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Abstract 

We propose an efficient multiversion algorithm for servicing 
read requests in secure multilevel databases. Rather than 
keep an arbitrary number of versions of a datum, as standard 
multiversion algorithms do, the algorithm presented here 
maintains only a small fixed number of versions - up to 
three - for a modified datum. Each version corresponds to 
the state of the datum at the end of an externally defined 
version period. The algorithm avoids both covert channels 
and starvation of high transactions, and applies to security 
structures that are arbitrary partial orders. The algorithm 
also offers long-read transactions at any security level 
conflict-free access to a consistent, though slightly dated, 
view of any authorized portion of the database. We derive 
constraints sufficient to guarantee one-copy serializability 
of executions histories, and then exhibit an algorithm that 
satisfies these constraints. 

1 Introduction 

We address the problem of concurrency control in 
secure multilevel databases. In a secure multilevel 
database, a request to read a datum is satisfied if 
the simple security property is met, and a request 
to write a datum is satisfied if the *-property is &et 
[BL76, Den82, DoD85]. Th ese rules may be summarized 
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as stating that processes cannot read from higher 
security classes or write to lower security classes. In 
addition to enforcing the simple security and *-property 
on direct access, secure multilevel databases must also 
prevent indirect access or covert channels. For this 
reason concurrency control algorithms for conventional 
databases are inadequate. Accordingly, a variety 
of algorithms [AJJ92, Cos92, CK93, CM92, FM89, 
Jae92, JK90, KK92, KT90, KJ90, McD93, MJSSl] 
and architectures [Com83, KJ90] specifically tailored 
for secure multilevel databases have been developed. 
In order to satisfy the security constraints, each of 
the current solutions sacrifices one or more of the 
following desirable properties: (i) efficient storage, 
(ii) minimization of the trusted computing base (or 
TCB), (iii) non-starvation of high transactions, or 
(iv) applicability to arbitrary security structures. We 
propose a new algorithm - a periodic multiversion 
algorithm, show that it achieves the security objectives, 
and argue that it retains a better set of desirable 
properties than comparable algorithms. 

For the kernelired architecture [Com83, KJ90], both 
single version [AJ93] and multiversion [KT90] algo- 
rithms have been developed. Unfortunately, to avoid 
covert channels, all single version algorithms subject 
high transactions to starvation. To avoid covert chan- 
nels, the multiversion algorithm in [KTSO] requires that 
all transactions be serialized in a global queue that is 
managed by the TCB. In addition, there is no bound 
on the number of versions of a datum that might be 
required. 

At each security class, the standard replicated archi- 
tecture [Com83, KJ90], to which most multilevel algo- 
rithms pertain, requires the complete replication of the 
databases at all dominated security classes. For large 
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databases or for security lattices with more than a very 
few nodes, this can pose a prohibitive cost. In addition, 
propagation of updates from low classes to high classes 
is a technically challenging problem, and many of the 
algorithms are only correct for a subset of the desirable 
security structures. In particular, some algorithms re- 
strict security structures to be total orders, and others 
restrict security structures to be crown-free r [AJF93]. 
Those algorithms for the standard replicated architec- 
ture that allow security structures to be lattices or ar- 
bitrary partial orders must manage at least some of the 
concurrency control within the TCB. 

An alternate replication architecture, in which snap- 
shots of low databases are maintained for read access by 
high transactions, is described in [AJJ92, Jae92]. Con- 
currency control for this architecture is achieved with a 
two-snapshot algorithm. Instead of accessing low data 
directly, high transactions are instead given access to 
stable snapshots of low data, and snapshots are regen- 
erated on a periodic basis. Although the twosnapshot 
algorithm applies to general partial orders, it still re- 
quires on the order of three times the storage of a single 
version database, even if most low data values do not 
change from one snapshot to the next. In addition, the 
two-snapshot algorithm imposes an upper bound on the 
time during which high transactions can execute; any 
transaction that overruns the resulting deadlines must 
be aborted. 

Finally, none of the existing concurrency control 
algorithms for secure, multilevel databases offer support 
for long read-only transactions. It is well known 
that a mixture of long read-only transactions and 
update transactions causes performance problems for 
conventional database concurrency control algorithms 
[PMC+92]. For example, with conventional two-phase 
locking, a long read-only transaction can block many 
update transactions as it acquires the necessary read- 
locks on data. The problem is simply exacerbated 
in concurrency control algorithms for secure multilevel 
databases. 

