
An Efficient Multiversion Algorithm
For Secure Servicing Of Transaction Reads

Paul Ammann * Sushi1 Jajodia t

Center For Secure Information Systems and
Department of Information and Software Systems Engineering

George Mason University, Fairfax, VA 22030

Abstract

We propose an efficient multiversion algorithm for servicing
read requests in secure multilevel databases. Rather than
keep an arbitrary number of versions of a datum, as standard
multiversion algorithms do, the algorithm presented here
maintains only a small fixed number of versions - up to
three - for a modified datum. Each version corresponds to
the state of the datum at the end of an externally defined
version period. The algorithm avoids both covert channels
and starvation of high transactions, and applies to security
structures that are arbitrary partial orders. The algorithm
also offers long-read transactions at any security level
conflict-free access to a consistent, though slightly dated,
view of any authorized portion of the database. We derive
constraints sufficient to guarantee one-copy serializability
of executions histories, and then exhibit an algorithm that
satisfies these constraints.

1 Introduction

We address the problem of concurrency control in
secure multilevel databases. In a secure multilevel
database, a request to read a datum is satisfied if
the simple security property is met, and a request
to write a datum is satisfied if the *-property is &et
[BL76, Den82, DoD85]. Th ese rules may be summarized

*This work was supported in part by the National Science
Foundation under grant CCR-9202270.

tThis work was supported in part by the National Science
Foundation under grant IRI-9303416.

Permission to copy without fee all or iart of this material is
granted provided that the copies are not made or distributed for
direct ctimmercial advantage, the ACM copyright notice and the
title of the publication and Its date aooear. and notice is aiven
that copyirig is by permission of the k’ssociation of CompGing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CCS ‘94- 1 l/94 Fairfax Va., USA
0 1994 ACM O-89791-732-4/94/001 1..$3.50

as stating that processes cannot read from higher
security classes or write to lower security classes. In
addition to enforcing the simple security and *-property
on direct access, secure multilevel databases must also
prevent indirect access or covert channels. For this
reason concurrency control algorithms for conventional
databases are inadequate. Accordingly, a variety
of algorithms [AJJ92, Cos92, CK93, CM92, FM89,
Jae92, JK90, KK92, KT90, KJ90, McD93, MJSSl]
and architectures [Com83, KJ90] specifically tailored
for secure multilevel databases have been developed.
In order to satisfy the security constraints, each of
the current solutions sacrifices one or more of the
following desirable properties: (i) efficient storage,
(ii) minimization of the trusted computing base (or
TCB), (iii) non-starvation of high transactions, or
(iv) applicability to arbitrary security structures. We
propose a new algorithm - a periodic multiversion
algorithm, show that it achieves the security objectives,
and argue that it retains a better set of desirable
properties than comparable algorithms.

For the kernelired architecture [Com83, KJ90], both
single version [AJ93] and multiversion [KT90] algo-
rithms have been developed. Unfortunately, to avoid
covert channels, all single version algorithms subject
high transactions to starvation. To avoid covert chan-
nels, the multiversion algorithm in [KTSO] requires that
all transactions be serialized in a global queue that is
managed by the TCB. In addition, there is no bound
on the number of versions of a datum that might be
required.

At each security class, the standard replicated archi-
tecture [Com83, KJ90], to which most multilevel algo-
rithms pertain, requires the complete replication of the
databases at all dominated security classes. For large

118

databases or for security lattices with more than a very
few nodes, this can pose a prohibitive cost. In addition,
propagation of updates from low classes to high classes
is a technically challenging problem, and many of the
algorithms are only correct for a subset of the desirable
security structures. In particular, some algorithms re-
strict security structures to be total orders, and others
restrict security structures to be crown-free r [AJF93].
Those algorithms for the standard replicated architec-
ture that allow security structures to be lattices or ar-
bitrary partial orders must manage at least some of the
concurrency control within the TCB.

