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ABSTRACT
The increasing availability of cloud computing allows more
and more mobile devices to outsource expensive computa-
tions. Among these computations, bilinear pairing is very
fundamental and frequently-used by many modern crypto-
graphic protocols. Currently, the most efficient outsourcing
algorithm of bilinear pairings requires about 5 point addi-
tions in G1 and G2 and 4 multiplications in GT under the
one-malicious version of a two-untrusted-program assump-
tion. And the result of the algorithm is checkable with a
probability about 1/2. In this paper, we improve the state-
of-the-art by proposing two new outsourcing algorithms for
bilinear pairings. One is a more efficient outsourcing al-
gorithm under the same assumption with the same check-
ability. The other is more flexible under a two-untrusted-
program assumption with improved checkability. Both algo-
rithms are better suited to various applications where on-line
computations are strictly limited due to the lack of available
computing resources.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations in finite fields; E.3 [DATA ENCRYPTION]: Pub-
lic key cryptosystems
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1. INTRODUCTION
The development of cloud computing enables people to ac-

cess almost unlimited computing resources in an on-demand
fashion. People with mobile devices or other energy-limited
devices may benefit from this pattern to fulfill some complex
computations that are unaffordable in their devices alone,
such as linear programming [27] and convex optimization
[32]. In the setting of cryptographic applications, it is satis-
factory if a device could outsource some energy-consuming
operations to a cloud, and keep the security properties of
the applications unchanged [22]. As a basic operation in
pairing-based cryptographic applications, the bilinear pair-
ing evaluation attracts researchers to study suitable security
model and efficient implementations for outsourcing.

There are mainly three aspects about the security model.

• The first is about secrecy. Some sensitive informa-
tion involved in an outsourced process should be kept
secrete. The requirement comes from a semi-trusted
cloud server assumption where a cloud server may be
curious to peek client’s data. In practice, cloud servers
are usually owned by some corporations that may be
not trusted by clients. So this assumption is sound.

• The second is about checkability. The result of an out-
sourced computation should be checkable at least with
some probability. This requirement again comes from
the semi-trusted cloud server assumption. A service
program in a could server may have bugs or malicious
functions. It is also attractive for a cloud server to fin-
ish a computing task as soon as possible, which may
lead to incomplete computation or even zero compu-
tation where simply a wrong result is returned.

• The last aspect is about assumptions on the number
and trustability of programs to implement an algorith-
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m. A one-untrusted-program (OUP) assumption al-
lows only one program to implement an algorithm, and
the program could be malicious. A one-malicious ver-
sion of a two-untrusted-program (OMTUP) assump-
tion allows two programs to implement an algorith-
m, and only one of them could be malicious. A two-
untrusted-program (TUP) assumption allows two pro-
grams to implement an algorithm and both of them
could be malicious.

In practice, the OUP assumption needs a client to ac-
cess only one program to outsource its computation
task. An algorithm under the OUP assumption usual-
ly needs more computations than under other assump-
tions. Most outsourcing algorithms for bilinear pair-
ings are under the OUP assumption. The OMTUP and
TUP assumptions need a client to access two program-
s. Under the OMTUP assumption, the two programs
are expected to be produced by different vendors. Un-
der the TUP assumption, the two programs may be
from the same vendor.

The efficiency of an algorithm with outsourced compu-
tation is a basic goal and is the reason of the existence of
such an algorithm. Considering bilinear pairings, before the
work of Chen et al. [12], all outsourcing algorithms [16, 13,
8] need scalar multiplications and exponentiations. The fast
implementations of bilinear pairings on energy-limited de-
vices [24, 25] almost make the effort of pairings outsourcing
useless. Just for some parameter sets, there are some bene-
fits to outsource bilinear pairings. The outsourcing algorith-
m in [12] only needs a few point additions in G1 and G2 and
multiplications in GT , which makes their work valuable.

Since a bilinear pairing is a basic operation in pairing
based applications, a pairing outsourcing algorithm has a
wide usage. Chen et al. [12] gave two examples. One is the
well-known Boneh-Franlin identity-based encryption scheme
[4]. The other is the Cha-Cheon identity-based signature
scheme [14]. Both schemes need on-line pairing evaluations.
Their results show that the on-line computations are largely
reduced.

