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ABSTRACT
Physical Unclonable Functions (PUFs) derive unique secrets
from internal manufacturing variations in integrated circuits.
This work shows that key generation with PUFs is a practi-
cal application of the generic information theoretic problem
of secret key agreement with a compound source.

We present an improved secure sketch construction with
our new optimal syndrome coding scheme for PUFs, Sys-
tematic Low Leakage Coding (SLLC). Our scheme provides
inherent information theoretic security without the need of
a hash function or strong extractor, and optimal asymptotic
performance concerning maximum key size and minimum
helper data size. The secrecy leakage is bounded by a small
epsilon that goes to zero for sufficiently good PUFs.

The reference implementation for an ASIC application
scenario shows that our scheme does not require the 47%
hardware overhead for the hash function that is mandatory
for the state-of-the-art approaches.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection
; E.4 [Coding and Information Theory]: Error Control
Codes

Keywords
Physical Unclonable Functions; Information Theory; Fuzzy
Extractor; Secure Sketch; Syndrome Coding; Secret Key
Generation; Compound Source; ASIC.

1. INTRODUCTION
Secure and reliable cryptographic keys are a prerequisite

to apply cryptography in embedded systems, operating in
unprotected environments. Physical Unclonable Functions
(PUFs) [1, 2, 3, 4, 5, 6, 7] are circuits that measure manu-
facturing variations to derive a unique secret inside a device
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to use it as a cryptographic key or to authenticate a device.
One main advantage of PUFs is that they provide secure
keys for circuits manufactured in standard CMOS technol-
ogy that do not have access to state-of-the art secure storage
solutions such as secure flash memory [8]. This makes PUFs
especially promising for lightweight cryptographic scenarios
with resource constrained devices [9].

Similar to measuring biometric patterns in nature, silicon
PUFs generate unique patterns inside chips during runtime.
PUF circuits are designed to amplify the effects of manufac-
turing variations in the circuit and extract a unique response
pattern for each device. These PUF circuits can be modeled
mathematically as random variables with unique properties
for each chip that return PUF responses as outcomes. PUF
responses are sensitive to measurement noise, environmental
changes and aging. So, the PUF responses vary slightly be-
tween different measurements, and also over time. Almost
all existing PUF types need additional algorithmic support
to generate keys that fulfill cryptographic requirements and
have a sufficiently low error probability over their entire life-
time.

To derive a secure key from a PUF, we have to ensure that
the PUF response has a reasonable amount of entropy. The
generation procedure creates helper data that is used later
to reconstruct the key in the reproduction phase. The helper
data is public so that it can be observed by the adversary.
Algorithms for secret key generation with PUFs are a vivid
research topic in the hardware security community [3, 10,
11, 12, 13, 14, 15, 16, 17, 18].

Improvements on algorithmic level and new implementa-
tions pushed the limits in efficiency and reliability. Some
key generation algorithms for PUFs can be seen as secure
sketches [19]. In general, the current approaches typically
require at least two algorithmic components for the post-
processing of the raw PUF data:

• Syndrome coding schemes address the issue to cre-
ate public helper data that enables error correction,
and for some approaches also the first error correc-
tion steps are carried out in the syndrome decoder [12,
14, 15]. During generation, public helper data is cre-
ated. Later during reproduction, the cryptographic key
is computed from a noisy PUF response and the helper
data. The challenge in creating helper data lies in the
contradicting interests of revealing information about
the PUF that permits error correction, while keeping
the parts used for the cryptographic key secret.
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• An error-correcting code [20] corrects the remaining er-
rors in the output of the syndrome decoder. Here, it is
important that the code is designed to reach the target
bit error probability of the key for a given application
scenario and PUF. Strict hardware constraints on the
size of the decoder pose new challenges on algorithmic
and implementation level to design specific low area
decoders for this purpose.

We focus on syndrome coding in this work and assume
that optimal error-correcting codes with specific properties
are given. The construction and efficient implementation of
error-correcting codes is out of the scope of this paper.

In [12, 14, 15], it has been proven that the discussed
pointer based syndrome coding solutions are information
theoretically secure for sufficiently good PUFs. Therefore,
the outcome of the error-correcting code can be output di-
rectly as a cryptographic key. In contrast, the secure sketches
in [19] have to be extended to fuzzy extractors with an ad-
ditional hash function to derive a cryptographically secure
key.

Note that all current approaches have a downside that
they either discard PUF response bits so that they do not
extract all available secret information or that they are only
cryptographically and not information theoretically secure.
In this work, we will present a method that overcomes these
shortcomings and shows optimal performance and informa-
tion theoretic security at the same time.

Research in the information theory community led to a
better understanding of different key agreement scenarios
and adversary models on an abstract level [21, 22, 23, 24,
25, 26]. As one typical problem in information theory, a
source returns two correlated output sequences. Two legit-
imate parties observe one sequence each and derive a com-
mon secret by exchanging messages over a public communi-
cation channel. Analyzing the asymptotic behavior of this
abstract problem gave new insights to understand its fun-
damental properties, especially the limits of how much key
information can be extracted and how much public com-
munication is necessary. Our work shows that secret key
generation with PUFs can be seen as a practical use case
of the abstract scenario of secret key agreement from cor-
related sequences drawn from a very recent source model,
called compound source [26].

In the same work ([26]), Boche and Schäfer introduced
an optimal key agreement protocol for a compound source
using random code constructions. Random codes show opti-
mal theoretical properties, but are in general hardly suitable
for implementation in embedded devices since large random
codebooks have to be stored. Whereas previous theoretical
work such as [23] only considers aspects of the key, [26] also
took the size of the transmitted data into account. Based
on this work, we will present a deterministic coding scheme
with similar properties that can be implemented in practice.

To introduce our new approach on a solid theoretical basis,
we will go from the abstract to a more concrete level, and
finally into a practical setting, over the sections of this work.

