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ABSTRACT

Semantic gap is a prominent problem in raw memory anal-
ysis, especially in Virtual Machine Introspection (VMI) and
memory forensics. For COTS software, common memory
forensics and VMI tools rely on the so-called “data struc-
ture profiles” — a mapping between the semantic variables
and their relative offsets within the structure in the binary.
Construction of such profiles requires the expert knowledge
about the internal working of a specified software version.
At most time, it requires considerable manual efforts, which
often turns out to be a cumbersome process. In this paper,
we propose a notion named “cross-version memory analy-
sis”, wherein our goal is to alleviate the process of profile
construction for new versions of a software by transferring
the knowledge from the model that has already been trained
on its old version. To this end, we first identify such Offset
Revealing Instructions (ORI) in a given software and then
leverage the code search techniques to label ORIs in an un-
known version of the same software. With labeled ORIs, we
can localize the profile for the new version. We provide a
proof-of-concept implementation called ORIGEN. The effi-
cacy and efficiency of ORIGEN have been empirically ver-
ified by a number of softwares. The experimental results
show that by conducting the ORI search within Windows
XP SPO and Linux 3.5.0, we can successfully recover data
structure profiles for Windows XP SP2, Vista, Win 7, and
Linux 2.6.32, 3.8.0, 3.13.0, respectively. The systematical
evaluation on 40 versions of OpenSSH demonstrates ORI-
GEN can achieve a precision of more than 90%. As a case
study, we integrate ORIGEN into a VMI tool to automati-
cally extract semantic information required for VMI. We de-
velop two plugins to the Volatility memory forensic frame-
work, one for OpenSSH session key extraction, the other
for encrypted filesystem key extraction. Both of them can
achieve the cross-version analysis by ORIGEN.
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1. INTRODUCTION

Memory analysis aims at extracting security-critical infor-
mation from a memory snapshot of a running system or a
program. It has many security applications, such as virtual
machine introspection [16], malware detection and analy-
sis [21], game hacking [3], digital forensics [12,38], etc. Most
of these applications require retrieving desired information
from a memory snapshot of a running software or system,
so we refer to them as memory analysis tools in general.

For all these memory analysis applications, we need to
have the precise knowledge about data structures that are
relevant to the specific analysis purpose. Most of existing
memory analysis tools usually build a data structure profile,
i.e. a mapping between data structures to their offsets in the
target binary, to derive analysis decisions. The data struc-
ture profile is constructed to incorporate precise knowledge
about data structures. For instance, we may build a precise
data structure profile about the offset values of important
fields, such as the process name, process ID, and the pointer
to the next EPROCESS structure, in the EPROCESS data struc-
ture in order to retrieve running processes from a memory
snapshot for Windows OS.

The creation and maintenance of the data structure profile
is a nontrivial problem, especially for COTS binaries. It
requires the expert knowledge about the internal working of
the target software. Existing work, such as Volatility [38],
VMST [13] and Virtuoso [9], have made a big progress on
automatic introspection code generation. Their techniques
work well when the target software is open-source [9,38], or
when the well-defined code pieces are provided, which can
be reused for introspection [13].

For COTS software, however, existing memory analysis
tools still rely on cumbersome reverse engineering techniques
to build the profile. In most cases, the profile generation still
depends on the manual effort. Unfortunately, the daunting
profile creation task is not a one-time effort. It is tightly
coupled to the specific version of the software being ana-
lyzed, and needs to be constantly rebuilt for new versions
of the software. As a result, the effort spent on building
the analysis profile for one particular version of a program
could not be applicable to its future versions. For exam-
ple, a memory analysis tool, such as Volatility [38], has to
create a profile for every version of a COTS software to be
analyzed. Once the version is changed, the profile has to be
manually updated for the exact same software so that the
analysis can proceed correctly.
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0808A8BO Sul]J;SOSASllSé)h Proc near 000452E0 sub_452E0  proc near

0808A8B3 sub  esp, 000452E4 sub esp, 14h

0808A8B6 mov  eax, [ebp+dest] 000452E7 mov eax, [ebp+arg_0]

0808A8BY  test  eax, eax 000452EA  call sub_7837

0808A8BB jz  shortloc_803ASDF 000452EF  add ebx, 66621h

0808ASBD mov _edx, ds:dword 80C3530 --ORI 000452F5 test  eax, eax

0808A8C3 lea  ecx,[edx+204h] ---—-ORI 000452F7 jz  shortloc_4531B

0808A8C9 mov _edx. [edx+224h] --—-ORI 000452F9  mov esi. ds:(dword ADIDO - 0AB910h)ebx] --ORI

0808A8DA call _memcpy 00045305  mov _esi, [esi+324h] --—--—-ORI

0808A8DF loc_808AS8DF:

0S0SASDF  mov _eax, ds:dword 80C3530 -- ORI 00045316 call _memcpy

0308A8F4 0004531B loc_4531B:

0808A8EB retn 0004531B . _ .

0808A8EB sub_808A8B0 endp 00045321 mov __eax, [eax+324h] -------- ORI

0004532C retn
0004532C sub_452E0 endp
Tsession_state:{ | input | ::;TOE;;[?:: :'£1164 q | input i_se;ion__sta;( -
ssh1_key: int64_t[]], — (Y 1UARB2, : i
?S —<ey [w’ u_m‘ - output, inputl sshl_keylen: [u_int32_t] | input output sshl_key [m, [u_mlﬁ4_t[]]], |
ssh1_keylen:[0x224, u_int32_t] | ORIGEN | b | ORIGEN | sshl_keylen:[0x324, [u_int32_t]] |
i 'k Vs

global:{active_state:[0x80C3530, |

[pointer, session_state]]}

Figure 1: The OpenSSH example.

global:{active_state:[pointer
|_,sessi0n_state] IS |

| global: {active_state:[0XAD1DO, |

| [pointer, session_state]] } |

It shows code snippets to retrieve the session key for openssh in two

versions. Offset-Revealing Instructions (ORIs) are highlighted in both versions. Given the abstract profile,
the profile localization determines the offsets from the identified ORIs and produces a localized profile for

each version.