We notice the similarity of on-line/off-line computation
algorithms and the outsourcing algorithms in [17, 12, 28,
8]. They all need some off-line computations to support the
on-line computations. The difference is whether the on-line
computations are outsourced. From this standpoint, we may
view the mentioned algorithms as extensions to on-line/off-
line computation algorithms to save the on-line computing
resources. So we claim the algorithms are suitable to appli-
cations where on-line computations have strict limitations
on available computing resources. In practice, the off-line
computations may be finished when a mobile device is charg-
ing or simply be finished by another device that puts the
off-line computation results to the mobile device.

This paper mainly proposes two outsourcing algorithms.
One is a more efficient bilinear pairing outsourcing algorith-
m in the framework of [12]. The other is an algorithm in a
more flexible framework with a better checkability. We also
give two pre-computation algorithms for the two outsourc-
ing algorithms respectively that are based on a well-known
EBPV algorithm.

1.1 Related Works
The outsourcing computation of cryptographic operations

is a technique that has been studied for a long time [19,

9, 18]. There are also some generic constructions [33, 7]
for secure outsourcing computation. For the special case of
bilinear pairing outsourcing, the closely related works are as
follows.

Girault and Lefranc [16] proposed some protocols for pairing-
based schemes for the first time. They suggest a method to
blind a point. Suppose two points A ∈ G1 and B ∈ G2.
A client wants to compute e(A,B) and to hide the point B
from a server. The client could select a random value u ∈ Zq
where q is the order of G1 and G2. And the client sends A
and uB to the server. After the server returns e(A, uB), the
client could recover e(A,B).

Chevallier-Mames et al. [2, 13] proposed a protocol for
secure delegation of the elliptic-curve pairing. The secure
delegation in their proposal means that both points could
be hidden from a server, and that the server’s computation
result is checkable. Basically, they make a server compute
two comparable results to check the correctness of a pairing
evaluation. Kang et al. [3] proposed a simpler protocol to
improve the efficiency of the protocol in [2]. They feed a
server with a set of new points and obtain two comparable
results with a smaller cost.

Tsang et al. [21] proposed the concept of batch pairing
delegation, and constructed several protocols for differen-
t types of bilinear pairings. They showed that the batch
pairing delegation was more efficient than multiple runs of
non-batch delegation protocols at that time.

Wu et al. [30, 31] focused on server-aided signature ver-
ification. They specially study the verification of Boneh-
Lynn-Shacham (BLS) signature [5]. Their final construc-
tion shows a similar idea to exploit two comparable results
returned by a server to check the correctness of server’s com-
putation. Wang et al. [29] proposed a new security model
in the setting of server-aided verification. Chow et al. [15]
proposed another new model in the same setting, and pro-
posed a method to exploit pairing delegation protocols [21]
for signature verification.

Canard et al. [8] proposed a new method to delegate a
pairing evaluation. Their construction shows again the sim-
ilar idea to use two comparable results returned by a server
to check the correctness of server’s computation. They con-
tribute a new efficient construction to implement such an
idea. Their construction for public points outsourcing needs
two scalar multiplications in G1 and G2, one exponentiation
in GT and a membership test in GT . They noticed the work
of Ana and Francisco [25] where an optimal-Ate pairing over
Barreto-Naehrig curves [1] was implemented. They then ar-
gue that the benefit of pairings outsourcing may be the save
of area to implement a pairing evaluation. In fact, Scott
et al. [24] have showed an implementation of cryptograph-
ic pairings on smart cards, where the Section 7 shows that
a pairing outsourcing algorithm is only meaningful for Ate
pairings.

Surprisingly, Chen et al. [12] proposed an efficient algo-
rithm for secure outsourcing of bilinear pairings. They only
require a client to compute 5 point additions in G1 and G2

and 4 multiplications in GT . No scalar multiplications or
exponentiations are needed.

