ci]k

.

Proof. The probability of finding x in any given column

of the k-th table is [m]k
N

. In the denominator, the expected
work required at step i in table k is denoted [Ci]k, and is
computed as indicated in Result 1.

When using this metric to determine the order of search,
the average time is minimized. This has been proved in
details in [3] for interleaving in the case of different subsets,
but can be easily adapted to the case of interleaving different
tables. Essentially, it boils down to picking, at each step,
the table in which the probability to find an answer per
cryptographic operation is highest. Intuitively, this strategy
is optimal because the cost may only increase in further
steps, while the probability stays the same.

4. OPTIMAL CONFIGURATION
For a given set of heterogeneous tables, the optimal order

of search is determined in Section 3.2.2. The question re-
mains how to determine how much of the total memory to
allocate for each table. This essentially translates into how
many chains each table contains. This also determines the
length of chains because the tables are clean and of maximal
size (see Result 3).

4.1 Average Searching Time
The approach used in this paper is to use an optimization

algorithm to search for a configuration of table sizes that
minimizes the average search time of the online phase. In
that end, Result 4 (from [14]) presents the expression of the
average time in the case of homogeneous tables and Theo-
rem 2 presents a generalization of the average time in the
case of heterogeneous tables.

817



Result 4. The average number of h evaluations during
the online phase of a set of ` clean rainbow tables of maximal
size with m chains of size t on a problem set of size N is:

T =

t∑
k=1

∑̀
i=1

m

N

(
1− m

N

)(k−1)`+i−1
(
`

k−1∑
j=1

Cj + iCk

)

+e−2``

t∑
k=1

Ck. (1)

Theorem 2. The average number of hash operations re-
quired in the online phase of a set of heterogeneous clean
rainbow tables of maximal size, given an input subset of size
N and ` tables with numbers of chains {[m]1, ..., [m]`} and
chain lengths {[t]1, ..., [t]`}, and with a vector V = (V1, ..., Vt̂)
representing the order of visits (i.e. Vk is the table chosen
at step k) is:

T =

t̂∑
k=1

[m]Vk

N

k−1∏
j=1

(
1−

[m]Vj

N

) k∑
j=1

[CSj ]Vj

+e−2`
∑̀
i=1

[t]i∑
s=1

[Cs]i, (2)

with t̂ =
∑n

b=1[t]b, and Sk the number of steps for the
table Vk after k steps in total, that is:

Sk = #{i ≤ k|Vi = Vk}.

Proof. This expression is a generalization of Result 4
for heterogeneous tables and with a given order of visit. The
result may be constructed using the same approach as in Re-
sult 4 (from [14]). Below is a developement showing that, in
particular, (2) gives Result 4 when instantiated to homoge-
neous tables. That is, when:

[t]i = t, Vj = (j − 1) mod `+ 1,

[m]i = m, Sj = b(j − 1)/`c+ 1,

[Ck]i = Ck,

for all tables 1 ≤ i ≤ ` and columns 1 ≤ j ≤ t.
Replacing these values in Eq. (2) gives:

T =

t̂∑
k=1

[m]Vk

N

k−1∏
j=1

(
1−

[m]Vj

N

) k∑
j=1

[CSj ]Vj

+e−2`
∑̀
i=1

[t]i∑
s=1

[Cs]i

=

`t∑
k=1

m

N

k−1∏
j=1

(
1− m

N

) k∑
j=1

CSj + e−2`
∑̀
i=1

t∑
s=1

Cs.

The first summation can be split in two (one for tables
and one for columns). Each index k becomes (a− 1)`+ b in
the next equation:

T =

t∑
a=1

∑̀
b=1

m

N

(a−1)`+b−1∏
j=1

(
1− m

N

) (a−1)`+b∑
j=1

CSj

+e−2`
∑̀
i=1

t∑
s=1

Cs.