Our contributions
• This work provides the first information theoretic model

that fully represents the problem of secure key gener-
ation with PUFs. We translate the practical problem
of key generation with PUFs directly into information

theoretic models and highlight the corresponding parts
as well as possible simplifications.

• Our new syndrome coding scheme Systematic Low Leak-
age Coding (SLLC) is the first optimal syndrome cod-
ing scheme that fulfills common requirements in infor-
mation theoretic security. Using error-correcting codes
with systematic encoding separates the codeword into
an information and a redundancy part. Storing only
helper data for the redundancy part minimizes the
helper data size and brings the leakage of the key
through the helper data close to zero for sufficiently
good PUFs. Returning only the information part as
key ensures information theoretic security. In addition,
reference secure sketch constructions are compared to
SLLC on an information theoretic level.

• The implementation part sketching a lightweight ASIC
implementation with a small BCH decoder shows that
the low secrecy leakage of SLLC has significant benefits
in practice. It enables information theoretic security,
removes the area-intensive hash function that is nec-
essary for other approaches and minimizes the helper
data size.

Outline
The first contribution of the paper is to reveal the correspon-
dence between the practical problem of secret key generation
with PUFs and the theoretical compound source model in
Section 2. Section 3 introduces the mathematical notation
used in the paper. The information theoretic preliminaries
and definitions are presented in Section 4. We discuss the
existing optimal random coding scheme in Section 5 and
present our new deterministic scheme SLLC in Section 6.
The evaluation in Section 7 compares our new scheme to
popular secure sketch constructions and Section 8 discusses
SLLC in relation to the state of the art in a practical setting.
Section 9 draws our conclusions over this work.

2. EQUIVALENCE OF SECURE KEY GEN-
ERATION WITH PUFS AND KEY AGREE-
MENT FROM COMPOUND SOURCES

In this section, we show that secure key generation with
PUFs is equivalent to key agreement from correlated sources
as shown in Figure 1 from a high-level point of view. In
contrast to previous work [27, 23], the compound source
provides a more detailed model because the effects of vari-
ous physical parameters can be represented as states of the
source.

For secure key generation with PUFs, a PUF behaves like
a random variable that is evaluated in the generation pro-
cedure to compute the helper data. Later on, the PUF acts
like a correlated random variable, depending on the random
variable and the environmental conditions. It is evaluated
multiple times in the field to generate the cryptographic key
whenever it is needed.

In the information theoretic setting, two parties, Alice
and Bob, both have access to one output sequence of a joint
source of randomness. The sequences are drawn from a joint
probability distribution such that they are correlated, but
in general not identical. Therefore, error correction is nec-
essary. Alice corresponds to the PUF during the generation
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Figure 1: Analogies between the key agreement from a compound source and secret key generation from a PUF

Information Theoretic Model Key Generation with PUFs

Source of randomness Compound Source PUF
Communication between parties Public Communication Channel External Helper Data
Influence of attacker State of the Compound Source Operating Conditions of PUF
Distance between parties Space Time

Table 1: Comparison of key generation with a PUF and secret key agreement with a compound source

procedure in the manufacturing environment and Bob to the
PUF during the reproduction procedure in the field.

The following four criteria show the most prominent equiv-
alents between the two problems:

Source of randomness.
Generating and reproducing one PUF key can be seen as

one key agreement between Alice and Bob in the informa-
tion theoretic scenario, with the difference that Bob can also
transmit data to Alice whereas the PUF key reproduction
takes place later and we cannot go back in time.

Reading out a PUF twice under different environmental
conditions can be interpreted as Alice and Bob evaluating
correlated sequences. However, we assume that the helper
data of a PUF is generated in a fixed and protected manu-
facturing environment that is not accessible to the attacker.
Therefore, we can remove the state dependency in the se-
quence of Alice.

The state depends on the environmental conditions and
age of the PUF and defines the distribution of the random
variable observed by Bob. The random process that deter-
mines which actual outcome is drawn from this distribution
corresponds to thermal and measurement noise.

Communication between parties.
Storing external helper data permits a communication

from helper data generation to key reproduction. In an in-
formation theoretic sense, this is equivalent to a noiseless
one-way channel from Alice to Bob. Mostly, a bidirectional
communication between Alice and Bob is permitted in the
theoretical setup. However, the optimal protocol in [26] only
requires one-way communication.

Influence of attacker.
We assume that the attacker can determine the operat-

ing conditions of the PUF by setting the external voltage,
operating the PUF in an environment with a specific tem-
perature, or aging the device. The operating conditions cor-
respond to the state of the compound source. Further, the
attacker can read out the helper data, which corresponds to
an adversary eavesdropping the public communication.

Distance between parties.
Typically, communication is carried out between two par-

ties that are separated in space using for example a wire-
less or cable connection. In the PUF scenario, two PUF
responses are separated in time. For an adversary with un-
limited computational power in the theoretical setting, both
scenarios have the same properties.

In practice, a wireless transmission over space can have
stricter timing constraints for the computation for the ad-
versary. However, this is more important for other scenarios
where an active wiretapper manipulates the public commu-
nication between Alice and Bob, which is not considered in
this work.

Note that the discussed work does not check, whether the
reproduced key is correct or not. See e.g. [28] if the authen-
ticity of the key also has to be ensured.

In a use case, the information theoretic protocol is run sev-
eral times to establish new session keys between Alice and
Bob. Therefore, both parties agree on a new key each time
the protocol is carried out. This corresponds to the manufac-
turing process of PUFs, where multiple different PUFs are
manufactured. The source statistics of the PUFs are identi-
cal, but the actual sequences and the derived keys vary.

For a single PUF, one set of helper data is generated and
then the same key is reproduced multiple times. Alice’s
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part is only executed once so that Alice’s sequence from the
source, the derived key, and the public helper data remain
constant over the lifetime of the PUF. Only Bob’s source se-
quence and his reproduced key can vary from key generation
to key generation.