1.2 Contributions
More Efficient Algorithm: We exploit a trick in [24, 8]

to use an inverse of a random value in a pre-computation
phase. Basically, suppose e(A,B) is expected to be out-
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sourced. We let a server compute e(A+x1P1, B+x−1
1 x2P2)

where P1 and P2 are generators of G1 and G2, respectively.
Note e(x1P1, x

−1
1 x2P2) = e(P1, P2)x2 . Then some compu-

tations in [12] could be saved. We also observe that some
computations in [12] could be further pre-computed. For
example, the second query to the program U1 in [12] is not
related to the inputs (A,B). That computation could be
pre-computed, and the queries to U1 could be reduced.
Pre-computation Algorithms: The outsourcing algorithm in
[12] needs precomputations of three six-tuples each of which
includes three scalar multiplications and one pairing evalu-
ation. We propose two algorithms based on a well-known
EBPV algorithm [20] for precomputations. We further ex-
ploit an idea in [28] to build a dynamic table where each
entry is used to outsource a pairing evaluation. Our effi-
cient algorithm needs ten random elements for one pairing
evaluation. The other algorithm needs twelve random ele-
ments for one pairing evaluation.
Two Untrusted Programs: We notice that an algorithm un-
der the OUP assumption may need more computations than
under the OMTUP and TUP assumptions. And the OMT-
UP assumption may be not well-suited to some practical
deployment of cloud services. For example, many cloud ser-
vices may be based on the same platform provided by a
vendor. We then propose a flexible algorithm under the T-
UP assumption. We let two programs compute two closely
related outputs whose relationship could be checked by a
client with a small cost, similar to [2, 30, 8]. We emphasize
that an algorithm secure under the OMTUP assumption
may have different behaviors under the TUP assumption.
For example, our efficient algorithm and an algorithm in
[10, 11] exploit the OMTUP assumption to check a result
by comparing two values returned by two programs while a
client does not know a correct answer. This trick is invalid
under the TUP assumption.
Improvement on Checkability: The outsourcing algorithm
under the TUP assumption has a probability (1 − 1/3s)2

to check the result for a security parameter s. Our method
gives a client a choice to improve the checkability at the
cost of several computations. Note that in some applications
of outsourcing algorithms, the checkability may be crucial.
For example, if a signature verification procedure employs
a bilinear pairing outsourcing algorithm, the checkability of
the outsourcing algorithm determines the correctness of the
signature verification procedure. Chow et al. [15] discussed
this problem in their security analysis section.

1.3 Organizations
The next section shows the pre-computation algorithms

based on EBPV. Section 3 is a more efficient outsourcing al-
gorithm for bilinear pairings with the descriptions of security
model and proofs. The algorithm under the TUP assump-
tion and its proofs are in Section 4. Section 5 includes a
comparison. The last section concludes the paper.

2. PRE-COMPUTATION ALGORITHMS

2.1 EBPV
Boyko, Peinado and Venkatesan [6] proposed a method

to speed up discrete log and factoring based schemes via
precomputations. It is called as BPV algorithm. Nguyen,
Shparlinski and Stern [20] showed an extension of the BPV

algorithm called as EBPV algorithm. We here review the
EBPV algorithm in [20] as follows.

Let g be a generator of a cyclic multiplicative group Z∗p
with order q where p and q are two large primes.

• Preprocessing Step: Generate n random integers α1,
. . ., αn ∈ Zq. For j = 1, . . . , n, compute βj = gαj mod
p, and store the values of αj and βj in a table.

• Pair Generation: When a pair (x, gx) is needed, ran-
domly generate S ∈ {1, . . . , n} such that |S| = k. For
each j ∈ S, randomly select χj ∈ {1, . . . , h− 1} where
h > 1 is a small integer. Compute

x =
∑
j∈S

αjχj mod q (1)

and

X =
∏
j∈S

β
χj
j mod p. (2)

If x = 0 mod q, start again. Otherwise return the pair
(x,X).

Note that Nguyen et al. [20] have studied the distribu-
tion of modular sums and have shown that by choosing a
suitable parameter set, the statistical distance between the
distribution of a modular sum and the uniform distribution
could be arbitrarily small.

2.2 Bilinear Pairings
In the setting of bilinear pairings, we use the following

symbols. Let G1 and G2 be two cyclic additive groups gen-
erated by P1 and P2 respectively. The order of G1 and G2 is
a large prime and also denoted by the symbol q. Define GT
to be a cyclic multiplicative group of the same order q. A
bilinear pairing is defined as a map e : G1 ×G2 → GT with
the following properties:

• Bilinear: e(aR, bQ) = e(R,Q)ab for any R ∈ G1, Q ∈
G2 and a, b ∈ Z∗q .

• Non-degenerate: There are R ∈ G1 and Q ∈ G2 such
that e(R,Q) 6= 1.