Constant sums and products can be simplified and the sum∑(a−1)`+b
j=1 CSj can be split in two, then again simplified, giv-

ing the expected Eq. (1):

T =

t∑
a=1

∑̀
b=1

m

N

(
1− m

N

)(a−1)`+b−1

(a−1)`∑
j=1

CSj +

(a−1)`+b∑
j=(a−1)`+1

CSj


+e−2``

t∑
s=1

Cs

=

t∑
a=1

∑̀
b=1

m

N

(
1− m

N

)(a−1)`+b−1

` (a−1)∑
c=1

Cc + Cab


+e−2``

t∑
s=1

Cs.

4.2 Optimization Algorithm
The minimization problem can be expressed as follows:

min
[t]1,...,[t]`

T ([t]1, . . . , [t]`)

s.t.
∑`

i=1Mi ≤M,
(3)

with Mi the memory associated with table i (of length [t]i)
andM the total memory. Note that, of Eq. (2), ([t]1, . . . , [t]`)
are the only variables of the problem, because ([m]1, . . . , [m]`)
are fixed by the respective chain lengths (see Result 3), and
the order of visit V is decided as described in Section 3.2.2.

This type of constrained minimization problem can be
solved efficiently by using methods such as Sequential Quad-
ratic Programming [10, 11]. This technique is implemented
in the scipy python library, that was used in the context of
this work. The algorithm used is presented in Appendix A.

5. EVALUATION

5.1 Comparison
It is worth noting that both Result 4 and Theorem 2 only

depend on t and ` (or {[t]1, ..., [t]`}). This is because the
cost3 from Result 1 only depends on t, and m

N
= 2

t+1
in clean

tables of maximal size. Therefore, only comparing values of
the average time for varying values of t and ` is relevant.

To evaluate our technique, we chose N = 240 because this
is a typical input space size that is considered to evaluate
TMTOs [14]. Figure 2 depicts the speedup of the average
searching time of heterogeneous tables (as computed by The-
orem 2) compared to homogeneous tables (as computed by
Result 4) for various values of ` and t. Choosing t for a set
of homogeneous tables defines a total memory, and the same
memory is used for the corresponding set of heterogeneous
tables. This in turns defines the minimization problem (3).
We observe in Figure 2 that the speedup is independent of t,
and increases for larger values of `. The consequence is that
the heterogeneous tables improvement is independent of the

3Note that this is not strictly true because the expression of
the cost (and specificly qi) is an approximation (see for in-
stance [5] for details), which is not valid for extremely small
values of t or N . For problems of reasonable size however,
such as in typical instances of TMTO’s, the approximation
is very good and the expected average search time from Re-
sult 4 very close to the observed average cost.

818



Figure 2: Speedup of the average searching time of hetero-
geneous tables compared to that of homogeneous tables as
a function of t, for varying values of `, and N = 240.

size of the problem. It does depend on ` (which sets the
probability of success), but the number of tables will rarely
be very high in typical applications.

Figure 3 shows a visual comparison of homogeneous and
heterogeneous tables, along with a typical distribution of
chain lengths in a set of heterogeneous tables. The space is
of size N = 240 and t = 10000 is used for the homogeneous
tables (which, together with the fact that tables of maxi-
mal size are used, fixes the number of chains per table to be
m = 2N

t+1
≈ 2.19× 108). The values for [t]i for the heteroge-

neous tables are found through the optimization problem of
Section 4, and are the ones computed by the script given in
Appendix A. Note that each of the 8 tables in Figure 3 have
the same area because they are all of maximal size, they
just happen to have different shape. Like all setups using 4
tables, in this example heterogeneous tables perform about
40% faster than the homogeneous tables.

5.2 Precomputation
The cost of precomputation is roughly equivalent for het-

erogeneous tables and homogeneous tables. The reason is
that the precomputation cost for each table is proportional
to mt (see e.g. [12]). In clean tables of maximal size, this
value is 2N and thus independent of the shape of the table.