Taking the previous points into consideration, the PUF
scenario can be seen as a typically more resource restricted
special case of the generic information theoretic model of
secure key agreement from a compound source. See Table 1
for a compact representation of the results.

3. NOTATION
Random variables are denoted in capital italic letters, e.g.

X. Scalars, such as outcomes of random variables, are writ-
ten in small italic letters, e.g. x. Calligraphic letters indicate
sets and |X | is the cardinality of the set X .

Further, a superscript over a letter, e.g. Xn, denotes a
vector of n instances of X. Xj

i selects elements i to j of
Xn. PX(x) denotes the probability distribution or, more
formally, the probability mass function, of X for x ∈ X .
Matrices are written in bold capital letters. Let AT be A
transposed. Concatenations are indicated with two vertical
lines (||).

For random variables X and Y , X|Y means X under con-
dition Y . Let H(X) stand for the Shannon entropy of X and
H(XY ) for the joint entropy of X and Y , and let I(X;Y )
be the mutual information between X and Y [29].

For a better readability, we will switch between integer
representations of numbers and their binary representations
in GF (2n) without marking the binary representation ex-
plicitly. In cases that require special emphasis, the binary
representation of i inGF (2n), n ∈ Z+, is denoted with bn(i).

4. INFORMATION THEORETIC PRELIM-
INARIES AND DEFINITIONS

In this work, we apply the compound source model for
the first time to PUFs. Therefore, we present the required
models and definitions in this section. Figure 2 shows two
parties, Alice and Bob, that want to agree on a mutual secret
key while keeping the adversary Eve ignorant. A compound
source is a source with multiple correlated outputs and an
internal state s selected from set S. Alice and Bob observe
different outputs of the same discrete memoryless multiple
compound source [26] and use the outputs of the source to
generate a common secret. Memoryless means that the n
output pairs (x, y) of the source are drawn independently.
Empirical entropy evaluations of PUFs, e.g. [30], show that
this assumption also holds in practice for popular PUF types
like the SRAM PUF so that we can apply this theory.

In the following, we will consider the compound source
shown in Figure 2. It has two generic outputs Xs and Ys
with joint probability distribution PXY,s(x, y) depending on
the state s ∈ S. The state s can be set by the adversary Eve.
Xs and Ys with marginal distributions PX,s(x), PY,s(y) are
not accessible to the adversary.

Alice and Bob cannot observe both random variables at
once. To establish a joint secret, Bob can observe his marginal
distribution PY,s(y) to make an estimate of s. He can further
make a rough estimate of Xs by observing Ys.

This behavior is represented mathematically as probabilis-
tic memoryless channel Ts between Alice and Bob with input
x ∈ X and output y ∈ Y. The effect of the channel is char-

Eve

Alice Bob

{ P       }XY,s

X s

n
Y s

n

s

W

s

Figure 2: Secret key generation with a compound source

acterized by the conditioned probability distribution PY |X,s,
since the output of the channel Ys depends on the input Xs.
For a specific s ∈ S, the channel Ts is given by the set of the
conditional probabilities for all (x, y) pairs.

Ts =

{
PY |X,s(x, y) =

PXY,s(x, y)

PX,s(x)
: x ∈ X , y ∈ Y

}
(1)

Public communication, or helper data, between Alice and
Bob supports this estimation. Alice establishes secret key
K and Bob secret key L from the same key space K, with
K,L ∈ K, after observing the two sequences Xs

n and Ys
n

of length n drawn from the joint probability distribution
PXY,s(x, y) and exchanging data over the public channel.

In Section 2, we have shown that this information theo-
retic model corresponds to the practical behavior of a PUF
with an initial response Xs

n. In contrast to previous mod-
els, the compound source can represent that subsequent re-
sponses Ys

n depend on environmental factors such as tem-
perature, voltage or aging that can be potentially controlled
by the attacker.

The public communication, that is typically carried out
over space in a communication scenario, corresponds to stor-
ing the helper data W in external non-volatile memory that
is accessed again later in time to reproduce a key. A secret
key K is established during manufacturing and later on, key
L is reproduced in the field. We aim for a reliable key gen-
eration protocol, so k = l, with K 7→ k and L 7→ l, should
hold with a high probability.

Definition of an achievable rate
A key rate Rkey specifies the amount of secret information
that can be derived reliably from each (x, y) pair. This can
be interpreted as the ratio between key length and PUF size.
Referring to Ahlswede and Csiszar [21], Boche and Schäfer
defined in [26] that a key rate Rkey is an achievable key rate,
if for any ε > 0 and nε there exists a key generation protocol
with source output length n > nε where K and L satisfy the
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following four conditions for every s ∈ S:

Pr[k 6= l] < ε (2a)

I(W ;K) < ε (2b)

1

n
H(K) > Rkey − ε (2c)

1

n
log2 |K| <

1

n
H(K) + ε (2d)

Condition 2a ensures the reliability of the generated key K,
or more formally that the probability that an incorrect key
L is reproduced, is smaller than ε. From a security point
of view, it is important that no significant amount of key
information K leaks through the helper data W , so accord-
ing to Condition 2b the helper data leaks less than ε about
the key. The rate Rkey quantifies the performance of the
scheme. The rate is the central criterion that quantifies this
performance. For a meaningful measure, the amount of ac-
tual key information H(K) has to be close to the specified
rate Rkey, as stated in Condition 2c. Bounded by ε, Con-
dition 2d states that the key space K is only slightly larger
than the entropy of the key H(K), such that the generated
key has good cryptographic quality.

Capacity definitions
In information theory, a capacity is defined as the best achiev-
able rate. Depending if a capacity C is defined as upper or
lower bound of a measure, it is the supremum or infimum
over all achievable rates R.