• Computable: There is an efficient algorithm to com-
pute e(R,Q) for any R ∈ G1 and Q ∈ G2.

Since the EBPV algorithm has no limitations on the cyclic
groups, it could be trivially applied to the setting of bilinear
pairings.

2.3 Dynamic Table
Wang et al. [28] proposed a BPV+ algorithm employing

two tables. One table is a static table to store precompu-
tations. The other is a dynamic table that maintains some
pairs of elements produced by a BPV algorithm [6]. On
each invocation of their BPV+ algorithm, an entry in the
dynamic table is used and removed. The dynamic table is
expected to be replenished with some fresh random pairs in
an idle time of a device. Obviously, this method could be
used together with the EBPV algorithm smoothly.

2.4 RandA

We next give the first pre-computation algorithm RandA.
It prepares random vectors for our more efficient algorith-
m with outsourced computation. The subscripts of random
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values are kept the same as they in the corresponding out-
sourcing algorithm. It includes a static table ST and a dy-
namic table DT .

• Preprocessing Step: Generate n random integers α1,
. . ., αn ∈ Zq. For j = 1, . . . , n compute βj1 = αjP1

and βj2 = αjP2, and store the values of αj , βj1 and
βj2 in a static table ST . Compute e(P1, P2) and store
the value in ST .

• Vector Generation: When a table DT needs a new
entry, it is produced as follows. Randomly generate
S ∈ {1, . . . , n} such that |S| = k. For each j ∈ S,
randomly select χj ∈ {1, . . . , h − 1} where h > 1 is a
small integer. Compute

x1 =
∑
j∈S

αjχj mod q (3)

If x1 = 0 mod q, start again. Else compute

x1P1 =
∑
j∈S

χjβj1. (4)

Following the above procedure, compute similarly the
vectors (x3, x3P1), (x4, x4P2), (x7, x7P1) and (x8, x8P2).
Then randomly select x2, x5, x6 ∈ Z∗q and compute

1. x−1
1 x2P2,

2. x1x
−1
2 x5P1,

3. x−1
1 x6P2,

4. e(P1, P2)x7x8 ,
5. e(P1, P2)x5+x6−x2 .

(5)

The entry

(x1P1, x3P1, x1x
−1
2 x5P1, x7P1,

x−1
1 x2P2, x4P2, x

−1
1 x6P2, x8P2,

e(P1, P2)x7x8 , e(P1, P2)x5+x6−x2).
(6)

are stored in the DT table. On each invocation of
RandA, an entry is returned and removed from DT .
And the DT is replenished with fresh random values
in an idle time of a device.

2.5 RandB

Our flexible algorithm under the TUP assumption needs
the following RandB algorithm to prepare random vectors.
The subscripts of random values are also kept the same as
they in the corresponding outsourcing algorithm.

• Preprocessing Step: The table ST is filled in the same
way as that in the RandA algorithm.

• Vector Generation: When a table DT needs a new
entry, it is produced as follows. A pair (x1, x1P1) is
fast sampled in the same way as the RandA algorithm.
Then randomly select x2, x3, x4 ∈ Z∗q , and compute

1. x1x
−1
2 x3P1,

2. x−1
1 x2P2,

3. x−1
1 x4P2,

4. (e(P1, P2)x3+x4−x2 ,

(7)

The entry

(x1P1, x1x
−1
2 x3P1,

x−1
1 x2P2, x

−1
1 x4P2

e(P1, P2)x3+x4−x2).
(8)

Table 1: Comparison of Precomputations
Scheme [12] Algorithm A Algorithm B

SM 9 3 6
ME 0 2 2
PE 3 0 0
PA - 5(k + h− 3) 2(k + h− 3)

are stored in the DT table. On each invocation of
RandB, an entry is returned and removed from DT .
And the DT is replenished with fresh random values
in an idle time of a device.