In this paper, we propose a secure, periodic, mul- 
tiversion concurrency control algorithm suitable for a 
kernelized architecture in which: 

l Storage is used efficiently. Specifically, only 
versions of a modified datum are maintained, and of 
these, at most three, including the current version, 
are ever simultaneously maintained. 

l No part of the concurrency control algorithm is 
managed inside the TCB. (A TCB is still required; 
however, serializability is achieved without recourse 
to the TCB). 

1 Unfortunately, lattices, which are natural security structures 
for many applications [Den82], are not a subset of crown-free 
partial orders. 

l The algorithm applies to arbitrary security struc- 
tures, i.e. any partial order. 

l High transactions are not subject to starvation. 

l Long read-only transactions can execute without 
interfering with update transactions. 

To achieve these goals, the algorithm imposes the 
following constraints. First, the algorithm sets a limit 
on transaction duration; a transaction that overruns 
its deadline is aborted. Second high transactions 
read slightly out-of-date versions of low data; however, 
most other concurrency control algorithms for multilevel 
databases share this trait. Third, long read-only 
transactions that require conflict-free access also read 
slightly out-of-date versions of the data. However, 
read-only transactions that do not require conflict-free 
access can read current versions of the data. We 
argue that these constraints are justified by the benefits 
enumerated above. 

1.1 Other Related Work 

Aside from the work on secure multilevel databases cited 
above, there are two additional areas of relevant work. 

First, the handling of long read-only transactions has 
received considerable attention in conventional data- 
bases. One algorithm for supporting consistent reads 
of entire databases that employs two-phase locking is 
the on-the-fly algorithm of Pu [Pu86].* 

Multiversion algorithms are also suitable for servicing 
long reads, and they are better suited to long read-only 
transactions that only access a subset of the database. 
In a multiversion algorithm, each write of a datum 
produces a new version, and long reads can be satisfied 
by accessing old versions. In standard multiversion 
algorithms [BHG87], there is no bound on the number 
of versions of a datum that need be maintained, and for 
some algorithms, e.g. multiversion two-phase locking, 
there are still conflicts between read locks and certify 
locks. For extremely long read transactions or extremely 
large data, the lack of a bound on the number of versions 
can be a significant implementation problem. Mohan et 
al. proposed an multiversion algorithm that limits the 
maximum number of versions that need be maintained 
to a small fixed value [MPL92]. Since the current paper 
builds on the work of Mohan et al., we describe the 
algorithm in more detail next. 

‘In Pu’s algorithm, the global read transaction locks and 
releases each datum incrementally and colors a datum black if 
the global read has accessed the datum and white otherwise. 
Each update transaction is also colored based on the color of 
data the transaction attempts to write. A color test aborts gray 
transactions, which are transactions that attempt to write both 
black and white data. It turns out that the color test in [Pu86] is 
not quite strong enough. However, the algorithmcan be repaired; 
a correct color and shade test is given in [Mav93]. 

119 



Transactions in [MPL92] are classified into two types, 
which we will call updale transactions (called type Tu 
transactions in [MPL92]) and long-read transactions 
(called type Tr transactions in [MPL92]). Update 
transactions access the current versions of a datum via 
a two-phase locking protocol. Long-read transactions 
do no2 acquire locks; instead they access old versions 
of a datum. Thus, they enjoy conflict-free access to 
data in exchange for tolerating a slightly out-of-date, 
although consistent, view of the database. Long-read 
transactions are prohibited from updating any values. 
It is important to note that if a read-only transaction 
wishes to read the current version, it may run as an 
update transaction. 

Rather than creating a version upon each write of a 
datum, the scheme in [MPL92] only maintains versions 
corresponding to the end of externally defined version 
periods. Even if many transactions write a datum z 
during a given version period n, only the last value 
written is recorded in the version n instance of z. If 
no transaction writes z during version period n + 1, no 
version n instance of z need be separately maintained 
since the values of version n and version n + 1 are 
identical. 

Any number of versions can be maintained, but 
to make the scheme workable, two, plus the current 
version, is the minimum number. A zero version scheme 
corresponds to a database with no multiversioning. 
Maintaining exactly one extra version is not satisfactory 
in that active long-read transactions must be aborted 
at the switch of each version period. Maintaining 
two extra versions is satisfactory [MPL92]; additional 
versions allow long-read transactions additional time to 
complete. 