In this paper, we propose a novel notion of “cross-version
memory analysis”. That is, the data structure profile used in
one version can be adapted to other versions of the same soft-
ware without manual efforts. With the cross-version mem-
ory analysis property, we can automatically build profiles
for new versions of a software by transferring the knowledge
from the profile that has already been trained for its old
version. Our intuition is that adjacent versions of the same
software tend to be similar. The experimental results in
Section 6.2 substantiate this claim. Based on this idea, we
can transfer the relevant knowledge from an already trained
profile to build the profile for an unseen new version. The
less different a new version is from the previous version, the
more accurately the profile can proceed the analysis .

To achieve the cross-version memory analysis, we combine
program analysis and code searching techniques to automat-
ically transfer the data structure profile across different ver-
sions of a software. We observed that some instructions, at
the binary level, reveal the actual offsets (as constant values)
for the specified data structure fields and global variables,
as these offsets have been statically determined at compile
time. We name these instructions “offset-revealing instruc-
tions” (in short, ORI). Given a trained profile on one version,
we label ORIs in the binary of this version by program anal-
ysis techniques. With the knowledge of learned ORIs in this
version, we can identify semantically-equivalent ORIs in its
new versions by the code searching technique, and localize
the introspection profile by updating offset values for corre-
spondent data structure fields based on identified ORIs.

We have developed a prototype system called ORIGEN
and evaluated its capability on a number of software fam-
ilies including Windows OS kernel, Linux OS kernel, and
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OpenSSH. Particularly, we systematically evaluate it on 40
versions of OpenSSH, released between 2002 and 2015. The
experimental results show that ORIGEN can achieve a pre-
cision of about 90% by transferring relevant knowledge in
the profile of a different version automatically. The results
suggest that ORIGEN advances the existing memory anal-
ysis methods by reducing the manual efforts while maintain-
ing the reasonable accuracy. We further have developed two
plugins to the Volatility memory forensic framework [38] and
integrated them in ORIGEN, one for OpenSSH session key
extraction, and the other for encrypted filesystem key ex-
traction. We show that each of the two plugins can construct
a localized profile and then can perform specified memory
forensic tasks on the same memory dump, without the need
of manual effort in creating the corresponding profile.

Certainly, we admit that ORIGEN may not work when
our assumption does not hold, i.e. when a software version
is significantly different from the base version on which the
ORI signatures are generated. For these cases, we can gen-
erate a new profile to cover its ORI signatures and apply to
many other similar versions. Nevertheless, ORIGEN intro-
duces a promising solution for cross-version memory analy-
sis and demonstrates an empirically validated approach to
greatly reducing the manual effort for profile creation. The
research along this direction is important because it could
streamline the memory analysis process, with minimal man-
ual intervention required.

In summary, the contribution of this paper is threefold:

e we propose a novel notion of cross-version memory
analysis. We made the first attempt to conduct the
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Figure 2: The overview of ORIGEN

memory analysis across different versions of the soft-
ware. Qur study demonstrates that the across-version
memory analysis can be achieved with a minimal or
reduced human intervention.

e we developed a prototype system ORIGEN, which
combines the program analysis and code search tech-
nique to address the new problem domain.

e we systematically evaluated the accuracy of ORIGEN
under 40 versions of the OpenSSH family, and the eval-
uation results show that ORIGEN can achieve a pre-
cision of more than 90%. The case studies also demon-
strate ORIGEN can successfully recover the offsets for
key semantic fields across different versions of OpenSSH,
Windows, Linux, a loadable kernel module for Linux.

OVERVIEW

We utilize a running example in Figure 1 to demonstrate
our problem. Although we target at the memory analysis for
the COTS software, for clarity, we utilize the open-source
software OpenSSH to demonstrate our basic idea. Figure 1
shows code snippets for two versions of OpenSSH (6.4 and
6.5), where several highlighted instructions are used to ac-
cess sshl_key and sshl_keylen fields in the structure of
session_state, and a global variable active_state, which
points to the structure session_state. The constant val-
ues carried by these instructions indicate the exact offsets
of these fields inside the data structure. Therefore, these
highlighted instructions are ORIs.

In this case, there are three symbols shared by OpenSSH
(6.4 and 6.5). We utilize the abstract profile to denote these
common symbols. Given this abstract profile, we develop
an SSH key extraction tool that can locate encryption keys
for active SSH sessions in a memory snapshot in the cross-
version manner. ORIGEN will automatically identify ORIs
in OpenSSH6.4, and transfer the profile for OpenSSH6.4 to
a localized profile for OpenSSH6.5 based on identified ORIs
in the older version. Using this localized profile, the SSH
key extraction can immediately work for OpenSSH6.5, with-
out any code modification. This demonstrates the nature of
cross-version memory analysis for ORIGEN.

2.

Problem Statement.
In this paper, we aim to achieve the cross-version memory
analysis. That is, we can automatically generate profiles for
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new versions of a software by transferring the knowledge
from the model that has already been trained on its old
version. Given an abstract profile that a memory analysis
tool relies on and a base version of target software, ORIGEN
locates ORIs in the base version and searches these ORIs in
the target version. With newly identified ORIs in the target
version, we can localize the profile for the new version.

More specifically, when provided a different version of the
same software, we aim to achieve the following goals: 1)
identify instructions that are semantically equivalent to the
ORIs identified from the base version; 2) extract the offsets
from these instructions; 3) generate a localized profile for
the new software version. In summary the challenge is to
find ORIs in the target program of a given base version.

If we have the source code for the program to be analyzed,
a straightforward way would be to use the compiler tool-
chain to output such information directly while the compiler
generates the binary code. In many cases, the source code
is often not available (e.g., VMI for Microsoft Windows).
Therefore, we need to develop a binary analysis technique
to extract this information from binary code.

System Overview.

Figure 2 illustrates an overview of our solution. It involves
the ORI labeling and the profile localization.

In general, ORI labeling takes a base binary as the in-
put, and performs dynamic and static analysis to finally
output all labeled ORIs in the base binary. Profile localiza-
tion searches a target binary for the instructions that are
semantically equivalent to labeled ORIs in the base binary,
and localize the profile for the target binary. The details
will be discussed in latter sections.