2.6 Comparisons
We show the precomputations needed for a pairing evalu-

ation in our two algorithms and that in Chen et al.’s algo-
rithm [12]. We name our efficient algorithm in Section 3 as
“Algorithm A”. The algorithm with outsourced computation
in Section 4 is called as “Algorithm B”. We then note that
for a outsourced pairing evaluation, the RandA algorithm
is called once in Algorithm A, and the RandB algorithm
is called twice in Algorithm B, and Chen et al. need three
times six-tuple in their algorithm. We use SM to denote a
scalar multiplication, ME a modular exponentiation, PE a
pairing evaluation and PA a point addition. The numbers
of SM and PA include all operations in G1 and G2. The
value k is the size of a set S in the algorithms RandA and
RandB. According to the parameter sets in [20], the val-
ue k is about twenties and the value h is less than 10. It
is also noted in [20] that the computation cost of the value
X is about k + h − 3 group operations. The comparison
result is in Table 1. It is obvious that RandA and RandB
algorithms need less computations. Note that the computa-
tions in Preprocessing Step are not included since they are
produced once and used many times.

3. AN EFFICIENT ALGORITHM
This section includes the construction of our “Algorithm

A” and its related security model and proofs.

3.1 Construction of Algorithm A
We use Ui(R,Q) → e(R,Q), i ∈ {1, 2}, to denote the

party Ui taking (R,Q) as inputs and producing e(R,Q) as
an output. And we use T to denote a trusted device with
limited computation resources. System parameters include
(G1,G2,GT , e, q, P1, P2) that are defined in Section 2.2. The
inputs of algorithm A are points A ∈ G1 and B ∈ G2. The
output of algorithm A is expected to be e(A,B). The algo-
rithm is executed as follows.

• Init: T calls RandA to fetch random values

(x1P1, x3P1, x1x
−1
2 x5P1, x7P1,

x−1
1 x2P2, x4P2, x

−1
1 x6P2, x8P2,

e(P1, P2)x7x8 , e(P1, P2)x5+x6−x2).
(9)

• Computation: T queries U1 in random orders

1. U1(A+ x1P1, B + x−1
1 x2P2)→ α1;

2. U1(x3P1, x4P2)→ α2;

Similarly, T queries U2 in random orders

1. U2(A+ x1x
−1
2 x5P1,−x−1

1 x2P2)→ α′1;
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2. U2(−x1P1, B + x−1
1 x6P2)→ α′2;

3. U2(x3P1, x4P2)→ α′3;

4. U2(x7P1, x8P2)→ α′4;

• Recover: T checks whether

α2 = α′3

and

e(P1, P2)x7x8 = α′4.

If the equations hold, it computes

o = α1α
′
1α
′
2e(P1, P2)x5+x6−x2

and produces o as an output. Otherwise, it rejects and
produces “Error”.

3.2 Security Model
Chen et al. [12] proved their algorithm in a security model

proposed in [17]. We introduce the model as follows.
An outsourcing model includes three players, a trusted

party T , an untrusted party U and an untrusted environ-
ment E. The party T has limited computation resource and
tries to outsource its computation task to the party U . The
party U may be a program written by E and installed on
a computing device. The party E produces the program U
and interacts indirectly with U through T . The goal of E
and U is to learn something interesting about T . The goal
of T is to implement an algorithm Alg by interacting with
U . An outsourcing implementation of an algorithm is secure
if U and E could learn nothing interesting about T ’s inputs
and outputs.

Next is the formal definition of “an algorithm with out-
source I/O” [17, 12].

Definition 1. An algorithm with outsource I/O takes five
inputs and produces three outputs which are divided to se-
cret, protected and unprotected categories according to the
knowledge of U and E. An input or output is secret if nei-
ther E nor U knows it. If only E knows an input or output,
it is called as protected. Otherwise, an input or output is
unprotected. An honest party produces the first three in-
puts known as honest secret, honest protected, and honest
unprotected inputs. The environment E produces the fol-
lowing adversarial protected, and adversarial unprotected
inputs. The algorithm produces secret, protected and un-
protected outputs.

The security definition of an algorithm with outsource I/O
is mainly to ensure that the party E knows nothing about
the secret input and output of an implementation TU even
if the party U is produced by the party E.

Definition 2. LetAlg be an algorithm with outsource I/O.
An implementation TU of Alg is secure if:

1. TU is a correct implementation of Alg;

2. For all probabilistic polynomial time adversaries E and
U , there are probabilistic expected polynomial time
simulators (S1, S2) such that the following pairs of ran-
dom variables are computationally indistinguishable.

• Pair One: EV IEWreal ∼ EV IEWideal that are
views of the party E participating two processes.