An alternate replication architecture, in which snap-
shots of low databases are maintained for read access by
high transactions, is described in [AJJ92, Jae92]. Con-
currency control for this architecture is achieved with a
two-snapshot algorithm. Instead of accessing low data
directly, high transactions are instead given access to
stable snapshots of low data, and snapshots are regen-
erated on a periodic basis. Although the twosnapshot
algorithm applies to general partial orders, it still re-
quires on the order of three times the storage of a single
version database, even if most low data values do not
change from one snapshot to the next. In addition, the
two-snapshot algorithm imposes an upper bound on the
time during which high transactions can execute; any
transaction that overruns the resulting deadlines must
be aborted.

Finally, none of the existing concurrency control
algorithms for secure, multilevel databases offer support
for long read-only transactions. It is well known
that a mixture of long read-only transactions and
update transactions causes performance problems for
conventional database concurrency control algorithms
[PMC+92]. For example, with conventional two-phase
locking, a long read-only transaction can block many
update transactions as it acquires the necessary read-
locks on data. The problem is simply exacerbated
in concurrency control algorithms for secure multilevel
databases.

In this paper, we propose a secure, periodic, mul-
tiversion concurrency control algorithm suitable for a
kernelized architecture in which:

l Storage is used efficiently. Specifically, only
versions of a modified datum are maintained, and of
these, at most three, including the current version,
are ever simultaneously maintained.

l No part of the concurrency control algorithm is
managed inside the TCB. (A TCB is still required;
however, serializability is achieved without recourse
to the TCB).

1 Unfortunately, lattices, which are natural security structures
for many applications [Den82], are not a subset of crown-free
partial orders.

l The algorithm applies to arbitrary security struc-
tures, i.e. any partial order.

l High transactions are not subject to starvation.

l Long read-only transactions can execute without
interfering with update transactions.

To achieve these goals, the algorithm imposes the
following constraints. First, the algorithm sets a limit
on transaction duration; a transaction that overruns
its deadline is aborted. Second high transactions
read slightly out-of-date versions of low data; however,
most other concurrency control algorithms for multilevel
databases share this trait. Third, long read-only
transactions that require conflict-free access also read
slightly out-of-date versions of the data. However,
read-only transactions that do not require conflict-free
access can read current versions of the data. We
argue that these constraints are justified by the benefits
enumerated above.

1.1 Other Related Work

Aside from the work on secure multilevel databases cited
above, there are two additional areas of relevant work.

First, the handling of long read-only transactions has
received considerable attention in conventional data-
bases. One algorithm for supporting consistent reads
of entire databases that employs two-phase locking is
the on-the-fly algorithm of Pu [Pu86].*

Multiversion algorithms are also suitable for servicing
long reads, and they are better suited to long read-only
transactions that only access a subset of the database.
In a multiversion algorithm, each write of a datum
produces a new version, and long reads can be satisfied
by accessing old versions. In standard multiversion
algorithms [BHG87], there is no bound on the number
of versions of a datum that need be maintained, and for
some algorithms, e.g. multiversion two-phase locking,
there are still conflicts between read locks and certify
locks. For extremely long read transactions or extremely
large data, the lack of a bound on the number of versions
can be a significant implementation problem. Mohan et
al. proposed an multiversion algorithm that limits the
maximum number of versions that need be maintained
to a small fixed value [MPL92]. Since the current paper
builds on the work of Mohan et al., we describe the
algorithm in more detail next.

‘In Pu’s algorithm, the global read transaction locks and
releases each datum incrementally and colors a datum black if
the global read has accessed the datum and white otherwise.
Each update transaction is also colored based on the color of
data the transaction attempts to write. A color test aborts gray
transactions, which are transactions that attempt to write both
black and white data. It turns out that the color test in [Pu86] is
not quite strong enough. However, the algorithmcan be repaired;
a correct color and shade test is given in [Mav93].