3. ORI SIGNATURE GENERATION
3.1 ORI Signature Definition

An ORI is an instruction that has a constant field that
reveals the offset of a field in the data structure definition,
or the location of a global variable within the data section.
The definition is as follows:

Definition 1. Offset Revealing Instruction (ORI) is a
tuple of (p,c,t, f), where p is the program counter, ¢ is the
constant field within the instruction, t indicates the data
structure type, and f denotes the field name within the data



0x80037324: mov eax, [edx+0Ch]

0x80046659: mov edx, [eax+21Ch]
0x80037324: mov eax, [edx+0Ch]
0x80045624: mov ecx, [esi+214h]

R offset 0x170 base: 0x80090a08 type:
0x800370a4: mov dword ptr [eax+8], 0 W offset 0x15c base: 0x80090a08 type:
R offset 0x21c base: 0x80090a08 type:
R offset 0x160 base: 0x80090a08 type:
R offset 0x214 base: 0x80090a08 type:

session_state
session_state
session_state
session_state
session_state

Figure 3: The demo of the session_state object tracing log.

structure definition. For a global variable, t is “data section”,
and f is the name of the global variable.

3.2 ORI Labeling

In this section, we describe how we label ORIs in a binary
and generate signatures for the labeled ORIs. It can be
considered as a learning stage. At this stage, we attempt to
learn ORI signatures which will be used for latter version-
independent memory analysis.

ORIs for Global Variables.

It is straightforward to identify ORIs for global variables.
Once the exact location is determined for a global variable
in the base version, we can simply scan the binary code
to identify all the instructions that refer to this location.
The location for a global variable often has a distinct value,
because it is located in the data section of the binary module.
For the running example, we can see that active_state is a
global variable and we can find its address 0x80C3530 from
the debug symbol. Through scanning in the binary, we can
label the 0x808ABD as an ORI directly.

For the rest of this section, we focus on ORI identification.
The offsets of data structure fields are often very small, and
small constant numbers are pervasive in binary code. There-
fore, we use a different solution. We first dynamically trace
the binary program and identify a set of instructions that
access the specified data structure fields (which is described
in “Dynamic Labeling”). We call these instructions “ORI
candidates”. Based on ORI candidates, we perform static
analysis to filter out false ORIs and discover more ORIs,
which is described in “ Static ORI Discovery”.

Dynamic ORI Labeling.

The goal of dynamic labeling is to collect a set of instruc-
tions that either read or write the given data structure field
defined in the abstract profile. To do so, we need to know
not only when an instance of the data structure is created
and later destroyed, but the lifetime of data structure in-
stance during the program execution. With the aid of the
information about live data structure instances, we can pin-
point the instructions that access their specific fields during
tracing the program execution.

To this end, we should have certain knowledge about data
structures in the base version of the software. There are
three types of information we need to know about the data
structures in the base version: 1) The functions which create
and delete the data structure instances of interest; 2) Data
structure definitions that are relevant to the analysis task;
3) Actual offset for each data structure field of interest.

We hook functions which create and delete the data struc-
ture instances of interest during the binary execution to la-
bel the live data structure instances in the memory. We can
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further identify all instructions which have write or read
operation on these live data structure instances by moni-
toring all the memory read and write operations during the
execution. The data structure definition and its field off-
set information can help to extract ORIs in these identi-
fied instructions. For the programs with source code, such
knowledge can be easily obtained. Even for the many binary
programs (e.g., Windows), we can still obtain the knowledge
from documentation of APIs. For the binary programs with
limited documentation, we have to rely on reverse engineer-
ing to retrieve the needed knowledge. This is a reasonable
assumption, because without this knowledge, memory anal-
ysis is not even possible in the first place.

As for our running example shown in Figure 1, we have to
know the definition of session_state and a global variable
active_state pointing to this structure in OpenSSH6.4. More-
over, for the data structure fields of interest, we need to know
their actual offsets within the data structure session_state.
Furthermore, we hook the alloc_session_state() function
to keep track of the creation of session_state. As OpenSSH
sever never frees the session_state instance, we do not hook
any other functions.

When tracing the program execution, we may face several
situations: (1) if an instruction does not access the field
of interest at all, we simply drop it; (2) if an instruction
accesses multiple data structure fields at different times, we
also drop it due to its ambiguity; (3) if an instruction is
observed to only access a single field of interest and the
constant value carried in it matches with the field’s actual
offset, we treat this instruction to be an ORI; and (4) if an
instruction is observed to only access a single field of interest
but it does not carry a constant or the constant value does
not match with the field’s actual offset, we keep it as an
ORI source. Although this instruction is not a real ORI by
definition, it may lead us to find a real ORI through the
following static analysis.

Static ORI Discovery.

Based on the ORIs and ORI sources labeled through dy-
namic analysis, we further perform static analysis to discover
more ORIs which are missed by dynamic analysis.

Starting from an identified memory access instruction (ei-
ther ORI or ORI source), we perform the backward data-
flow analysis to know how the memory operand is computed.
More specifically, we perform backward data-flow analysis
on the memory operand in that instruction, and look for
a variable that holds the base address and a constant value
that holds the offset. For example, in Figure 4, the memory-
access instruction at 0x402, which is the source for the ORI
at Ox3fe, is first identified via dynamic analysis. ORI, by
definition is an instruction of the form ‘base + offset’ where
offset is equal to the offset within the object that the ac-
cess corresponds to. We first perform backward data-flow
analysis from the ORI-source to reach the ORI, then, we ex-



ecx holds an input x86

argument
function_entry:

IR - SSA form

Ox3fc: mov ebx, ecx <assign_t <ebx@l> = <ecx@d>>
> Ox3fe: lea edx, [ecx+92h] |<assign_t <edx@1> = <add_t <ecx@@> + <value 92h>>>
ORI source ——> 0x402: mov eax, [edx] <assign_t <eax@l> = <deref_t * <edx@1>>>
0x408: cmp eax, @
0x40b: jz label
0x40d: mov eax, 45h <assign_t <eax@2> = <value 45h>>
—> 0x412:
Statically 0x418: mov eax, 20h <assign_t <eax@3> = <value 20h>>
discovered [—> 0x41b: mov [ebx+118h],eax
ORls <assign_t <eax@4> = <value 0>>
0x421: xor eax, eax <assign_t <eax@5> = <eax@4>>
—> 0x423: mov [ebx+92h], eax |<assign_t <deref_t * <add_t <ebx@l> + <value_t 92h>>> = <eax@5>>
label: ret