– EV IEWreal = EV IEW i
real if stopi = TRUE

where

EV IEW i
real = (estatei, yip, y

i
u) and

(istatei, xihs, x
i
hp, x

i
hu)← I(1κ, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)←
E(1κ, EV IEW i−1

real, x
i
hp, x

i
hu);

(tstatei, ustatei, yis, y
i
p, y

i
u)←

TU(ustatei−1)(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au).

The algorithm I is honest to take a security
parameter κ and its i−1 round internal states
istatei−1 and to produce its i round honest s-
tate and honest inputs (xihs, x

i
hp, x

i
hu) for TU .

The adversary E takes κ, xihp, x
i
hu and its i−1

round view EV IEW i−1
real as inputs to produce

its i round internal state estatei, the order of
honest inputs ji, the i round adversarial in-
puts xiap and xiau, and a terminal signal stopi.
The adversary U takes its i − 1 round inter-
nal state ustatei−1 to interact with T in the
round i interaction. The implementation TU

takes the five inputs and the i−1 round inter-
nal state tstatei−1 of T to produce the round
i internal states of T and U , and the three
round i outputs. All states are initially emp-
ty.

– EV IEWideal = EV IEW i
ideal if stopi = TRUE

where

EV IEW i
ideal = (estatei, zip, z

i
u) and

(istatei, xihs, x
i
hp, x

i
hu)← I(1κ, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)←
E(1κ, EV IEW i−1

ideal, x
i
hp, x

i
hu);

(astatei, yis, y
i
p, y

i
u)←

Alg(astatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y ip , Y
i
u , rep

i)←
S
U(ustatei−1)
1 (sstatei−1, xj

i

hp, x
ji

hu, x
i
ap, x

i
au,

yip, y
i
u);

(zip, z
i
u) = repi(Y ip , Y

i
u) + (1− repi)(yip, yiu).

The algorithms I, E and U are similar to
those in the real process. The algorithm Alg
takes the five inputs and the i − 1 round in-
ternal state astatei−1 of Alg to produce the
three outputs and the round i state. The
simulated implementation SU1 takes its i − 1
round internal state sstatei−1 and all the pro-
tected and unprotected inputs and outputs
to produce the round i internal states of S1

and U , the simulated protected and unpro-
tected output Y ip and Y iu and a response sig-

nal repi ∈ {0, 1}. The response signal is used
to determine the round i outputs zip and ziu
for EV IEW i

ideal.

• Pair Two: UV IEWreal ∼ UV IEWideal that are
views of the party U participating two processes.

– UV IEWreal = UV IEW i
real if stopi = TRUE

where UV IEW i
real = (ustatei) and the ustatei

is defined in the EV IEW i
real of the above

“Pair One” definition.

– UV IEWideal = UV IEW i
ideal if stopi = TRUE
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where

UV IEW i
ideal = ustatei and

(istatei, xihs, x
i
hp, x

i
hu)← I(1κ, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)←
E(1κ, estatei−1, xihp, x

i
hu, y

i−1
p , yi−1

u );
(astatei, yis, y

i
p, y

i
u)←

Alg(astatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei)←
S
U(ustatei−1)
2 (sstatei−1, xj

i

hu, x
i
au).

The algorithms I and E are the same as those
in the EV IEW i

real of the above “Pair One”
definition. The algorithm Alg is defined in
the same way as that in the EV IEW i

ideal of
the above“Pair One”definition. The simulat-
ed implementation SU2 takes its round i − 1
state and unprotected inputs to produce two
round i states for the simulator S2 and U .

An algorithm with outsource I/O should be more efficient
than the algorithm runs in a single device. This is formally
defined as “α-Efficient Secure Outsourcing”.

Definition 3. A pair of algorithms (T,U) is α-efficient se-
cure outsourcing if TU is a secure implementation of the
algorithm Alg, and if for any input x, the running time of
T is no more than an α-multiplicative factor of the running
time of Alg.

Since the computation is outsourced to an untrusted par-
ty U , it is crucial to check the correctness of the result. This
requirement is formally defined as “β-Checkable Secure Out-
sourcing”.

Definition 4. A pair of algorithms (T,U) is β-checkable
secure outsourcing if TU is a secure implementation of the
algorithm Alg, and if for any input x, T could detect any
deviations of U from U ’s advertised functionality during the
execution of TU with a probability no less than β.

In summary, an efficient, checkable and secure outsourcing
is defined as “(α, β)-Outsource Security”.