The key capacity Ckey of a compound source is defined
as the supremum over all achievable key rates Rkey. The
authors in [26] show that the key capacity of the compound
source is given by the minimum mutual information between
both outcomes of the source over all possible states such that

Ckey = sup
Rkey is achievable rate

Rkey (3)

= min
s∈S

I(Xs, Ys) (4)

Reconstructing Xs from Ys with joint distribution PXY,s
requires in average H(Xs|Ys) bits. The helper data capacity
Chd is the minimum helper data size that has to be assigned
to be able to restore Xs from Ys for any state of the source.
Therefore, the minimum helper data size is given by

Chd = max
s∈S

H(Xs|Ys) (5)

See [26] for the proofs.
These theoretical bounds permit to evaluate schemes not

only in comparison to previous work. They also give design-
ers quantitative information on how far a scheme can still
be improved until the absolute limits are reached.

Code definition
Typically, error-correcting codes are defined by the code
length n, the code size (or number of information bits) k
and the minimum distance between any two codewords d
[20]. Sometimes, also the minimum number of correctable
errors t =

⌊
d−1
2

⌋
is used. Code C is defined as set containing

all codewords Ci, i = 1, ..., 2k.

The Channel Coding Theorem [29] shows that there exist
codes for a channel Ts with capacity CT where the proba-
bility of a decoding error is smaller than a small ε > 0 if
the code length n is larger than an nε for every ε and rate
RCode = k

n
< CT .

Similar to [26], we define codes with code length n, code
size k and maximum probability of a decoding error for a
given channel as (n, k, ε) codes for the theoretical part. For
the practical part, we will use (n, k, d) codes.

5. AN OPTIMAL SYNDROME CODING
SCHEME WITH RANDOM CODES

Boche and Schäfer introduced an optimal combined syn-
drome coding and error correction construction for a com-
pound source in [26]. In this work, we are the first who
apply this approach to PUFs. The scheme creates a large
number of random codes such that any Xs

n is a codeword of
one of the codes with probability close to one. Alice trans-
mits the number of the code as helper data to indicate Bob
which code to use for decoding Ys

n. The adversary Eve only
knows that Xs

n is one of the 2k codewords of the code with
the number that is transmitted. However, she received no
information which codeword is equal to Xs

n. Therefore, this
information can be used as secret key.

For the sake of simplicity, we will only discuss the use case
for PUFs where Xn is evaluated in a controlled manufactur-
ing environment in which the state of the source is fixed. To
achieve error probabilities < ε for all possible states and a
small ε > 0, we use (n, k, ε) error-correcting codes with rate

RCode =
k

n
= max

s∈S
H(X|Ys) (6)

Before running the actual key agreement process, m ran-
dom (n, k, ε) codes Ci (i = 0, ...,m − 1) with disjoint code-
words are created. The codes Ci are created in sequential
order, starting with code C0. As code generation procedure
of codeword Cj (j ∈ 0, ..., 2k − 1) of code Ci, we draw an
output sequence of length n and with distribution PX from
the source (PUF). If Cj is not already a codeword of the
code Ci (Cj /∈ Ci = {C0, ..., Cj−1}) or any other previously

generated code C0,...,Ci−1 (Cj /∈
i−1⋃
l=0

Cl), the new codeword

Cj is added to Ci. Otherwise, the sequence is discarded and
a new sequence is drawn. This process is continued until all
m codes contain 2k codewords.

The union over all codes covers the most likely output
sequences Xn, so if the number of codes m is sufficiently
large

Pr[Xn ∈
m−1⋃
i=0

Ci] > 1− η (7)

for a small η > 0. Note that the codebooks are public, so
also accessible to the adversary Eve.

Starting with the actual key agreement, Alice draws the
sequence Xn from the source. She transmits (or the PUF
saves) the index i of the selected code Ci as helper data W
such that

W (Xn) =

{
i, if Xn ∈ Ci, and i ∈ {0, ...,m− 1}
0, otherwise

(8)
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According to Eqn 7, the probability of the ”‘otherwise”’ case
in Eqn. 8 is bounded by η so that this helper data generation
process is sufficiently reliable.

All codes are (n, k, ε) codes for the given channel, so Bob
(or the PUF in the field) can reconstruct the correct key L
from W and Ys

n with a small error probability such that

Pr[k 6= l|Xn ∈ Ci] < ε (9)

Considering both error events given in Eqns. 7 and 9 leads
to an overall error probability of

Pr[k 6= l] < ε+ η (10)

The proofs in [26] show that this approach is capacity achiev-
ing and that the security condition, Condition 2b in the defi-
nition, is satisfied with I(W ;K) = 0 for i.i.d. PUF response
bits.

Random codes show properties of (n, k, ε) codes, so the
error correction problem is solved in theory. However, Al-
ice and Bob have to store all random codebooks, which
makes this approach infeasible in practice, especially for
PUFs when they are used in resource constrained lightweight
embedded systems.

6. SYSTEMATIC LOW LEAKAGE CODING
FOR PUFS

In this section, we introduce a capacity achieving syn-
drome coding construction for PUFs, inspired by the ran-
dom coding construction discussed in the previous section.
As main advantage over the approach discussed in the previ-
ous section, our new syndrome coding scheme does not have
to store any random codebooks. This facilitates implemen-
tations in practice.

We replace the random codebook generation with a de-
terministic procedure where all codes are derived from one
parent code. In the following, we also assume that (n, k, ε)
code C achieves a rate of RCode for the channel such that
decoding errors occur with a probability < ε. We assume
that there exists a systematic encoding scheme for code C
such that for all codewords C ∈ C, the first k codeword bits
are equal to the information bits ck1 = xk1 .

This assumption holds for many popular code classes,
such as BCH, Reed-Solomon, convolutional, LDPC codes
and many other code classes, see e.g. [20].