119

Transactions in [MPL92] are classified into two types,
which we will call updale transactions (called type Tu
transactions in [MPL92]) and long-read transactions
(called type Tr transactions in [MPL92]). Update
transactions access the current versions of a datum via
a two-phase locking protocol. Long-read transactions
do no2 acquire locks; instead they access old versions
of a datum. Thus, they enjoy conflict-free access to
data in exchange for tolerating a slightly out-of-date,
although consistent, view of the database. Long-read
transactions are prohibited from updating any values.
It is important to note that if a read-only transaction
wishes to read the current version, it may run as an
update transaction.

Rather than creating a version upon each write of a
datum, the scheme in [MPL92] only maintains versions
corresponding to the end of externally defined version
periods. Even if many transactions write a datum z
during a given version period n, only the last value
written is recorded in the version n instance of z. If
no transaction writes z during version period n + 1, no
version n instance of z need be separately maintained
since the values of version n and version n + 1 are
identical.

Any number of versions can be maintained, but
to make the scheme workable, two, plus the current
version, is the minimum number. A zero version scheme
corresponds to a database with no multiversioning.
Maintaining exactly one extra version is not satisfactory
in that active long-read transactions must be aborted
at the switch of each version period. Maintaining
two extra versions is satisfactory [MPL92]; additional
versions allow long-read transactions additional time to
complete.

The other area of relevant work is that on hierar-
chically decomposed databases [HC86]. Such databases
share the same structure and (non)interference proper-
ties as secure multilevel databases, although the mo-
tivation differs. In an hierarchical database, data is
partitioned into classes. Each transaction executes at
a particular class, and the access characteristics of a
transaction are restricted by analogs of the simple secu-
rity and *-properties. One useful interpretation of the
partitions is that data at one class may be considered as
‘raw’ with respect to dominating classes and ‘derived’
with respect to dominated classes. The motivation for
the access constraints on transactions is that transac-
tions manipulating derived data should not modify raw
data, nor should they interfere with transactions that
are maintaining the raw data. The algorithm developed
in this paper for secure multilevel databases can be ap-
plied directly to hierarchically decomposed databases.

1.2 Outline Of Paper

The remainder of the paper is organized as follows. In
section 2, we give definitions and an architecture to sup-
port a secure periodic multiversion algorithm. In section
3 we develop the constraints on periodic multiversion
algorithms that are sufficient to simultaneously satisfy
noninterference between classes and serializability of ex-
ecution histories. In section 4, we present an algorithm
that satisfies the constraints derived in section 3, allows
transactions timely access to data at dominated classes,
and permits transactions to smoothly execute during
version switches. Section 5 summarizes our results.

2 A Secure Multiversion Architecture

First, we present definitions suitable for defining a
secure multilevel architecture. Next, we describe
the general architecture for maintaining periodically
generated versions at different classes.

2.1 Definitions

We consider a finite set of transactions, denoted
‘I’ = {TI, Tz, . ..}. Each transaction accesses (reads
or writes) data in a finite set D = (11, 22, . ..}. Each
transaction and datum is associated with one of a finite
number of classes in the set S = {Si , Sz, . ..}. The
function L :TuD + S denotes this mapping;
in other words, if L(T,) = Si, then Si is the class of
transaction T,. Similarly, if L(z) = Si, then S; is the
class of datum z. As a notational convention, we use
the subscripts i, j and k to index classes in S, and the
subscripts a, b and c to index transactions in T.

Classes are related by a dominance relation, denoted
> : S t* S. If Si > Sj, then Si is said to dominate Sj.
We write Si 2 Sj to include the case that i might equal
j, and we write Sj < Si as another way of expressing
Si > Sj.

It is useful to know how far ‘up’ in the dominance
relation a given class Si is. To this end, define the
grade function, g : S --* N, to be a function from
the set of classes to the natural numbers. Consider a
directed graph whose nodes are S and whose edges are
the transitive reduction of the dominance relation, >.
For Si E S, let g(Si) equal the length of the longest
path starting at Si.