The other area of relevant work is that on hierar- 
chically decomposed databases [HC86]. Such databases 
share the same structure and (non)interference proper- 
ties as secure multilevel databases, although the mo- 
tivation differs. In an hierarchical database, data is 
partitioned into classes. Each transaction executes at 
a particular class, and the access characteristics of a 
transaction are restricted by analogs of the simple secu- 
rity and *-properties. One useful interpretation of the 
partitions is that data at one class may be considered as 
‘raw’ with respect to dominating classes and ‘derived’ 
with respect to dominated classes. The motivation for 
the access constraints on transactions is that transac- 
tions manipulating derived data should not modify raw 
data, nor should they interfere with transactions that 
are maintaining the raw data. The algorithm developed 
in this paper for secure multilevel databases can be ap- 
plied directly to hierarchically decomposed databases. 

1.2 Outline Of Paper 

The remainder of the paper is organized as follows. In 
section 2, we give definitions and an architecture to sup- 
port a secure periodic multiversion algorithm. In section 
3 we develop the constraints on periodic multiversion 
algorithms that are sufficient to simultaneously satisfy 
noninterference between classes and serializability of ex- 
ecution histories. In section 4, we present an algorithm 
that satisfies the constraints derived in section 3, allows 
transactions timely access to data at dominated classes, 
and permits transactions to smoothly execute during 
version switches. Section 5 summarizes our results. 

2 A Secure Multiversion Architecture 

First, we present definitions suitable for defining a 
secure multilevel architecture. Next, we describe 
the general architecture for maintaining periodically 
generated versions at different classes. 

2.1 Definitions 

We consider a finite set of transactions, denoted 
‘I’ = {TI, Tz, . ..}. Each transaction accesses (reads 
or writes) data in a finite set D = (11, 22, . ..}. Each 
transaction and datum is associated with one of a finite 
number of classes in the set S = {Si , Sz, . ..}. The 
function L :TuD + S denotes this mapping; 
in other words, if L(T,) = Si, then Si is the class of 
transaction T,. Similarly, if L(z) = Si, then S; is the 
class of datum z. As a notational convention, we use 
the subscripts i, j and k to index classes in S, and the 
subscripts a, b and c to index transactions in T. 

Classes are related by a dominance relation, denoted 
> : S t* S. If Si > Sj, then Si is said to dominate Sj. 
We write Si 2 Sj to include the case that i might equal 
j, and we write Sj < Si as another way of expressing 
Si > Sj. 

It is useful to know how far ‘up’ in the dominance 
relation a given class Si is. To this end, define the 
grade function, g : S --* N, to be a function from 
the set of classes to the natural numbers. Consider a 
directed graph whose nodes are S and whose edges are 
the transitive reduction of the dominance relation, >. 
For Si E S, let g(Si) equal the length of the longest 
path starting at Si. 

2.2 Servicing Reads With Old Versions 

In the versioning scheme proposed by Mohan et al 
[MPL92], correctness follows directly from the algo 
rithm description. Serializability of execution histories 
with respect to update transactions is ensured by a two 
phase locking protocol. Serializability of execution his- 
tories with respect to long-read transactions is also en- 
sured since long-read transactions always view the data- 
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base state as it appears at the end of some version pe- 
riod, and the end of each version period is guaranteed 
to be consistent. 

Developing a versioning scheme for a secure multilevel 
database or a hierarchically decomposed database re- 
quires a more careful approach to correctness. The main 
reason is that serializability of update transactions can- 
not be ensured simply with two-phase locking or some 
other conventional concurrency control mechanism. At- 
tempting to ensure serializability with a conventional 
mechanism results in a covert channel or starvation in 
the case of a secure multilevel database and interference 
or starvation in the case of a hierarchically decomposed 
database. 

I ; Old Versiks 
I 1 

Database At Class S ; 

I \~~AUXSS 

Read Access 

I 

CurrentData : 
(Version n) ,pJ ; 

x 

; Old Versions 

; Old Versioru 

Database At Class S i 

Database At cki.5.3 Sk 

Figure 1: Servicing Reads With Old Versions 

For example, suppose a transaction at a dominating 
class obtains a read lock for the current version of a 
datum. A transaction at the dominated class can detect 
the presence or absence of the read lock by attempting 
to obtain a write lock, thus creating a covert channel. 
On the other hand, if the read lock is simply overridden 
by the write lock, the dominating transaction loses it 
guarantee that the value obtained is consistent, and 
must retry. Repeated unsuccessful retries can lead to 
starvation of the dominating transaction. Even the 
usual multiversion approach of creating a new version 
does not work in our case since we are explicitly 
restricted to creating at most one new version of a 
datum per version period. Similar examples can be 
developed for other concurrency control strategies, such 
as timestamp ordering. 