Note that tables of “almost maximal size”are usually pref-
ered in practice because they significantly reduce the pre-
computation load. The number of chains in a table of almost
maximal size is typically 98% of what is found in a maximal
table. It is worth noting that the impact of using tables of
almost maximal size with our technique is negligible.

5.3 Worst Case
The procedure described in Section 4 aims to minimize

the average searching time. However, a drawback of het-
erogeneous tables is that the worst case is worse than for
homogeneous tables. The worst case arises when the value
searched for is not covered by any of the ` tables. This oc-
curs with probability 1− e−2` (Result 2), which is very rare
for reasonnable values of `. Nevertheless, it is a factor to
consider in applications where the worst case is a concern.

To put this in perspective, Figure 4 shows the (cumula-
tive) distribution probability of the average searching time

10000 10000 10000 10000

4996 16520 2093810919

2
.1

9
×

1
0
8

2
.1

9
×

1
0
8

2
.1

9
×

1
0
8

2
.1

9
×

1
0
8

4
.4

0
×

1
0
8

2
.0

1
×

1
0
8

1
.3

3
×

1
0
8

1
.0

5
×

1
0
8

Figure 3: Shapes of a set of 4 homogeneous tables (top row)
compared to optimal heterogeneous tables (bottom row) us-
ing the same memory on a set of size N = 240. The vertical
scale (number of chains) is 10000 smaller than the horizontal
scale (chain lengths).

for heterogeneous tables and homogeneous tables, with N =
240, t = 10000 and ` = 4. Only on about 1% of cases are
the heterogeneous tables worse than homogeneous ones.

6. OTHER TMTO VARIANTS
Table heterogeneity might be beneficial to other tradeoff

variants than rainbow tables. This was not thoroughly ex-
plored as part of this work, mostly because rainbow tables
seem to perform better [12]4. A further argument is that it
may have a less significant impact on these other variants.

In Hellman’s technique, the cost of a search at each col-
umn (i.e. the analogue of Result 1) is roughly constant,
so longer searches are less penalized than in rainbow ta-
bles. A more practical concern is the relative difficulty to
find an optimal distribution of table sizes for a large num-
ber of tables. Nevertheless, it seems at least intuitively that
Hellman’s technique could perhaps benefit from using het-
erogeneous tables as well.

In the distinguished points variant however, tables are in-
trinsically heterogeneous themselves in the sense that chains
within each table have different sizes, so the technique stud-
ied in this paper is not applicable.

7. CONCLUSION
This paper explores the effects of allowing heterogeneous

sizes in a set of rainbow tables, and gives the optimal ex-
ploration order. This results in a speedup in average time
that is independent of problem size or memory, but depends
on the number of tables (driven by the desired probabil-

4Note that some older analyses have different conclusions,
e.g. [6]

819



(a) Cumulative distribution of probability of the search time.

(b) Detail of the above plot highlighting the area where het-
erogeneous tables are slower than homogeneous tables.

Figure 4: Comparison of the distribution of the searching
time for homogeneous and heterogeneous tables. Parameters
are N = 240, ` = 4 and t = 10000.

ity of success). In typical applications (e.g. ` = 4, that
is P ∗ = 99.97%), the heterogeneous tables are about 40%
faster than their homogeneous counterparts. The worst-case
time is negatively impacted: ≈ 2.13 slowdown with the same
parameters, where less than 1% of cases are the heteroge-
neous tables worse than homogeneous ones. This downside
is of limited consequences as typical applications of time-
memory trade-offs favor average time.

The improvement stems from the relaxation of the arbi-
trary (albeit natural) constraint of having tables of equal
dimensions, which allows to focus on efficiency at the start
of the search. The precomputation cost and the probability
of success are not impacted. An algorithm to determine the
optimal memory distribution for a given number of tables
is given, along with a procedure to determine the order of
search.

Acknowledgments
Xavier Carpent was supported, in part, by a fellowship of
the Belgian American Educational Foundation.