2.2 Servicing Reads With Old Versions

In the versioning scheme proposed by Mohan et al
[MPL92], correctness follows directly from the algo
rithm description. Serializability of execution histories
with respect to update transactions is ensured by a two
phase locking protocol. Serializability of execution his-
tories with respect to long-read transactions is also en-
sured since long-read transactions always view the data-

120

base state as it appears at the end of some version pe-
riod, and the end of each version period is guaranteed
to be consistent.

Developing a versioning scheme for a secure multilevel
database or a hierarchically decomposed database re-
quires a more careful approach to correctness. The main
reason is that serializability of update transactions can-
not be ensured simply with two-phase locking or some
other conventional concurrency control mechanism. At-
tempting to ensure serializability with a conventional
mechanism results in a covert channel or starvation in
the case of a secure multilevel database and interference
or starvation in the case of a hierarchically decomposed
database.

I ; Old Versiks
I 1

Database At Class S ;

I \~~AUXSS

Read Access

I

CurrentData :
(Version n) ,pJ ;

x

; Old Versions

; Old Versioru

Database At Class S i

Database At cki.5.3 Sk

Figure 1: Servicing Reads With Old Versions

For example, suppose a transaction at a dominating
class obtains a read lock for the current version of a
datum. A transaction at the dominated class can detect
the presence or absence of the read lock by attempting
to obtain a write lock, thus creating a covert channel.
On the other hand, if the read lock is simply overridden
by the write lock, the dominating transaction loses it
guarantee that the value obtained is consistent, and
must retry. Repeated unsuccessful retries can lead to
starvation of the dominating transaction. Even the
usual multiversion approach of creating a new version
does not work in our case since we are explicitly
restricted to creating at most one new version of a
datum per version period. Similar examples can be
developed for other concurrency control strategies, such
as timestamp ordering.

The interference/starvation problem exhibited in the
above example can be eliminated by having update
transactions access stable versions, i.e. data from an
an earlier version period, rather than current versions
when reading data at a dominated class.

Figure 1 shows the general architecture by which
read requests may be serviced with old versions. For
the purposes of the paper, we assume that transaction
access follows the restricted *-proper@ rather than just
the *-property. The restricted *-property says that
if transaction T, attempts to write datum 2, then
L(T,) = L(z). Th e restriction prevents transactions
from writing up. Hence, it is only the servicing of
transaction reads that need cross class boundaries. The
general motivation for the restricted *-property over
the *-property is integrity; rogue transactions from
dominated classes cannot damage data at dominating
classes. Use of the restricted *-property is a standard,
although not universal, assumption in algorithms for
secure multilevel databases.

Figure 2 gives the requirements - current or stable -
for different types of transaction access. The first row
gives the access requirements of update transactions.
The second row gives the access requirements of long-
read transactions.

Location of Data Item

Own Class Dominated Class
_.-- _~

Update Current Stable

Transaction Type

long-read Stable Stable

Figure 2: Data Requirements For Different Transaction
Types

3 Serializability Constraints

Although avoidance of interference is most easily ex-
pressed in terms of stable vs. current versions of a da-
tum, serializability arguments require more precise def-
initions of versions. Specifically we need two ways to
relate transactions to versions of each datum. Consider
a transaction To at some class Si. Let the version func-
tion, denoted v : T + N, map T, to version n if
n is the first version in which Ta’s effects can become
visible. It is possible that Ta’s updates do not appear
in any version if some other transaction Tb of the same
version as T, subsequently overwrite the values T, pro-
duces; hence the conditional in the definition. Also, we
require that all updates of T, first appear in the same

121

version; otherwise T, is not atomic. Let the assign func-
tion, denoted o : T + N, map T, to version n if T,
reads some datum z at a dominated class Sj , Si > Sj,
and the version of z read is n. Note that by insisting
that a(.) be a function, we ensure that for all dominated
data that T, accesses, the version accessed be the same.
It is straight forward to exhibit unserializable execution
histories if T, is allowed to access multiple versions of
data at dominated classes [AJJ92, Jae92].