After substitution

<assign_t <eax@l> = <deref_t * <add_t <ecx@®> + <value 0x92>>>>

mov [ebx+1@04h],eax |<assign_t <deref_t * <add_t <ebx@l> + <value_t 104h>>> = <eax@2>> <assign_t <deref_t * <add_t <ecx@@> + <value_t 0x104>>> = <value Ox45>>

<assign_t <deref_t * <add_t <ebx@l> + <value_t 118h>>> = <eax@3>> <assign_t <deref_t * <add_t <ecx@> + <value_t @0x118>>> = <value 0x20>>

<assign_t <deref_t * <add_t <ecx@?d> + <value_t 0x92>>> = <value 0x0>>
Base + Offset

Figure 4: Static discovery of ORIs.

tend the analysis to identify the source of the base register.
With the base register identified, flow-insensitive forward-
data-flow analysis on the base register reveals all the ORIs
present in the function. That is, in Figure 4, an ORI source
at 0x402 is first identified via dynamic analysis. Then, the
corresponding ORI is identified at Ox3fe. The register con-
taining the base address is identified as ecx@0.

From the variable that holds the base address, we per-
form forward data-flow analysis within the same function to
discover more ORIs. If we observe a constant value being
added to the base, and that value matches with one of our
data structure fields in the profile, whichever instruction car-
ries this constant is a new ORI. In Figure 4, we start from
ecx@0 and perform forward data-flow analysis and discover
ORIs at 0x412, 0x41b and 0x423.

To accomplish the said data-flow analysis, the x86 code is
first converted into an IR-SSA form (column 2 in Figure 4)
and the use-def and def-use chains are directly derived from
them [28]. Then, the definitions are recursively propagated
by substituting them into the uses until each of the state-
ments is composed of only the entry point definitions (e.g.,
ecx@0 in Figure 4). Column 3 in Figure 4 presents the
IR statements after substitution. In the end, we identify a
statement to be an ORI if and only if (1) The expression
contains a ‘base + offset’! form where base is equal to the
previously identified source of the base register (e.g., ecx@0
in the example) and (2) The offset equals to a valid offset
value within the profile.

4. PROFILE LOCALIZATION

For each symbol defined in the abstract profile, we have
one or (often) multiple ORIs for the base version of a binary.
To localize the profile for a new version of the binary, we try
to find instructions in the new binary that match with these
ORI signatures and update the profile based on the abstract
profile and identified ORIs in the new binary.

4.1 ORI Identification

We consider matching ORI signatures in a new binary as
a code search problem, and leverage the existing code search
technique to conduct the profile localization.

To precisely label ORIs in a new binary, we need to con-
duct a CFG-based code search approach. The assumption
is that two versions of a binary share the similar control

LOffset of 0 is a special case where the memory access ap-
pears like a regular dereference.
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flow graphs. This has been substantiated by existing lit-
eratures [10,27,33], and many other works also apply this
assumption into many applications [23]. The CFG-based
code search considers a instruction with the similar position
in the control flow structure as a match. In this way, even
if the ORI in the new binary has a different representation,
the CFG-based code search can still find it, as long as two
versions of the binary share similar control flow graphs.

The CFG-based search includes the control flow graph
extraction and graph matching. We leverage the existing
tool BinDiff [10] to achieve the CFG-based code search. It
has two advantages. Firstly, its control flow graph matching
and instruction alignment perfectly suit our usage scenario.
Secondly, it is a mature tool with good runtime performance.
Therefore, we utilize Bindiff to match the base version of a
binary with the new version.

4.2 Profile Generation

The output of Bindiff is a one-to-one mapping between
instructions of two binaries. We can generate the profile for
the new binary, according to the abstract profile and the
mapping. The profile generation is to walk through each
symbol in the abstract profile and update the field offset
information based its correspondent ORIs.

To this end, ORIGEN locates ORIs in the new binary
based on the mapping, identifies all ORIs for each sym-
bol, and updates offset information based on these identified
ORIs. ORIGEN can locate the semantically equivalent ORI
instructions in the new binary by looking up the instruction
mapping. It considers instructions mapped by ORIs of the
base version as qualified ORIs. ORIGEN clusters all iden-
tified ORIs by their symbol names, and update the offset
information for each symbol based on its ORI cluster.

By the ORI definition in Section 3.1, we know each symbol
involves the object type and field name. Each ORI cluster
have one or more ORIs. If there is only one ORI in the clus-
ter, we can directly extract its offset information from the
ORI and assign it to the symbol. In most cases, the ORI
cluster contains multiple ORIs. We adopt the voting mech-
anism to update the offset of a symbol. This is because that
the CFG-based code search could introduce the erroneous-
ness, and this could wrongly consider some instructions as
ORIs. Without false ORIs, the ORIs for the same sym-
bol share the same offset value. False ORIs will break this
consistency and generate different offset values to confuse
ORIGEN. The voting mechanism is designed to automat-
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dataset.

ically filter offset values from false ORIs and improve the
accuracy of the profile generation.

Considering each offset value as a vote from its ORI, the
voting mechanism will rank all offset values by the number
of votes, and select the offset with the largest number of
votes as the true offset for the symbol. Repeat this process,
the profile generation will assign each symbol with an offset
value and generate the profile for the new binary.

4.3 Error Correction

It is possible that ORIGEN fails to update the offset value
for a symbol in the new binary, if all of ORIs of some symbol
in the abstract profile are misidentified in the new binary.
We adopt two strategies to resolve this problem.

The first strategy is the conservative strategy. We can
filter out symbols with the high possibility to be wrongly
labeled in the generated profile. Each symbol has a cluster.
We use the variance from the set of offset values in the clus-
ter to determine its false possibility. A threshold is set to
determine whether the symbol is filtered or not. If the vari-
ance of the symbol value is above the threshold, we consider
this symbol as a false and filter it out.