The interference/starvation problem exhibited in the 
above example can be eliminated by having update 
transactions access stable versions, i.e. data from an 
an earlier version period, rather than current versions 
when reading data at a dominated class. 

Figure 1 shows the general architecture by which 
read requests may be serviced with old versions. For 
the purposes of the paper, we assume that transaction 
access follows the restricted *-proper@ rather than just 
the *-property. The restricted *-property says that 
if transaction T, attempts to write datum 2, then 
L(T,) = L(z). Th e restriction prevents transactions 
from writing up. Hence, it is only the servicing of 
transaction reads that need cross class boundaries. The 
general motivation for the restricted *-property over 
the *-property is integrity; rogue transactions from 
dominated classes cannot damage data at dominating 
classes. Use of the restricted *-property is a standard, 
although not universal, assumption in algorithms for 
secure multilevel databases. 

Figure 2 gives the requirements - current or stable - 
for different types of transaction access. The first row 
gives the access requirements of update transactions. 
The second row gives the access requirements of long- 
read transactions. 

Location of Data Item 

Own Class Dominated Class 
_.-- _~ 

Update Current Stable 

Transaction Type 

long-read Stable Stable 

Figure 2: Data Requirements For Different Transaction 
Types 

3 Serializability Constraints 

Although avoidance of interference is most easily ex- 
pressed in terms of stable vs. current versions of a da- 
tum, serializability arguments require more precise def- 
initions of versions. Specifically we need two ways to 
relate transactions to versions of each datum. Consider 
a transaction To at some class Si. Let the version func- 
tion, denoted v : T + N, map T, to version n if 
n is the first version in which Ta’s effects can become 
visible. It is possible that Ta’s updates do not appear 
in any version if some other transaction Tb of the same 
version as T, subsequently overwrite the values T, pro- 
duces; hence the conditional in the definition. Also, we 
require that all updates of T, first appear in the same 
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version; otherwise T, is not atomic. Let the assign func- 
tion, denoted o : T + N, map T, to version n if T, 
reads some datum z at a dominated class Sj , Si > Sj, 
and the version of z read is n. Note that by insisting 
that a(.) be a function, we ensure that for all dominated 
data that T, accesses, the version accessed be the same. 
It is straight forward to exhibit unserializable execution 
histories if T, is allowed to access multiple versions of 
data at dominated classes [AJJ92, Jae92]. 

The definition of v(.) is essentially the same as the 
rule in [MPL92] for assigning update transactions to 
a version period. The definition of u(e) presented 
here is more general, in that it allows for concurrency 
control algorithmsother than twophase locking, such as 
timestamp ordering. The definition of a(.) is essentially 
the same as the rule in [MPL92] for assigning long- 
read transactions to a version period. In our case, it is 
helpful to have both definitions for each of the possible 
transaction types. 

The definitions of u(.) is incomplete respect to read- 
only ‘update’ transactions and long-read transactions. 
If T, is a read-only transaction that is executing as an 
update transaction, the value of v(T,) need only be con- 
sistent with neighboring, class Si update transactions 
in some serialization order. Common scheduling algo- 
rithms can produce an explicit serialization order. For 
example, time of first lock release is suitable for deter- 
mining v(T,) in a two-phase locking scheduler. 

If T, at class Si is a long-read transaction (recall this 
means that To wishes a guarantee not to be blocked) 
then v(T,) is one plus the version of the data (if any) 
that T, reads at class Si. If T, reads no data at class 
Si, then v(T,) is one plus the version of the data (if 
any) that T, reads at some dominated class. T, must 
read the same version from all dominated classes, but 
T, may possibly read a different version at its own class. 

Note that a(T,) is not defined if the grade of Si, g(Si) 
is zero. Fortunately, no definition is required in this 
case. Also, if g(Si) is not zero, and T, does not read any 
data from a dominated class, a(T,) is again undefined. 
In this case a definition is necessary. As was done for 
II(.), let a(T,) be defined consistently with neighboring, 
class Si transactions in some serialization order. 