The definition of v(.) is essentially the same as the
rule in [MPL92] for assigning update transactions to
a version period. The definition of u(e) presented
here is more general, in that it allows for concurrency
control algorithmsother than twophase locking, such as
timestamp ordering. The definition of a(.) is essentially
the same as the rule in [MPL92] for assigning long-
read transactions to a version period. In our case, it is
helpful to have both definitions for each of the possible
transaction types.

The definitions of u(.) is incomplete respect to read-
only ‘update’ transactions and long-read transactions.
If T, is a read-only transaction that is executing as an
update transaction, the value of v(T,) need only be con-
sistent with neighboring, class Si update transactions
in some serialization order. Common scheduling algo-
rithms can produce an explicit serialization order. For
example, time of first lock release is suitable for deter-
mining v(T,) in a two-phase locking scheduler.

If T, at class Si is a long-read transaction (recall this
means that To wishes a guarantee not to be blocked)
then v(T,) is one plus the version of the data (if any)
that T, reads at class Si. If T, reads no data at class
Si, then v(T,) is one plus the version of the data (if
any) that T, reads at some dominated class. T, must
read the same version from all dominated classes, but
T, may possibly read a different version at its own class.

Note that a(T,) is not defined if the grade of Si, g(Si)
is zero. Fortunately, no definition is required in this
case. Also, if g(Si) is not zero, and T, does not read any
data from a dominated class, a(T,) is again undefined.
In this case a definition is necessary. As was done for
II(.), let a(T,) be defined consistently with neighboring,
class Si transactions in some serialization order.

For any given transaction, the version function and
the assignment function are related. Specifically, we
restrict any versioning algorithm to satisfy a(T,) =
v(T,)- 1 V a(T,) = v(T,,). In other words, a transaction
always reads dominated data of its own version, or of
the immediately preceding version. The reason for this
restriction is as follows. First, it is clearly inconsistent
to have the effects of transaction T, appear in a version
prior to some version from which T, reads. Hence,
we require a(T,) < v(T,). Second, suppose that a
transaction T, were allowed to have a(T,) = n - 1
and v(T,) = n + 1 f or some n. Consider the following

scenario:

Let Si, Sj and Sk be three classes such that Si > Sj >
Sk, and let, T,, Ta, and T, be three transactions at these
classes, respectively. Suppose the three transactions
obtain the following versions. The notation o~[z,]
indicates that operation o from transaction T, accesses
version n of datum z.

T,: r&n] ro[ynl
Tb: rb[%-11 Wb[Yn+l]

T,: wc[xn]

Note that a(Tb) = n - 1 shce L(Tb) = Sj > L(x) = Sk
and Tb reads the value of x from version n - 1. Also,
u(Tb) = n + 1 since Tb writes the value of y in version
n + 1. In terms of a serialization graph, T, + Tb since
T, reads an earlier version of y than Tb writes, Tb 4 T,
since Tb reads an earlier version of x than T, writes, and
T, + Ta since T, writes the version of x that T, reads.
Hence, the result is the cycle To + Tb + T, + Ta.

To avoid such cycles in general, we prohibit transac-
tions such as Tb above. by requiring, for all transactions
T,, a(Ta) 2 v(T,) - 1. Together, the two constraints
yield a(T,) = v(T,) - 1 V a(T,) = v(T,).

3.1 A Serialization Sketch

The basis for the serialization argument is that, in any
multiversion execution history H, any T, where v(T,) =
n may be serialized after any Tb where v(Tb) = n- 1 and
before before any T, where v(Tc) = n+l. Figure 3 shows
this basic serialization argument. Figure 3 essentially
captures the correctness argument behind the scheme
in [MPL92].

Figure 3: Serialization Of Transactions By Version
Function

The scenario is more complicated in the case of hi-
erarchically decomposed or multilevel secure databases.
Here, a transaction T, where u(Ta) = n may read down
to dominated classes. If version n is available for the

122

dominated classes, then a(T,) may be set to n. How-
ever, if version n is not available, it is efficient to assign
a(T,) to n - 1 instead. Thus the transactions T, for
which u(T,) = n are broken into two parts - those with
a(T,) = n - 1 and those with a(T,) = n. The con-
currency control algorithm at each class Si must ensure
that local transactions (i.e. transactions T, for which
L(T,) = Si) for which a(T,) = n - 1 serialize before
local transactions for which a(T,) = n. The revised
serialization argument is shown in figure 4.