SLLC code construction
In the following, we use one (n, k, ε) block code with system-
atic encoding and create all other codes as cosets of the basic
code. For the i-th coset of the code C, the binary represen-
tation of i is XORed on the last n− k bits of each codeword
to create code Ci. Iterating over i from 1 to 2n−k − 1, we
are able to assign exactly one code Ci to each element in
GF (2n).

Let In−k be the ((n−k)× (n−k)) identity matrix and A
a ((n− k)× k) matrix. For systematic encoding, the code C
has a parity check matrix H in the form [20]

H = (A||In−k) (11)

This leads to a generator matrix G with

G = (Ik||AT ) (12)

Let ϕn: GF (2k) 7→ GF (2n) be the encoder of the code C
and bk(l) the binary representation of l in GF (2k). For our
new approach, we define the code C0 as

C0 =
{
ϕn(bk(l))⊕ (0k||bn−k(0)) : l = 0, ..., 2k − 1

}
(13)

We derive all other codes Ci, i = 1, ..., 2k − 1 as follows:

Ci =
{
ϕn(bk(l))⊕ (0k||bn−k(i)) : l = 0, ..., 2k − 1

}
(14)

Given the n-bit PUF response Xn, the helper data Wn−k is
generated by storing code index i.

Wn−k = bn−k(i) =
[
ϕn(Xk)⊕Xn

]n
k+1

(15)

Since for all systematic codes,

[ϕn(Xk)]k1 = Xk
1 (16)

the n − k least significant bits return the binary represen-
tation of i. This representation separates the secret key
part Xk

1 from the redundancy part Xn
k+1. The operation

ϕn(Xk)⊕Xn can be interpreted as masking the redundancy
[ϕn(Xk)]nk+1, that leaks key information, with unused PUF
bits Xn

k+1.

Using indices from 0 to 2n−k− 1, we are able to cover the
entire output space Xn such that there exists a code Ci for
all Xn ∈ GF (2n) with Xn ∈ Ci. We can guarantee that

Xn ∈
m−1⋃
i=0

Ci because
m−1⋃
i=0

Ci = GF (2n). Therefore, Eqn. 7

holds with η = 0.
In contrast to the state-of-the-art secure sketches, where a

hash function is mandatory, the first k bits of the corrected
PUF response can be used directly as secret key without
hashing if H(Xk) > k − ε and I(Xk;Xn

k+1) < ε. If the

entropy ofXk is lower, a standard data compression function
gl, see e.g. [29], can be used to compress the corrected PUF
response to a key K = gl(X

k) such that H(K) > l− ε for a
small ε > 0.

During reproduction, Ŷ k is reconstructed from Y ns and
Wn−k = bn−k(i). Let γk = ϕn

−1: GF (2n) 7→ GF (2k) be
the decoder of the code C.

Ŷ ks = γk(Y ns ⊕ (0k||bn−k(i))) (17)

Remark
In a typical communications scenario, cosets are used to
characterize errors. All vectors in the jth coset have the
same error pattern bn(j) ∈ GF (2n), j ∈ {1, ..., 2n−1}, that
is added to each codeword. For bounded minimum distance
decoding [20], the decoder can correct errors by finding j if
the Hamming weight of bn(j) is bounded by

wt(bn(j)) ≤ bd− 1

2
c (18)

In contrast, we use bn−k(i), i ∈ {1, ..., 2n−k − 1}, to modify
the last n − k bits of codewords to generate the ith sub-
code. Then, bn−k(i) is transmitted as side information to
the decoder. We can represent Ys

n as
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Ys
n = Xn ⊕ bn(j) (19)

Using Xn = ϕn(Xk)⊕ (0k||bn−k(i)) gives

Ys
n = ϕn(Xk)⊕ (0k||bn−k(i))⊕ bn(j) (20)

Since bn−k(i) is known through the helper data, the decoder
can correct any error as long as Eqn. 18 holds. The sys-
tematic encoding enables to generate the subcode without
changing the first k bits. Therefore, we can obtain the cor-
rected key Ŷ ks by

Ŷ ks = γk
(
ϕn(Xk)⊕ bn(j)

)
(21)

Note that Eqn. 17 is equivalent to Eqn. 21. Eqn. 21 leads
back to the default decoding problem in the standard com-
munications case where the decoder γk can be used.

Example
In this toy example, we use our new scheme SLLC together
with a (n = 7, k = 4, d = 3) Hamming code with systematic
encoding to demonstrate underlying mechanism1. 3 bits of
helper data are stored. The code has the following generator
matrix G

G =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥∥∥∥∥∥∥
0 1 1
1 0 1
1 1 0
1 1 1

 , (22)

and parity check matrix H [20]

H =

 0 1 1 1
1 0 1 1
1 1 0 1

∥∥∥∥∥∥
1 0 0
0 1 0
0 0 1

 (23)

Let the PUF outputs return random sequence x71 = 1001010.
The encoder of the Hamming code encodes x41 to codeword
c71

c71 = x41 ·G = 1001100 (24)

Storing the 3 least significant bits directly would leak in-
formation about the key and thus violate Condition 2b in
Section 4. In the new scheme, we mask the redundancy
part with fresh PUF bits to bring the leakage close to zero
or eliminate it completely. The XOR between PUF response
and codeword gives the code index as follows (cf. 15)

w3
1 = b3(i) (25)

= x75 ⊕ c75 (26)

= 010⊕ 100 (27)

= 110 (28)

Therefore, index 6 is stored as helper data value. The Ham-
ming code can correct one error, which will be labeled in bold
notation in the following. Assuming y71 = 1011010 as PUF
response in the field, the syndrome decoder reconstructs

1We recommend using more complex and powerful codes for
a good error correction capability in practice.

c̃71 = y41 ||(y75 ⊕ w3
1) (29)

= 1011||(010⊕ 110) (30)

= 1011100 (31)

The Hamming decoder corrects c̃71 to ĉ71 = 1001100 which
gives us ŷ71 = 1001010. This example shows how we can
combine SLLC and an error-correcting code to correct errors
such that

ŷ41 = x41, or in general k = l (32)

Although it is only a toy example, we have shown that
SLLC permits error-tolerant secure key generation by using
error-correcting codes with systematic encoding.