The second strategy is that we do not discard any sym-
bol in the profile. Instead, we apply the profile to conduct
the memory analysis. During the memory scanning, we col-
lect the values from these symbols, and screen false ones by
heuristics. Once we found some abnormal values, we filter
the symbol from the profile.

We also can combine two strategies together to conduce
the error correction. In all, the error correction can greatly
reduce the false positive rate for the generated profile. This
is substantiated by the experiment in Section 8.

5. IMPLEMENTATION

We have implemented the prototype of ORIGEN in C
and Python. More specifically, we write the dynamic label-
ing plugin for DECAF [18] in C. As a whole-system dynamic
analysis platform, we use DECAF to trace a user-level pro-
gram, an entire OS kernel, or a specific kernel module. Be-
sides, we write an IDA Pro plugin for static binary analysis,
based on IDA-decompiler [4]. We leverage BinDiff for the
ORI search. The entire ORIGEN has around 300 lines of C
code and 2K lines of Python code.
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6. EXPERIMENTS

This section empirically evaluates ORIGEN. First, we
represent the experiment setup in Section 6.1, and then
we systematically evaluate the accuracy of ORIGEN in the
cross-version setting in Section 6.2 and Section 6.3. In Sec-
tion 6.5, we apply ORIGEN into two use cases: memory
forensics and VMI. Finally, we evaluate the runtime perfor-
mance of ORIGEN in Section 6.6.

6.1 Experiment Setup

All experiments are conducted on a machine with Intel(R)
Core i5 @ 2.9GHz and 16 GB DDR3-RAM running 64-
bit Ubuntu 14.04. We evaluate ORIGEN on four sets of
software families: including Windows, Linux, OpenSSH and
dm_crypt, as shown in Table 1. To verify the accuracy of
the proposed method, we systematically evaluate ORIGEN
on OpenSSH family. For the rest of the software families, we
conduct case study analysis on some representative versions.

The experimental set is representative for the following
reasons: 1) the set is a sufficient sampling of real-word soft-
wares. The versions in our experiments cover a span of 13
years of OpenSSH, from 2.2.0p1 in 2002 to 6.8pl in 2015; 2)
the data types and the structs in OpenSSH are rich and rep-
resentative. For example, there are 1,904 structs and 22,618
fields in total for 40 versions of OpenSSH. Figure 5 illustrates
the number of unique data types in each version. The size
and diversity of the data should provide a systematic and ob-

jective evaluation for the proposed approach; 3) the source

code of OpenSSH provide a gold standard for evaluating the
performance of ORIGEN.

Evaluation Metrics: We employ precision to evaluate
the performance of ORIGEN. Given a source version s, our
task is to predict the offsets of correspondent data types
in the target version ¢. The offset precision for the target
version is calculated from:

9]
|snt|’

precision = (1)
where |sNt| represents the total number of shared data field
names in the two versions, and |§| represents the number
of correctly predicted offsets. The ground truth of the data
field names can be directly obtained from the source code of
OpenSSH. Note, the source code is not used in prediction.



Start Ver End Ver
Program | # of Ver Ver Date Ver Date
Windows 3 XP3 2001 | Wind7 | 2009
Linux 9 2.6.32 | 2010 | 3.13.0 | 2014
OpenSSH 40 2.2.0 | 2002 6.8.0 2015
dm_crypt 8 3.5 2012 | 3.13.0 | 2015

Table 1: Datasets of released versions

6.2 Overall True/False Positive Analysis

We also evaluate the accuracy of ORIGEN using the
OpenSSH family. We use its 40 versions which covers a span
of 13 years. Each version gets the true profile from its source
code. We conduct the pair-wise profile generation on the 40
samples by ORIGEN, and calculate the offset prediction
precision. For each version, ORIGEN utilizes it as a base
version to localize profiles for all 40 versions. Each localized
profile calculates precision by diffing itself with the true pro-
file from the source code of that version.
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Figure 6: The average precision of our method on 40
versions of OpenSSH. The dashed bar on top shows
the average.

Figure 6 shows the overall precision of ORIGEN on each
test OpenSSH version, where the z-axis represents the offset
prediction precision and the y-axis lists the versions. The
dashed bar labeled as “average” on top represents the aver-
age precision across all 40 versions. As we see, on average,
ORIGEN obtains a reasonable precision of 89.33%. The
variance of the precision across versions is only 0.003, with
the highest precision of 92.88% and the lowest of 83.98%.
The small variance suggests that the proposed method is
robust. The results shown in Figure 6 substantiate the ef-
ficacy of ORIGEN and suggests that ORIGEN points to a
feasible solution for cross-version memory analysis.

We inspect the results and hypothesize that the accurate
result derives from two main reasons: 1) the most of field
types are referenced by multiple ORIs. A single or a few
ORI searching failures can be corrected through the voting
mechanism; 2) the code search based cross-version inference
is resistant to some data structure reorganizations. We cal-
culate the statistics on ORIs for each field to explain the
first reason. As shown in Figure 5, we can see that each
data type has more than 50 ORIs for its fields on average.
Any single or a few ORI searching failures can be recorrected
by rest of correct ORIs. We also manually investigate 40 re-
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constructed data profiles from Figure 6 and find that ORI-
GEN still correctly infers connection_in and other fields in
session_state in OpenSSH2.2, even if session_state data
structure first appears in OpenSSH5.3. The reason is that
OpenSSH5.3 creates session_state as a wrapper to wrap
these fields in previous versions. The code accessing these
fields are relatively stable. ORIGEN can still identify ORIs
from these codes and update the type information.

We further inspect the false positives in our method and
find most of false positives are caused by the inaccuracy of
the code search technique used by ORIGEN. For example,
Bindiff cannot yield good alignment results if source code are
compiled from different compiler or different optimization
level. We can further improve the accuracy of the binary
alignment by leveraging more advanced techniques [6, 11,
15]. In this paper, we will discuss how to address the false
positive issue in Section 6.4.