Figure 4: Serialization Of Version n Transactions

Figure 4 also shows the effect of the grade function,

d.17 on the serialization of version n transactions.
Specifically, version n transactions at classes of grade
zero must serialize after version 12 transactions at
dominating classes that read version n - 1 data, i.e.
those T, for which a(T,) = n - 1. Extending
this argument to other classes shows that all version
n transactions must serialize after transactions at
dominating levels that read version n - 1. Ordering
version n transactions for which a(.) has value n - 1
monotonically decreasing by the grade function satisfies
the objective. In addition, version n transactions
that, in essence, read from version n transactions at
dominated levels must serialize after such transactions.
In this case ordering version n transactions for which
a(.) has value n monotonically increasing by the grade
function satisfies the objective. Remaining serialization
decisions are up to the local scheduler at each class,
and can be made in a conventional manner, e.g. via
two-phase locking or timestamp ordering.

We omit a complete treatment of serializability, such
as one be based on multiversion serializability [BHG87].
The interested reader is referred to the serializability
argument for the similar case of the two-snapshot
algorithm that appears in [Jae92].

4 A Secure Periodic Multiversion
Algorithm

From the point of view of correctness, any versioning
algorithm is satisfactory as long as it satisfies the
constraints on the a(.) and v(.) functions. However,
satisfying correctness constraints is not enough. For
example, suppose one adopted the straightforward
versioning algorithm of switching to new versions
synchronously at all classes. This decision means that

all classes always have the same version, say n, as the
current version. The most recent stable version is n - 1
at all classes. Thus for all Tn, u(T,) = n and a(T,,) =
n - 1. Suppose a transaction T, reads a version of data
item 2, namely z,-1, from some dominated class, and
suppose the version period switches immediately after
the read. The version switch ends the version period n,
and T, must now abort, since any values T, may wish
to write are too late to appear in version n.

Aborting T, in the above example satisfies the
correctness constraints, but it is hardly efficient. What
is required is some time for a transaction that has
read a value from a dominated level to complete its
processing. A solution is to manage version switching
in a progressive manner, beginning first at grade 0
classes, and proceeding up from grade i to grade i + 1
classes. In between each switch, transactions accessing
old versions are given time to complete. Duiing this
time, new transactions can access newer version of
dominated data. The algorithm below is based on a
similar approach is used in the two-snapshot algorithm
[AJJ92, Jae92]:

The following pseudo-code uses a loop indexed by
security grade. Let G denote the largest grade found
in the multilevel database, and let n denote the current
version period.

n := 1;
While Normal Operation

For i in 0 . . (G - 1)
Declare version n at each level S

where G(S) = i
--Subsequent transactions at class S
--have v(.) > n+ 1

Set a(.) = n for new grade i+l tr,ansactions
--For old grade i+l transactions a(.)
--remains n - 1

Delay one period
--To allow grade i+l transactions with
--a(.) = n -1 to finish

Abort unfinished grade i+l transactions
with a(.) = n - 1

End-For
Garbage collect data with version n-l
n := n+l

End-While

The steps within the For-loop are carried out in
parallel at multiple classes. Thus all classes of a given
grade declare new versions at the same time.

The algorithm given here does not forcibly abort
transactions at grade zero, although in practice it may
be desirable to do so. The algorithm does forcibly
abort old transactions at higher grades, if they fail to
finish within the time limit, where ‘old’ encompasses

123

any transaction that began execution prior to the
availability of the new versions created in the first step
of the For-loop, i.e. when a(.) = n - 1. Transactions
that begin after that point are considered new and are
not forcibly terminated until the next pass through
the While-loop. This means that every transaction
has at least one period in which to execute, and some
have considerably longer. A complete pass through the
While-loop requires G periods, so the maximum time
available to a transaction is G + 1 periods.