For any given transaction, the version function and 
the assignment function are related. Specifically, we 
restrict any versioning algorithm to satisfy a(T,) = 
v(T,)- 1 V a(T,) = v(T,,). In other words, a transaction 
always reads dominated data of its own version, or of 
the immediately preceding version. The reason for this 
restriction is as follows. First, it is clearly inconsistent 
to have the effects of transaction T, appear in a version 
prior to some version from which T, reads. Hence, 
we require a(T,) < v(T,). Second, suppose that a 
transaction T, were allowed to have a(T,) = n - 1 
and v(T,) = n + 1 f or some n. Consider the following 

scenario: 

Let Si, Sj and Sk be three classes such that Si > Sj > 
Sk, and let, T,, Ta, and T, be three transactions at these 
classes, respectively. Suppose the three transactions 
obtain the following versions. The notation o~[z,] 
indicates that operation o from transaction T, accesses 
version n of datum z. 

T,: r&n] ro[ynl 
Tb: rb[%-11 Wb[Yn+l] 

T,: wc[xn] 

Note that a(Tb) = n - 1 shce L(Tb) = Sj > L(x) = Sk 
and Tb reads the value of x from version n - 1. Also, 
u(Tb) = n + 1 since Tb writes the value of y in version 
n + 1. In terms of a serialization graph, T, + Tb since 
T, reads an earlier version of y than Tb writes, Tb 4 T, 
since Tb reads an earlier version of x than T, writes, and 
T, + Ta since T, writes the version of x that T, reads. 
Hence, the result is the cycle To + Tb + T, + Ta. 

To avoid such cycles in general, we prohibit transac- 
tions such as Tb above. by requiring, for all transactions 
T,, a(Ta) 2 v(T,) - 1. Together, the two constraints 
yield a(T,) = v(T,) - 1 V a(T,) = v(T,). 

3.1 A Serialization Sketch 

The basis for the serialization argument is that, in any 
multiversion execution history H, any T, where v(T,) = 
n may be serialized after any Tb where v(Tb) = n- 1 and 
before before any T, where v(Tc) = n+l. Figure 3 shows 
this basic serialization argument. Figure 3 essentially 
captures the correctness argument behind the scheme 
in [MPL92]. 

Figure 3: Serialization Of Transactions By Version 
Function 

The scenario is more complicated in the case of hi- 
erarchically decomposed or multilevel secure databases. 
Here, a transaction T, where u(Ta) = n may read down 
to dominated classes. If version n is available for the 
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dominated classes, then a(T,) may be set to n. How- 
ever, if version n is not available, it is efficient to assign 
a(T,) to n - 1 instead. Thus the transactions T, for 
which u(T,) = n are broken into two parts - those with 
a(T,) = n - 1 and those with a(T,) = n. The con- 
currency control algorithm at each class Si must ensure 
that local transactions (i.e. transactions T, for which 
L(T,) = Si) for which a(T,) = n - 1 serialize before 
local transactions for which a(T,) = n. The revised 
serialization argument is shown in figure 4. 

Figure 4: Serialization Of Version n Transactions 

Figure 4 also shows the effect of the grade function, 

d.17 on the serialization of version n transactions. 
Specifically, version n transactions at classes of grade 
zero must serialize after version 12 transactions at 
dominating classes that read version n - 1 data, i.e. 
those T, for which a(T,) = n - 1. Extending 
this argument to other classes shows that all version 
n transactions must serialize after transactions at 
dominating levels that read version n - 1. Ordering 
version n transactions for which a(.) has value n - 1 
monotonically decreasing by the grade function satisfies 
the objective. In addition, version n transactions 
that, in essence, read from version n transactions at 
dominated levels must serialize after such transactions. 
In this case ordering version n transactions for which 
a(.) has value n monotonically increasing by the grade 
function satisfies the objective. Remaining serialization 
decisions are up to the local scheduler at each class, 
and can be made in a conventional manner, e.g. via 
two-phase locking or timestamp ordering. 

We omit a complete treatment of serializability, such 
as one be based on multiversion serializability [BHG87]. 
The interested reader is referred to the serializability 
argument for the similar case of the two-snapshot 
algorithm that appears in [Jae92]. 

4 A Secure Periodic Multiversion 
Algorithm 

From the point of view of correctness, any versioning 
algorithm is satisfactory as long as it satisfies the 
constraints on the a(.) and v(.) functions. However, 
satisfying correctness constraints is not enough. For 
example, suppose one adopted the straightforward 
versioning algorithm of switching to new versions 
synchronously at all classes. This decision means that 

all classes always have the same version, say n, as the 
current version. The most recent stable version is n - 1 
at all classes. Thus for all Tn, u(T,) = n and a(T,,) = 
n - 1. Suppose a transaction T, reads a version of data 
item 2, namely z,-1, from some dominated class, and 
suppose the version period switches immediately after 
the read. The version switch ends the version period n, 
and T, must now abort, since any values T, may wish 
to write are too late to appear in version n. 