6.3 In-depth True/False Positive Analysis

We also conduct an in-depth analysis to evaluate the ac-
curacy of ORIGEN. Figure 7 presents detailed comparison
results in the heat map. For the convenience of illustration,
we only include 10 representative versions from 2.9.9pl to
6.6pl, where each block indicates a pair-wise prediction ex-
periment on the two versions. The brightness of the block
in Figure 7(a) shows the offset prediction precision for 100
pair-wise profile generations; in Figure 7(b), the brightness
indicates the true profile similarity for the 100 pairs.

We can see that ORIGEN exhibits better performance for
adjacent versions, or in other words, it has the better per-
formance when the time interval of two versions is smaller.
For example, two adjacent versions of OpenSSH 3.3pl and
4.5pl have a very high offset prediction precision. This is
reasonable, because two adjacent versions tend to have less
differences in their binaries. In most cases, these differences
in adjacent versions are from minor code changes such as
security patches, so these two binaries still share most of
similar codes. When the time interval of two versions is
large enough, ORIGEN may not generate the profile with
the good quality. In this case, we can either use the method
in Section 6.4 or create a new base model on the more recent
version. The new model creation is much less frequent than
the version change. In fact, we only need to create 2 models
for the 40 versions of OpenSSH.

The true data structure similarity in Figure 7(b) shows a
good explanation about the performance of ORIGEN. Each
true data structure similarity in this matrix is calculated by
diffing true data structures of two versions. We can see that
most of adjacent versions can reach 100% similarity. When
the time interval increases, the drop of data structure sim-
ilarities is marginal. This also demonstrates that adjacent
versions have few design changes and look similar. This
results substantiate our intuition that software of different
versions tend to be similar.

6.4 Handling False Positives

The accuracy of ORIGEN has been verified in Section 6.2.
The average precision is about 90%, but there are still 10%
false positives, which might not be desirable in some mission
critical applications. To this end, we incorporate a thresh-
olding method to reduce the number of false positives. The
idea is that we can adopt the number of accesses to quantify
the searching robustness of the data field type, and only con-
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Figure 7: The illustration of pair-wise experiments on 10 representative versions of OpenSSH.

sider the data field type above the threshold as the searching
candidate. We admit it will sacrifice coverage for accuracy,
but it is necessary for the practical integration in some cases.

The result as shown in Figure 8 illustrates the precision
under different thresholds, where the xz-axis lists the thresh-
old, and the y-axis represents the precision. For each thresh-
old, the 95% confidence interval of 40 versions is also plotted.
As we see, the precision increases along with the thresh-
old, and a bigger threshold leads to a more accurate re-
sult, e.g. the precision is 98.53% under the threshold 32.
As the threshold determines the searching robustness of the
data type, a method with a bigger threshold behaves more
prudently, and makes less yet more accurate predictions.
For example, when the threshold is 2, our method yields
116,446 predictions; but when the threshold is 16, it yields
only 42,324 confident predictions. The experimental results
substantiate the claim that our method can be tailored to
produce very few false positives.

Precision

o
©
N
T
.

0.9r b

0.88 . ;
10

15 20
Threshold

25 30 35

Figure 8: Precision of our method under different
thresholds.

6.5 Case Studies

In this section, we conduct a qualitative analysis to eval-
uate the practice of ORIGEN. We select several key data
fields in all of the software samples listed in 1 and conduct
case studies in two application scenarios: virtual machine
introspection and memory forensics.
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For virtual machine introspection (VMI), we choose to en-
hance DECAF [18], the dynamic analysis platform. DECAF
relies on VMI to retrieve the running processes and loaded
modules inside a virtual machine to analyze the behaviors
of specified processes or kernel modules, for automatic mal-
ware detection and analysis. However, it only supports a
limited number of guest OS versions (including Windows
and Linux), due to the hardcoded profiles. To support a
new guest OS version, a user must compile and load a ker-
nel module inside the virtual machine to generate the cor-
responding profile. We aim to demonstrate that with help
of ORIGEN, we can eliminate this manual task by auto-
matically generating the profile from a given virtual ma-
chine image within just a few minutes. This case study can
demonstrate how ORIGEN greatly improves the usability
of VMI for the cloud provider.

For memory forensics, we show two forensic analysis tasks:
OpenSSH session key extraction, and dm_crypt? encryption
key extraction. We develop two plugins on Volatility mem-
ory forensics framework [38] to accomplish these two tasks,
respectively. We aim to demonstrate that with help of ORI-
GEN, we can perform these analysis tasks in a cross-version
manner. It means that without knowing the version infor-
mation of the application in a memory dump, we can au-
tomatically create a localized profile and then immediately
perform the forensic analysis on the memory dump.

We select key data fields as a demo for each analysis. The
second column in Table 2 lists key data fields of interest.
To be more specific, for Windows VMI, we need the global
variable PsActiveProcessHead as the starting point to tra-
verse the linked list of EPROCESS, and then within each EPRO-
CESS object, we obtain the process ID in UniqueProcessID,
the name in ProcessName, and so on. We visit the next
EPROCESS object through ActiveProcessLinks. Similarly
for Linux VMI, we need to start from init_task to traverse
the task_struct linked list and locate the process ID in pid,
and the process name in comm, and so on.

In memory forensics scenario, for dm_crypt, we create a
signature using the five fields in the structure crypt_config
to scan the memory and find the actual encryption key in
crypt_config.key.

We select three base versions for each software, as shown
in Table 2. In order to evaluate the strength of ORIGEN,

2dm_crypt is a disk encryption tool in Linux.