7. EVALUATION
This section addresses the theoretical properties of SLLC,

first to show that it has optimal asymptotic behavior for
large block sizes such that the capacities can be achieved.
Afterwards, the secrecy leakage of SLLC is compared to two
popular secure sketch constructions, namely the code-offset
and the syndrome construction. For the convenience of the
reader, the reference constructions are briefly discussed in
Appendix A.

The overview at the end of this section shows that SLLC
is currently the only deterministic scheme that achieves the
secret key and the helper data capacity, and also inherently
ensures information theoretic security.

In general, good PUFs have a sufficiently high entropy
but do not necessarily show perfectly i.i.d. behavior. For
the security proof, we therefore loosen the i.i.d. assumption
to a wider assumption H(Xn) = n−εA and H(Xk) = k−εB
that can also represent correlations. Further, let H(W ) =
n− k − εW with εA > εB + εW .

Achievable rate of SLLC
Lemma 1:
Rate k/n is an achievable rate for SLLC and an (n, k, ε1)
code with systematic encoding where Conditions 2a to 2d
are bounded by a finite ε.

Proof:
This section proves that Conditions 2a to 2d in Section 4
are fulfilled such that rate k/n is an achievable key rate
for a compound source with channel Ts using SLLC and
an (n, k, ε1) code C. We will bound εi for each condition,
maximizing finally over all four εi by one ε.

Condition 2a.
ε1 follows immediately from the block error rate of the re-

produced key pB that depends on the code C and the channel
Ts.

In practice, it can be computed by bounding techniques
[20] or simulation.

Pr[k 6= l] = pB < ε1 (33)
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Condition 2b.

I(K;W ) = H(W ) +H(K)−H(WK) (34)

= H(ϕn(Xk
1 )nk+1 ⊕Xn

k+1) +H(Xk
1 )−H(Xn

1 )
(35)

= (n− k − εW ) + (k − εB)− (n− εA) (36)

(37)

Therefore,

I(K;W ) < ε2 (38)

with ε2 > εA − εB − εW .

Condition 2c.

1

n
H(K) > Rkey − ε3 (39)

with Rate Rkey = k/n

1

n
H(Xk

1 ) >
k

n
− ε3 (40)

1

n
(k −H(Xk

1 )) < ε3 (41)

Condition 2d.

1

n
log2 |K| <

1

n
H(K) + ε4 (42)

k

n
<

1

n
H(Xk

1 ) + ε4 (43)

1

n
(k −H(Xk

1 )) < ε4 (44)

Therefore, Rkey = k/n is an achievable key rate for nε = n
and

ε = max(ε1, ε2, ε3, ε4) (45)

�

Corollary:
For an ideal PUF with Pr[x = 0] = Pr[x = 1] = 0.5 and i.i.d
outputs, Rate Rkey is achievable with ε = ε1.

Proof:
Due to i.i.d. PUF outputs, H(Xn

k+1) = n − k. Further,

H(Xk
1 ) = k. Therefore, ε2 → 0, ε3 → 0, ε4 → 0 which gives

ε = ε1. So, secret key rate k/n is achievable with an (n, k, ε1)
code.

�

Lemma 2:
The secret key rate Rkey and the helper data rate Rhd of
SLLC achieve the capacities of the source.

Proof:
We have shown that SLLC can achieve a rate Rkey = k

n
. In

this proof we denote the code size with kn to highlight that
k depends on n for a given ε. A capacity achieving (n, kn, ε)
code C for a channel T has rate Rkey such that

lim
n→∞

Rkey = lim
n→∞

kn
n

= CT = Ckey (46)

By definition, the capacity achieving code C has redundancy
n− kn with

lim
n→∞

Rhd = lim
n→∞

n− kn
n

= Chd (47)

�

Therefore, we have shown that our systematic coding scheme
SLLC fulfills typical information theoretic requirements be-
cause the error probability and the security parameters are
bounded by ε. In addition, our scheme is optimal in a sense
that it is capacity achieving such that a maximum key size
can be extracted and the required helper data size is brought
down to the theoretical limit in an asymptotic setting.

Secrecy leakage in comparison to state-of-the-
art secure sketches
The leakage through the helper data is a central security
measure since the helper data is accessible to the attacker.
Secure sketches using the code-offset construction, the syn-
drome construction and SLLC all return the corrected PUF
response or parts of it as preliminary key. We compare the
achievable key rates as well as the key leakage of the three
approaches in this section.

The security analysis does not make any assumptions on
the PUF. However, it is difficult to compute H(W ) in the
generic case. To show the ideal case, we add the analysis
with a nearly perfect PUF.

Systematic low leakage coding:
For SLLC, the secrecy leakage is given in Equation 38. For
nearly optimal i.i.d. PUFs with entropy H(Xn) = n − εA
and εA � 1, the leakage goes to zero.

Code-offset construction:
The code-offset construction is briefly sketched in A.1. Ig-
natenko and Willems discussed the leakage in detail in [23]
from an information theoretic point of view. A crypto-
graphic upper bound for the leakage is presented in [31] and
applied in [32].

In this scenario, the attacker knows that the PUF response
Xn was XORed with a random codeword Cn. Therefore, the
helper data leaks H(Cn) bits of the restored secret.