Aborting T, in the above example satisfies the 
correctness constraints, but it is hardly efficient. What 
is required is some time for a transaction that has 
read a value from a dominated level to complete its 
processing. A solution is to manage version switching 
in a progressive manner, beginning first at grade 0 
classes, and proceeding up from grade i to grade i + 1 
classes. In between each switch, transactions accessing 
old versions are given time to complete. Duiing this 
time, new transactions can access newer version of 
dominated data. The algorithm below is based on a 
similar approach is used in the two-snapshot algorithm 
[AJJ92, Jae92]: 

The following pseudo-code uses a loop indexed by 
security grade. Let G denote the largest grade found 
in the multilevel database, and let n denote the current 
version period. 

n := 1; 
While Normal Operation 

For i in 0 . . (G - 1) 
Declare version n at each level S 

where G(S) = i 
--Subsequent transactions at class S 
--have v(.) > n+ 1 

Set a(.) = n for new grade i+l tr,ansactions 
--For old grade i+l transactions a(.) 
--remains n - 1 

Delay one period 
--To allow grade i+l transactions with 
--a(.) = n -1 to finish 

Abort unfinished grade i+l transactions 
with a(.) = n - 1 

End-For 
Garbage collect data with version n-l 
n := n+l 

End-While 

The steps within the For-loop are carried out in 
parallel at multiple classes. Thus all classes of a given 
grade declare new versions at the same time. 

The algorithm given here does not forcibly abort 
transactions at grade zero, although in practice it may 
be desirable to do so. The algorithm does forcibly 
abort old transactions at higher grades, if they fail to 
finish within the time limit, where ‘old’ encompasses 
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any transaction that began execution prior to the 
availability of the new versions created in the first step 
of the For-loop, i.e. when a(.) = n - 1. Transactions 
that begin after that point are considered new and are 
not forcibly terminated until the next pass through 
the While-loop. This means that every transaction 
has at least one period in which to execute, and some 
have considerably longer. A complete pass through the 
While-loop requires G periods, so the maximum time 
available to a transaction is G + 1 periods. 

4.1 Satisfaction Of Desirable Properties 

The above discussion has dealt primarily with correct- 
ness of the algorithm from the viewpoint of one-copy 
serializability. For completeness, we must also discuss 
the other properties that we have claimed of the algo- 
rit,hm. 

First, we address correctness from the viewpoint 
of security. For direct access, we assume that the 
TCB implements the simple-security and restricted *- 
property on each access request. The real issue is covert 
channels - is it possible for a transaction at one class 
to influence any transaction at either a dominated or 
incomparable class. The only access across classes is a 
read by a transaction at a dominating level to a datum 
at a dominated level. Since no read-lock is necessary on 
the stable version that is used to satisfy the read request, 
there is no possibility for a transaction at the dominated 
level to infer that the read request is pending. Hence, 
there is no covert channel between transactions in the 
algorithm presented here. 

Remaining claims are easily justified as follows. It 
is clear that only up to three versions of a datum are 
simultaneously maintained, namely the current version, 
and up to two stable prior versions. None of the 
concurrency control need be in the TCB, although 
the TCB is responsible for implementing the simple- 
security, and restricted *-properties. The correctness 
sketch in section 3 applies to general partial orders; 
e.g. a restriction to crown-free partial orders or some 
more other subset of partial orders is not needed. High 
transactions are not subject to starvation since at least 
one stable version is always available for read access at 
any given class. Further, a transaction at a dominating 
class always has at least one period to complete 
execution. Finally, long read-only transactions can 
execute at any level by accessing stable versions. As 
in [MPL92], long read-only transactions are subject to 
the deadline imposed by the versioning algorithm. 

5 Conclusion 

We have presented a periodic multiversion concurrency 
control algorithm suitable for secure multilevel data- 
bases. We argue that the algorithm yields a desirable 

tradeoff of properties. In return for setting a limit on 
transaction duration and having some transactions view 
a slightly dated version of the database, the algorithm 
efficiently uses a bounded amount of storage, keeps all 
concurrency control functions outside of the TCB, ap- 
plies to arbitrary security structures, does not subject 
high transactions to starvation, and supports long read- 
only transactions with conflict-free access. 

We developed a set of constraints that ensured one- 
copy serializability, and then presented an algorithm 
that satisfies these constraints. In addition, we show 
that the algorithm guarantees transactions a fixed 
time to complete, allows transactions to span version 
switching periods, and showed that security constraints 
are satisfied. 
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