ORI Statistic . s N7 .
Name Field Name on Windows XPspo | WinXPSP2 | WinVista Win7
DL | SL Total D (TP/FP) | D (TP/FP) | D (TP/FP)
EPROCESS.UniqueProcessId 5 7 12 V/(12/0) V(9/3) V(9/3)
EPROCESS.EitTime 0 2 2 v/ (2/0) v/ (2/0) v/ (2/0)
EPROCESS. ActiveProcessLinks 1 3 4 \/(4/0) \/(4/0) \/(4/0)
‘Windows EPROCESS.ProcessName 0 4 4 V/(4/0) Vv (3/1) Vv (3/1)
EPROCESS.PEB 5 2 7 V/(7]0) V(CYE)) V(4/3)
EPROCESS. DirectoryTableBase 2 1 3 \/(3/0) \/(3/0) v/ (3/0)
.data : PsActiveProcessHead 0 3 3 Vv (3/0) v/ (3/0) v/ (3/0)
ORI Statistic Linux2.6.32 | Linux3.8.0 | Linux3.13.0
on Linux3.5.0
DL [ SL Total D (TP/FP) | D (TP/FP) | D (TP/FP)
“data: init_task 0 [ 10 10 V/(8/2) J(8/2) /(8/2)
Linusx task_struct.tgid 9 1 10 4/(10/0) V(8/2) vV (8/2)
task_struct.pid 8 2 10 V(5/5) V(8/2) V(7/3)
task_struct.comm 1 4 5 V/(4/1) \/(5/0) \/(5/0)
task_struct.tasks 1 2 3 V/(3/0) v/ (3/0) v/ (3/0)
task struct.mm 42 5 47 v/ (29/18) v/ (37/10) +/(37/10)
mm_struct.pgd 12 4 16 V(12/4) v/ (11/5) v/(11/5)
ORI Statistic OpenSSH5.3 | OpenSSH6.0 | OpenSSH6.5
on OpenSSH5.9 pen : pen ) pen )
DL | SL Total D (TP/FP) | D (TP/FP) | D (TP/FP)
OpenSSH Tbss: active state T 15 6 7(6/0) J(6/0) /(6/0)
session_state.sshl_key 0 2 2 \/(2/0) \/(2/0) \/(2/0)
session_state.sshl_key_length 0 4 4 V/(4/0) V/(4/0) \/(4/0)
ORI Signature Statistic | ;350 | Linux3.11.0 | Linux3.13.0
on Linux3.8.0
DL [ SL Total D (TP/FP) | D (TP/FP) | D (TP/FP)
dm._crvpt crypt_config.cpher 1 3 3 V/(3/0) V/(3/0) V/(3/0)
-Cryp crypt_config.cipher_string 1 4 4 \/(4/0) \/(4/0) V/(4/0)
crypt_config.iv_size 1 8 9 \/(9/0) \/(9/0) v/(9/0)
crypt_config.key_size 1 4 5 \/(5/0) V/(5/0) V/(5/0)
crypt_config.key 1 3 4 \/(4/0) \/(4/0) \/(4/0)

Table 2: The efficacy of ORIGEN on different applications. DL denotes the dynamic labeling; SL for static
labeling. D for “Detected”. TP for correctly matched ORIs in the new version and FP for wrongly matched

ORIs for the new version

these test versions span several major revisions, ranging
from Windows XP, Linux 2.6.32, and OpenSSH 5.3, to Win-
dows 7, Linux 3.13.0, and OpenSSH 6.5.

ORIGEN can accurately generate a profile for each of the
four analysis tasks, and the results are shown in Table 2. Ta-
ble 2 lists the software family names to be tested, their base
version and three test versions. For each software family, the
ORI labeling and matched results are listed respectively. For
ORI label, it shows the number of ORIs via the dynamic la-
beling (DL) and the static labeling (SL) respectively. The
column of “Total” shows a sum of ORIs generated via two
phases. For each test version, we also list the number of
correctly labeled ORIs and missed ORIs respectively.

The results in Table 2 demonstrate three points. First,
ORIGEN can precisely label ORIs in the base version for
the data fields in each profile. We can see that each data
field has more than one ORI in the base version. Second, the
static labeling can improve the ORI coverage. By comparing
the ORI number in DL column and total column, we see that
the static ORI labeling can help find more ORIs. Finally,
the error correction can help to reduce the false positive
rate. We found that the profile localization for the four soft-
ware families cannot find all semantically-equivalent ORIs
for their test versions, but the error correction still helps to
infer the accurate offset for each data type field in the gener-
ated profile. For example, there are 47 ORIs in total for the
field task_struct.mm in the base version of Linux, Linux
3.5.0. However, ORIGEN only correctly finds 37 ORIs in
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Linux 3.8.0. By adopting the strategy one in discussed in
Section 4.3, the correct offsets can still be found by filtering
the false offset values from the false 10 ORIs.

The Demo of ORIGEN .

To the end, we show the dm_crypt key extraction result
to demonstrate the effectiveness of ORIGEN shown in Fig-
ure 9. ORIGEN has not information about the version in-
formation for the test dm_crypt in the memory dump. It
extracts the binary from the memory dump and automati-
cally generates the concrete profile for fields in Table 2. Then
it utilizes the concrete profile and successfully extracts the
dm_crypt key.

origen@origen: ~

origen@origen:~$ python vol.py -f ./3_13.raw linux_dm_cryp
t_scan
Volatility Foundation Volatility Framework 2.3.1

Address 0xdb2el1ase ,Cipher string serpent-xts-plain64, Key
83f9d6b90122f9affe36790499db082d059742933ceAba6f143979%ea2
ebe8b1837ebcB86687a3266d45226Tee624e52725096d20b905675e95616,
723a7787da302
origen@origen:

Figure 9: The demo result of dm crypt version-
independent memory analysis.



6.6 Runtime Performance

In this section, we verify the runtime performance of ORI-
GEN. Table 3 demonstrates the average running time of
ORIGEN in Table 2. It includes the ORI labeling and the
profile localization time.

We can see that it takes few seconds on average to finish
the labeling for one ORI. Among steps of the ORI labeling,
code disassembly takes up to 30 seconds for complex binary
code like Linux kernel. The rest of steps such as the intra-
procedural data-flow analysis only cause negligible runtime
overhead. The profile localization takes several minutes to
generate a profile. Most time is spent on the binary code
alignment by BinDiff. It is reasonable, because conducting
the alignment on the large scale binary is time consuming.

For VMI, ORIGEN takes around two minute to generate
a profile for an unknown virtual machine image and then can
immediately perform security monitoring from the hypervi-
sor layer. This generation time could be greatly improved
by conducting more efficient code search technique. Our
goal is not to completely resolve this problem but provide a
promising solution for cross-version memory analysis.