8. REFERENCES
[1] Gildas Avoine, Adrien Bourgeois, and Xavier Carpent.

Analysis of rainbow tables with fingerprints. In
Australasian Conference on Information Security and
Privacy – ACISP 2015, Lecture Notes in Computer
Science, Brisbane, Australia, June 2015. Springer.

[2] Gildas Avoine and Xavier Carpent. Optimal storage
for rainbow tables. In Sukwoo Kim and Seok-Yeol
Kang, editors, International Conference on
Information Security and Cryptology – ICISC 2013,
volume 8565 of Lecture Notes in Computer Science,

pages 144–157, Seoul, South Korea, November 2013.
Springer.

[3] Gildas Avoine, Xavier Carpent, and Cédric
Lauradoux. Interleaving cryptanalytic time-memory
trade-offs on non-uniform distributions. In Günther
Pernul, Peter Y. A. Ryan, and Edgar Weippl, editors,
European Symposium on Research in Computer
Security – ESORICS 2015, volume 9326 of Lecture
Notes in Computer Science, pages 165–184, Vienna,
Austria, September 2015. Springer.

[4] Gildas Avoine, Pascal Junod, and Philippe Oechslin.
Time-memory trade-offs: False alarm detection using
checkpoints. In Progress in Cryptology – Indocrypt
2005, volume 3797 of Lecture Notes in Computer
Science, pages 183–196, Bangalore, India, December
2005. Cryptology Research Society of India, Springer.

[5] Gildas Avoine, Pascal Junod, and Philippe Oechslin.
Characterization and improvement of time-memory
trade-off based on perfect tables. ACM Trans. Inf.
Syst. Secur., 11:17:1–17:22, July 2008.

[6] Elad Barkan, Eli Biham, and Adi Shamir. Rigorous
bounds on cryptanalytic time/memory tradeoffs. In
Annual International Cryptology Conference, pages
1–21. Springer, 2006.

[7] Alex Biryukov, Adi Shamir, and David Wagner. Real
time cryptanalysis of A5/1 on a PC. In Bruce
Schneier, editor, Fast Software Encryption – FSE’00,
volume 1978 of Lecture Notes in Computer Science,
pages 1–18, New York, USA, April 2000. Springer.

[8] Dorothy Denning. Cryptography and Data Security,
page 100. Addison-Wesley, Boston, Massachusetts,
USA, June 1982.

[9] Martin Hellman. A cryptanalytic time-memory trade
off. IEEE Transactions on Information Theory,
IT-26(4):401–406, July 1980.

[10] Dieter Kraft. A software package for sequential
quadratic programming. Technical Report DFVLR-FB
88-28, DLR German Aerospace Center – Institute for
Flight Mechanics, Koln, Germany, 1988.

[11] Dieter Kraft. Algorithm 733: TOMP-Fortran modules
for optimal control calculations. ACM Transactions on
Mathematical Software, 20(3):262–281, 1994.

[12] Ga Won Lee and Jin Hong. A comparison of perfect
table cryptanalytic tradeoff algorithms. Cryptology
ePrint Archive, Report 2012/540, 2012.

[13] Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid
Verbauwhede. Cracking Unix passwords using FPGA
platforms. SHARCS - Special Purpose Hardware for
Attacking Cryptographic Systems, February 2005.

[14] Philippe Oechslin. Making a faster cryptanalytic
time-memory trade-off. In Dan Boneh, editor,
Advances in Cryptology – CRYPTO’03, volume 2729
of Lecture Notes in Computer Science, pages 617–630,
Santa Barbara, California, USA, August 2003. IACR,
Springer.

[15] Markku-Juhani Olavi Saarinen. A time-memory
tradeoff attack against LILI-128. In Fast Software
Encryption, volume 2365, pages 231–236, Leuven,
Belgium, February 2001.