4.1 Satisfaction Of Desirable Properties

The above discussion has dealt primarily with correct-
ness of the algorithm from the viewpoint of one-copy
serializability. For completeness, we must also discuss
the other properties that we have claimed of the algo-
rit,hm.

First, we address correctness from the viewpoint
of security. For direct access, we assume that the
TCB implements the simple-security and restricted *-
property on each access request. The real issue is covert
channels - is it possible for a transaction at one class
to influence any transaction at either a dominated or
incomparable class. The only access across classes is a
read by a transaction at a dominating level to a datum
at a dominated level. Since no read-lock is necessary on
the stable version that is used to satisfy the read request,
there is no possibility for a transaction at the dominated
level to infer that the read request is pending. Hence,
there is no covert channel between transactions in the
algorithm presented here.

Remaining claims are easily justified as follows. It
is clear that only up to three versions of a datum are
simultaneously maintained, namely the current version,
and up to two stable prior versions. None of the
concurrency control need be in the TCB, although
the TCB is responsible for implementing the simple-
security, and restricted *-properties. The correctness
sketch in section 3 applies to general partial orders;
e.g. a restriction to crown-free partial orders or some
more other subset of partial orders is not needed. High
transactions are not subject to starvation since at least
one stable version is always available for read access at
any given class. Further, a transaction at a dominating
class always has at least one period to complete
execution. Finally, long read-only transactions can
execute at any level by accessing stable versions. As
in [MPL92], long read-only transactions are subject to
the deadline imposed by the versioning algorithm.

5 Conclusion

We have presented a periodic multiversion concurrency
control algorithm suitable for secure multilevel data-
bases. We argue that the algorithm yields a desirable

tradeoff of properties. In return for setting a limit on
transaction duration and having some transactions view
a slightly dated version of the database, the algorithm
efficiently uses a bounded amount of storage, keeps all
concurrency control functions outside of the TCB, ap-
plies to arbitrary security structures, does not subject
high transactions to starvation, and supports long read-
only transactions with conflict-free access.

We developed a set of constraints that ensured one-
copy serializability, and then presented an algorithm
that satisfies these constraints. In addition, we show
that the algorithm guarantees transactions a fixed
time to complete, allows transactions to span version
switching periods, and showed that security constraints
are satisfied.

References

[AJ93]

[AJF93]

[AJJ92]

[BHG87]

[BL76]

[CK93]

[CM921

Paul Ammann and Sushi1 Jajodia. Dis-
tributed timestamp generation in planar lat-
tice networks. ACM Transactions on Com-
puter Systems, 11(3):205-225, August 1993.

Paul Ammann, Sushi1 Jajodia, and Phyllis
Frankl. Globally consistent event ordering
in one-directional distributed environments.
Technical Report ISSE-TR-93-104, George
Mason University, Fairfax, VA 22030, Au-
gust 1993.

Paul Ammann, Frank Jaeckle, and Sushi1
Jajodia. A two snapshot algorithm for
concurrency control in secure multi-level
databases. In Proceedings of the Symposium
on Research in Security and Privacy, pages
204-215, Oakland, CA, May 1992.

Philip A. Bernstein, Vassos Hadzilacos,
and Nathan Goodman. Concurrency Con-
trol and Recovery in Database Systems.
Addison-Wesley, Reading, MA, 1987.

D.E. Bell and L.J. LaPadula. Secure com-
puter systems: Unified exposition and mul-
tics interpretation. Technical Report MTR-
2997, The Mitre Corporation, Bedford, MA,
March 1976.

Oliver Costich and M. Kang. Maintain-
ing multilevel transaction atomicity in MLS
database systems with replicated architec-
ture. In IFIP7: Proceedings of the IFIP
WG 11.3 Seventh Annual Working Confer-
ence on Database Security, pages 332-357,
Huntsville, AL, September 1993.