Family Name : Total Time —
ORI Labeling | Profile Localization
Windows 59 sec 1.1 min
Linux 1.3 min 3.2 min
OpenSSH 39.3 sec 18.4 sec
dm_crypt 24 sec 10 sec

Table 3: The total time for each application on av-
erage.

7. DISCUSSION

In this section, we mainly discuss about the limitation and
potential challenges of this work.

Code Syntactic Changes.

We leverage the code search techniques to conduct the
binary alignment for the profile localization. It is possible
that some syntactic changes modify the control flow graph
for the new version of a binary, such as inline functions or
code optimizations. This can reduce the code search accu-
racy of ORIGEN. We summarize possible syntactic changes
and list the robustness of the code search technique used by
ORIGEN to these changes in Table 4.

Fortunately, many related works have already focused on
this issue and proposed more accurate search results [7]. The
goal of the paper is to explore the feasibility of ORIGEN.
In the future, we will work on how to improve the accuracy
of the generated profile by ORIGEN.

Code Semantic Changes.

ORIGEN by design can only infer the offset value for data
fields which have been trained in the older version. If the
data type is newly added, ORIGEN cannot infer the offset
value for it. During the software development, it is common
to add the security patches or redesign the code in the new
version. These patches or code reorganization could change
the semantics of the older version. For example, the new
version could add extra data types or remove some data
fields. In these cases, ORIGEN will fail to generate the
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profile for these new coming data types. One possible way
to sidestep this limitation is to train the additional model
for the new version, and apply the new model to generate
profiles for its similar versions.

Code Change Strength
Register Assignment Yes
Control Flow Flattening Yes
Instruction Scheduling Yes
Opcode Selection Yes
Function Parameters Yes
Function Inlining Maybe
Calling Convention Partial

Table 4: Robustness Analysis

8. RELATED WORK

Code Search in Binary and Its application.

The code search technique recently has attracted much at-
tentions. Most previous work put their efforts on the perfor-
mance improvement for searching semantic equivalent codes
in code database [6,10,11,15,22-24,27,29, 33, 34, 36, 36].
Many researchers also applied these promising code search
algorithms into different applications [5,19]. Bug search uti-
lizes the search techniques to quickly identify the program
bugs [33,34]. Patch generation applies the code similarity
techniques to the semantic code discovery. Program lineage
exercises the code similarity methods to infer the evolution-
ary relationship among a collection of software. Software
plagiarism and repackage discovery also adopts the code
search techniques [20], and so on. This paper is the first
attempt at the cross-version memory analysis by leverag-
ing the code search techniques. The experiments also shows
it is promising to apply the code search techniques for the
across-version memory analysis.

Memory Forensics.

Several memory analysis tools [1,14,26,32,35,38] etc. have
been proposed to aid the automatic memory forensics. They
aim at analyzing and retrieve sensitive information from a
memory dump. A key aspect of memory forensics is to en-
code the semantic related information into the data struc-
ture profile and follow the profile to conduct the specific
analysis. The profile is predefined to the specific version of
the image being analyzed, and update the profile according
to versions of the target software.

State-of-the-art techniques rely on reverse engineering to
reconstruct the profile of semantic information. The reverse
engineering most often requires the manual effort or use non-
trivial scripts [2] that operate on the source code. In this
paper, we propose the idea of cross-version memory analysis.
Instead of reverse engineering version by version, it transfers
the knowledge from the trained model for the older version
to generate the profile for the new version.

Virtual Machine Introspection (VMI).

VMI extracts semantic knowledge from a running virtual
machine to monitor and inspect semantic behaviors of the
guest machine. Due to the nature of isolation, VMI has been
applied for many security applications. For example, many



intrusion detection applications utilize the VMI technique
to conduct more accurate detections [16,30,31]. Some mal-
ware analysis approaches also relies on the VMI to capture
the detail malware behaviors which cannot be captured by
previous work [8,21]. Furthermore, VMI techniques are also
well used in memory forensics and process monitoring [17].

The main challenge in the VMI technique is to bridge the
semantic gap between the guest OS and outside analysis
tools. Many existing works have already made a great step
on this problem [9,13]. A recent tool, DECAF [18] performs
VMI to retrieve key semantic information from a guest OS.
In each of the above efforts, similar to memory forensics,
non-trivial effort is required to construct a profile) of key se-
mantic values and their concrete interpretations within the
guest OS. Although VMST can reuse the OS code pieces of
the introspection property to achieve the automatic VMI.
However, the approach used in VMST could not be general
enough to support the automatic introspection for some in-
ternal and close-sourced data structures.

Data Structure Reverse Engineering.

Reverse engineering data structures from binary executa-
bles is very valuable for many security problems. Partic-
ularly, Howard [37] and REWARDS [25] makes use of dy-
namic binary analysis to recover the types and data struc-
ture definitions from the execution of a binary program. For
each instruction during the execution, they infer and propa-
gate the types of the instruction operands. Certain memory
access patterns also need to be recognized to discover specific
data structures like arrays, linked lists, and embedded data
structures. For most COTS binaries without well defined
documentation about their function prototypes, Howard [37]
and REWARDS [25] can only infer the primitive data types
such as integer, string or pointers. The manual efforts are
still required for higher semantic data type inference. In our
paper, ORIGEN is proposed to alleviate the manual efforts.
Instead of inferencing the data types for new version of a bi-
nary from the scratch, ORIGEN can utilize the knowledge
from data types in the older version which has been analyzed
to assist the profile generation for the new version.

9. CONCLUSION

In this paper, we presented the notion of “cross-version
memory analysis”. We detailed a solution and implemented
a prototype called ORIGEN that is able to search the code
in one binary, and locate the ORIs in another version of
the code. The experimental results verified the efficacy of
the proposed method. Specifically, our method successfully
recovers the offsets for key semantic fields across different
versions of OpenSSH, Windows, Linux, a loadable kernel
module for Linux. In addition, it achieved a precision of 90%
on 40 versions of OpenSSH. The experiments also demon-
strated the efficiency of our method, where it took half a
minute to identify all the chosen semantic fields on Windows
and Linux respectively. Finally, we integrate ORIGEN into
DECAF to demonstrate its effectiveness in VMI.
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