I(Xn;Wn) = H(Wn)−H(Cn) (48)

= H(Xn ⊕ Cn)−H(Cn) (49)

The code has 2k codewords. Therefore, H(Cn) ≤ k. For
a nearly optimal PUF with entropy H(Xn) = n − ε and
H(Cn) = k

I(Xn;Wn) = H(Xn)−H(Cn) (50)

= n− k − ε (51)
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Key generation from maxRkey minRHD I(X;W ) I(X;W )
internal PUF Response (perfect PUF)

SLLC Ckey Chd H(Wn−k)−H(Xn) +H(Xk) < ε
Random Coding [26] Ckey Chd 0 [26] 0
Code-Offset [19] Ckey 1 H(Wn)−H(Cn) [23] < n− k + ε

Syndrome Construction [19] Ckey Chd H(Wn−k) [13] n− k

Table 2: Theoretical comparison to related work

Key generation from Helper data size Leakage Hash function Estimated area
internal PUF Response required

SLLC 36 bit 0 bit no ≈ 4500 GE
Code-Offset [19] 155 bit 36 bit yes ≈ 6600 GE
Syndrome Construction [19] 36 bit 36 bit yes ≈ 6600 GE

Table 3: Practical comparison to related work for non-optimized implementations

As a consequence, even for a PUF with nearly optimal prop-
erties n− k + ε PUF bits leak, which is significantly higher
as for SLLC.

Syndrome construction:
For the syndrome construction presented in [19] and dis-
cussed in A.2, two factors affect the leakage through the
syndrome Wn−k = Xn ·HT . The overall leakage is bounded
by the entropy of the PUF H(Xn).

H(Wn−k) = H(Xn ·HT ) ≤ H(Xn) (52)

Further, |Wn−k| = n − k such that at most n − k bits can
be exposed by the helper data. Therefore,

I(Xn;Wn−k) = min{H(Xn), n− k} (53)

Again, for a nearly optimal PUF with H(Xn) = n− ε, n−k
bits are exposed, whereas SLLC only leaks ε.

Remarks:
To design a system with a code-offset or syndrome secure
sketch, a hash function is required to provide a cryptograph-
ically secure key. For hardware implementations such as
[11, 13], lightweight hashes such as Toeplitz hashing [33] or
SPONGENT [34] were used.

Maes et al. proposed in [13] to use strong extractors [35]
to achieve information theoretic security. However, to the
best of our knowledge the proposal using a strong extractor
was not implemented yet.

In contrast, our new approach SLLC provides a leakage
going to zero, according to Eqn. 38, for sufficiently good
PUFs as soon as

H(Xn)−H(Xk) > n− k − ε (54)

holds with a small ε. In the random coding approach in
[26], a constant leakage of zero can be achieved since the
codewords have the same distribution as the PUF response
even for low entropy PUFs.

For future research, the secrecy leakage ε in SLLC can be
reduced with careful code design where Cnk+1(Xk

1 ) is chosen

such that it can be fully masked by Xn
k+1. This approach

enables nearly zero leakage also for PUFs with lower entropy.
Therefore, we are able to provide a stronger security with

a simpler architecture that does not require a cryptographic
hash function or even a strong extractor. In the case that
H(Xk

1 ) < k − ε, a simple data compression algorithm with-
out cryptographic properties can be used to create a fuzzy
extractor since no leakage has to be mitigated.

Theoretical comparison to related work
The performance evaluation in Table 2 shows the achievable
rates and the leakage for different secure sketch construc-
tions. All discussed approaches can achieve the key capacity
Ckey and also all except the code-offset construction achieve
the minimum helper data size Chd. However, SLLC and the
random coding approach are the only ones that inherently
provide information theoretic security. This makes, to the
best of our knowledge, SLLC to the first capacity achieving
and inherently information theoretically secure construction
that can be implemented in practice.

8. IMPLEMENTATION
One of the main use cases of PUFs is providing a low or

medium security level for standard CMOS circuits that do
not have access to sophisticated security technologies that
are used in chip cards and other high-security products. In
the context of commercial products that are not intended
for governmental or otherwise standardized use, reducing
the key entropy from 128 bit to 126 or even less than 120
does not affect the security level significantly. If the imple-
mentation complexity is reduced therefore, this is a trade-off
designers (or their managers) might be willing to take.

From a practical point of view, 100 bits still offer a decent
security level, as stated by government agencies e.g. [36, 37].
Entropy estimations of PUF responses such as [30] show that
several PUFs already show this desired security level without
further privacy amplification.

With the trend towards more reliable and secure PUFs at
the circuit level, e.g. [38], PUFs with bit error probabilities
during provisioning of 10−5 and lower can be manufactured.
Therefore, less powerful error correction is necessary to gen-
erate reliable keys. The structure has only negligible bias
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and correlation so that it offers close to optimum security so
that the last column in Table 2 holds in a good approxima-
tion.

Calculating the bit error probability according to e.g. [20]
shows that in this case, a compact high-rate (55, 43, 5) code
already leads to a key regeneration failure rate of 7.87·10−11.
This is below the Failure in Time (FIT) specification of most,
if not all, popular silicon processes (typical FIT failure rate
ranges from 1 · 10−9 to 2 · 10−8 [39]).

In our example, we chose a BCH (55, 43, 5) code in a sys-
tematic construction, which is a shortened version of a BCH
(63, 51, 5) code [20]. Running this three times results in
55 · 3 = 165 PUF bits consumed to derive 43 · 3 = 129 data
bits for the key, and using (55−43) ·3 = 36 helper data bits.

The proof-of-concept BCH decoding core is a modified
version of the one used in [40] and requires 4441 NAND2
equivalent gates in an ASIC implementation, synthesized
using Synopsys Design Compiler, comprising of 194 flip-flops
and the rest conventional standard-cell combinatorial logic.
It uses a serialized input and output interface. The latency is
372 clock cycles per block, and three blocks (1116 cycles) are
required to generate a 128-bit key. The decoder operates in
GF (26) with field elements constructed using the primitive
polynomial p(x) = 1 + X + X6. The generator polynomial
used to generate the codewords for the (55,43,5) BCH code
is g(x) =

(
(1 +X +X6) · (1 +X +X2 +X4 +X6)

)
. Since

the code is shortened, the first 6 data bits of each 63 bit
block are regarded as fixed to 0.