820



APPENDIX
A. OPTIMIZATION ALGORITHM

1 import pylab
2 from scipy import optimize
3
4 ################################################################################
5
6 def T(t, ell):
7 T = 0
8 Csum = 0
9 pf = 2.0/(t+1) # = m/N

10 for k in xrange(1, t+1):
11 q = 1 - (t-k-1)*(t-k)/float((t)*(t+1))
12 C = k + (t-k+1)*q
13 for j in xrange(ell):
14 Csum += C
15 p = pf * (1-pf)**( ell*(k-1)+j)
16 T += p*Csum
17 return T
18
19 def T_heterog_intlv(ts):
20 ell = len(ts)
21 T = 0
22 pnot = 1
23 Csum = 0
24 ks = [1]* ell
25 stops = [False]*ell
26 while not all(stops):
27 metrics = [0]* ell
28 ps = [0]* ell
29 Cs = [0]* ell
30 for j in xrange(ell):
31 if stops[j]:
32 continue
33 q = 1 - (ts[j]-ks[j]-1)*(ts[j]-ks[j])/ float((ts[j])*(ts[j]+1))
34 Cs[j] = ks[j] + (ts[j]-ks[j]+1)*q
35 ps[j] = 2.0/(ts[j]+1) # = [m]j/N
36 metrics[j] = ps[j]/Cs[j]
37 best = metrics.index(max(metrics ))
38 Csum += Cs[best]
39 T += Csum * ps[best]*pnot
40 pnot *= 1-ps[best]
41 ks[best] += 1
42 if ks[best] > ts[best]:
43 stops[best] = True
44 return T
45
46 def W_heterog(ts):
47 W = 0
48 for j in xrange(ell):
49 for k in xrange(1, ts[j]+1):
50 q = 1 - (ts[j]-k -1)*(ts[j]-k)/float ((ts[j])*(ts[j]+1))
51 C = k + (ts[j]-k+1)*q
52 W += C
53 return W
54
55 ################################################################################
56
57 N = 2**40
58 t = 10000
59 m = 2*N/float(t+1)
60 ell = 4
61
62 Thomog = T(t, ell)
63
64 # The optimal order of search for homogeneous tables is parallel
65 assert abs(Thomog - T_heterog_intlv ([t]*ell))/ Thomog < 0.0001
66
67 # Initial guess for faster convergence (doesn’t have to meet the constraints)
68 init_ts = pylab.linspace(t/2, 2*t, ell)
69
70 # Minimization

821



71 cons = ({’type’:’ineq’, ’fun’:lambda ts:((m*ell)-sum ([2*N/float(tt+1) for tt in ts]))},)
72 bnds = [(1, 10*t)]*ell
73 res = optimize.minimize(T_heterog_intlv , init_ts , method=’SLSQP’, bounds=bnds ,
74 constraints=cons , options ={’maxiter ’:100, ’ftol’:Thomog /1000.})
75 ts = [int(tt) for tt in res.x]
76 ms = [int(2*N/float(tt+1)) for tt in ts]
77 Theterog = T_heterog_intlv(ts)
78
79 # The total memory used in both cases is virtually equal
80 assert abs(m*ell - sum(ms))/(m*ell) < 0.0001
81
82 # Results
83 print ’homogeneous:’
84 print ’t:’, t
85 print ’M:’, m*ell
86 print ’T:’, Thomog
87 print ’W:’, W_heterog ([t]*ell)
88 print
89 print ’heterogeneous:’
90 print ’ts:’, ts
91 print ’M:’, sum(ms)
92 print ’T:’, Theterog , ’( speedup:’, Thomog/Theterog , ’)’
93 print ’W:’, W_heterog(ts), ’( slowdown:’, W_heterog(ts)/ W_heterog ([t]*ell), ’)’

822


	Introduction
	Technical Background
	Concept
	Offline phase
	Online phase

	Our Technique
	Heterogeneous Tables
	Interleaving
	Rationale
	Order of visit


	Optimal Configuration
	Average Searching Time
	Optimization Algorithm

	Evaluation
	Comparison
	Precomputation
	Worst Case

	Other TMTO Variants
	Conclusion
	References
	Optimization Algorithm