Oliver Costich and John P. McDermott. A
multilevel transaction problem for multilevel

124

[Corn831

[Cos92]

[Den821

[DoD85]

[FM891

[HC86]

[Jae92]

[JK90]

[KJ90]

[KK92]

secure database systems and its solution for
the replicated architecture. In Proceedings
of the Symposium on Research in Security
and Privacy, pages 192-203, Oakland, CA,
May 1992.

Committee on Multilevel Data Management
Security, Air Force Studies Board, National
Research Council, Washington, DC. Multi-
level Data Management Security, 1983.

Oliver Costich. Transaction processing us-
ing an untrusted scheduler in a multilevel
database with replicated architecture. In
Carl Landwehr and Sushil. Jajodia, editors,
Database Security V: Status and Prospects,
pages 173-190. North Holland, 1992.

Dorothy E. Denning. Cryptography and
Data Security. Addison-Wesley, Reading,
MA, 1982.

DOD Computer Security Center. Trusted
Computer System Evaluation Criteria, De-
cember 1985. DOD 5200.28-STD.

Judy Froscher and Cathy Meadows. Achiev-
ing a trusted database management system
using parallelism. In C. Landwehr and S. Ja-
jodia, editors, Database Security II: Status
and Prospects, pages 151-160. North Hol-
land, 1989.

Meichun Hsu and Arvola Chan. Partitioned
two-phase locking. ACM Transactions on
Database Systems, 11(4):431-446, December
1986.

Frank Jaeckle. A two snapshot algorithm
for concurrency control in secure multi-level
databases. Master’s thesis, George Mason
University, 1992.

Sushi1 Jajodia and Boris Kogan. Trans-
action processing in multilevel-secure data-
bases using replicated architecture. In Pro-
ceedings of the Symposium on Research in
Security and Privacy, Oakland, CA, May
1990.

Boris Kogan and Sushi1 Jajodia. Con-
currency control in multilevel-secure data-
bases using replicated architecture. Proceed-
ings ACM SIGMOD International Confer-
ence on Management of Data, pages 153-
162, May 1990.

I.E. Kang and T.F. Keefe. On transac-
tion processing for multilevel secure repli-
cated databases. In Proceedings European

[KTSO]

[Mav93]

[McD93]

[MJSSl]

[MPL92]

Symposium on Research in Computer Secu-
rity, pages 329-347, Toulouse, France, 1992.
Springer-Verlag. Lecture Notes in Computer
Science, Volume 648.

T.F. Keefe and W.T. Tsai. Multiversion
concurrency control for multilevel secure
database systems. In Proceedings of the
Symposium on Research in Security and
Privacy, pages 369-383, Oakland, CA, May
1990.

Padmaja Mavuluri. On the fly reading of
entire databases. Master’s thesis, George
Mason University, 1993.

John P. McDermott. Transaction Manage-
ment in Replicated-Architecture Multilevel-
Secure Database Systems. PhD thesis,
George Mason University, 1993.

John McDermott, Sushi1 Jajodia, and Ravi
Sandhu. A single-level scheduler for the
replicated architecture for multilevel-secure
databases. In Seventh Annual Computer
Security Application Conference, pages 2-
11, San Antonio, TX, December 1991.

C. Mohan, Hamid Pirahesh, and Raymond
Lorie. Efficient and flexible methods for
transient versioning of records to avoid lock-
ing by read-only transactions. In Proceed-
ings of ACM SIGMOD International Con-
ference on Management of Data, pages 124-
133, San Diego, CA, June 1992.

[PMC+92] Hamid Pirahesh, C. Mohan, Josephine
Cheng, T. S. Liu, and Pat Sellinger. Par-
allelism in relational data base systems: Ar-
chitectural issues and design approaches. In
Proceedings of 2nd International Conference
on Databases in Parallel and Distributed
Systems, pages 4-29, Dublin, Ireland, July
1992.

[Pu86] Calton Pu. On-the-fly, incremental, consis-
tent reading of entire databases. Algorith-
mica, 1(3):271-287, October 1986.

125