Note that the SLLC decoder only has a negligible impact
on the overall implementation size. It can be implemented
as a 6 bit counter and a comparator that decides if an input
bit is within the information part of the codeword and fed
directly into the BCH decoder, or if it is XORed with a
helper data bit.

In addition to the BCH decoder, the code-offset and syn-
drome methods require a hash function. Compact imple-
mentations of popular lightweight hash functions like SPON-
GENT (256/256/16) [34] or PHOTON (256/32/32) [41] re-
quire around 2300 GE and 2150 GE, respectively.

Table 3 compares the helper data size, the secret key leak-
age and an estimated gate count for SLLC, the code-offset
and the syndrome method. It can be seen that SLLC is
the only approach that combines minimal helper data size
and zero leakage through the helper data. For both other
approaches n−k = 36 bit of the PUF response are revealed.

Due to SLLC, we can use 128 of the 129 data bits di-
rectly as keying bits, without processing them through a
hash function. The overhead for helper data is only 36 bits.

The area is estimated by adding the size of the BCH de-
coder and the hash function, if necessary. In a modular im-
plementation where the BCH module and the hash module
are distinct, SLLC method requires only the BCH module of
an estimated 4400 GE. With code-offset or syndrome con-
struction, an additional an estimated 2150 GE is required
for the hash, for a total of an estimated 6500 GE. This is an
extra 47% overhead that SLLC avoids. This result is shown
in Table 3.

There is the option to decrease the size of the implemen-
tation by designing a more advanced joint BCH decoder and
SPONGENT module to share resources, e.g. registers. The
savings are limited by the fact that the state registers of the
hash function cannot be shared with the BCH decoder after
the first codeword is hashed into the state. However, there

are still possibilities to share other registers or logic that do
not always contain valid data.

With an overhead of less than 4, 500 gates, 36 extra helper
data bits, and the use of SLLC which eliminates the use of
a key hashing function, a 47% overhead in GE is avoided
compared to the code-offset and syndrome method. In addi-
tion, the required helper data is cut to 24% of the code-offset
method. We also achieve information theoretic security, and
do not have to make additional assumptions on the security
of the hash function. From a practical standpoint, there is
an additional module less to secure, e.g. against the side-
channel attack in [42].

We drive the reliability of high reliability PUF circuits
such as [38] into a realm where the PUF key generation re-
liability is below the failure rate of the underlying silicon
device, and also help to account for aging and other envi-
ronmental effects not yet characterized in [38] and related
publications.

9. CONCLUSIONS
Secure key generation with PUFs lies at the intersection

of cryptology and information theoretic security on the the-
oretical side and secure hardware implementations as appli-
cation. This work transfers recent results from information
theory to design a new scheme that is suitable for implemen-
tation. As first step, we show the correspondence between
the practical problem and a recent theoretical model of using
a compound source.

Moreover, this work presents Systematic Low Leakage Cod-
ing (SLLC), the first capacity achieving syndrome coding
scheme for PUFs that achieves maximum key size and min-
imum helper data size under the constraint that the leakage
of the key through the helper data can be brought close
to zero for sufficiently good PUFs. We discuss information
theoretic preliminaries and the immediate theoretical prede-
cessor to motivate our work and to set in a larger context.

Our approach uses error-correcting codes with systematic
encoding to split the codeword in an information part and
a redundancy part. Storing masked helper data only for the
redundancy part is the lowest possible amount and reduces
the leakage close to zero. A theoretical comparison to related
work shows that our scheme is currently the only capacity
achieving scheme with information theoretic security while
other secure sketch constructions only achieve cryptographic
security and require an additional security assumption on
the hash function.

The case study demonstrated the advantages of SLLC in
a practical setting, namely minimal helper data and that no
hash function is mandatory to generate secure keys.
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APPENDIX
A. REVIEW OF STATE-OF-THE-ART SE-

CURE SKETCHES
The code-offset and syndrome construction are two pop-

ular secure sketches introduced by Dodis et al. in [19].

A.1 Code-Offset
The code-offset construction is based on the fuzzy commit-

ment scheme by Juels and Wattenberg [43]. For helper data
generation, a random number Zk is selected. The encoder
ϕn of the code creates a random codeword Cn = ϕn(Zk)
that is XORed with Xn.

Wn = Xn ⊕ ϕn(Zk) (55)

= Xn ⊕ Cn (56)

During reproduction, the decoder γk computes the corrected
PUF response Ŷ n from Y n and Wn. First, Ẑk is computed
by

Ẑk = γk (Y n ⊕Wn) (57)

Then, Ŷ n is given by the corrected codeword Ĉn = ϕn(Ẑk)
and Wn such that,

Ŷ n = Ĉn ⊕Wn (58)

A.2 Syndrome Construction
The presented method uses the parity-check matrix H of

the code to generate the helper data. Using the steps de-
scribed [13], the helper data is generated according to

Wn−k = Xn ·HT (59)

During reproduction Y n is interpreted as Y n = Xn + En

with an error vector En. The syndrome Sn−k is computed
by

Sn−k = Y n ·HT ⊕Wn−k (60)

= (Xn ·HT )⊕ (En ·HT )⊕Wn−k (61)

= En ·HT (62)

For an (n, k, d) code and HW (En) ≤
⌊
d−1
2

⌋
, Y n can be de-

coded to Ŷ n.

For algebraic codes, there exists an analogous definition
for a syndrome polynomial such that the discussed method
can also be applied BCH codes.

Both approaches were already implemented in hardware,
e.g. [11] and [13]. A comprehensive theoretical analysis can
be found in [23, 24].
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