Definition 5. A pair of algorithms (T,U) has the (α, β)-
outsource security property if it is α-efficient and β-checkable
secure outsourcing.

According to the number and trustability of the party U ,
the OMTUP assumption is defined as follows:

Definition 6. If the party U denotes two noninteractive
programs (U1, U2), and if only one of them Ui, i ∈R {1, 2},
is malicious, the algorithms (T,U) are implemented under
an OMTUP assumption.

3.3 Proofs
Theorem 1. The algorithms (T, (U1, U2)) of “Algorithm

A” are an outsource-secure implementation of a pairing e-
valuation under the OMTUP assumption where the input
(A,B) may be honest, secret, honest, protected, or adver-
sarial, protected.

Proof. The correctness is obvious from the following e-
quation:

o = α1α
′
1α
′
2e(P1, P2)x5+x6−x2

= e(A,B)e(P1, P2)x2e(P1, P2)−x5

e(P1, P2)−x6e(P1, P2)x5+x6−x2

= e(A,B)

(10)

Next, we focus on the security aspect.

• EV IEWreal ∼ EV IEWideal:

For a round i, if the input (A,B) is protected or un-
protected, the simulator S1 behaves in the same way
as in a real round. Else if (A,B) is an honest, secret
input, the simulator S1 behaves as follows. S1 ran-
domly selects points (t1P1, t2P2, t3P1, t4P2) for U1 to
form random queries. S1 also randomly selects points
(t5P1, t6P2, t7P2, t8P2, t9P1, t10P2) for U2 to form ran-
dom queries together with t3P1, and t4P2. More clear-
ly,

– U1(t1P1, t2P2)→ α1;

– U1(t3P1, t4P2)→ α2;

– U2(t5P1, t6P2)→ α′1;

– U2(t7P1, t8P2)→ α′2;

– U2(t3P1, t4P2)→ α′3;

– U2(t9P1, t10P2)→ α′4.

Next, according to the responses of U1 and U2, S1

behaves as follows.

– If α2 6= α′3 or e(t9P1, t10P2) 6= α′4, S1 produces
Y ip =“Error”, Y iu = ∅ and repi = 1.

– If all responses are correct, S1 sets Y ip = ∅, Y iu = ∅
and repi = 0.

– Otherwise, S1 selects a random value or ∈ GT
and sets Y ip = or, Y

i
u = ∅ and repi = 1.

For each case, S1 saves the appropriate states.

The distributions of inputs in the real and ideal ex-
periments are computationally indistinguishable for U1

and U2. In the ideal experiment, the inputs to U1 or
U2 are chosen uniformly at random. In a real exper-
iment, the inputs to U1 or U2 are independently re-
randomized. Note that for U1 or U2, each input has
a new random value that is different to the random
values of other inputs.

If U1 and U2 behave honestly in the round i, S1 uses
the Alg to give the correct output that is the same
as the output of TU1,U2 . If U1 and U2 are dishon-
est, with a probability 1/2, S1 and T produce “Er-
ror”. With a probability 1− 1/2, S1 and T are cheat-
ed to produce a random output. Note that U1 and
U2’s responses are multiplied by a random value that is
known only by T or S1, and the party E knows nothing
about the honest, secret input. Then we conclude that
EV IEW i

real ∼ EV IEW i
ideal, and then EV IEWreal ∼

EV IEWideal by a hybrid argument.

• UV IEWreal ∼ UV IEWideal:

For a round i, the simulator S2 uses the same strategy
as S1 to produce random queries for U1 and U2, and
saves its states and the states of U1 and U2. Note that
E could not communicate directly with U1 and U2 after
they are installed on a computing device. So E could
not tell U1 and U2 that the simulator produces noth-
ing as an output. And U1, U2 could not collaborate to
test the random inputs since they are noninteractive.
Then U1 and U2 could not distinguish random queries
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from real queries for the same reason as they inter-
act with S1. Then we conclude that UV IEW i

real ∼
UV IEW i

ideal, and then UV IEWreal ∼ UV IEWideal

by a hybrid argument.

Theorem 2. The algorithms (T, (U1, U2)) of “Algorithm
A” are a (O( 1

logq
), 1/2)-outsource secure implementation of

a pairing evaluation under the OMTUP assumption .

Proof. The computation of algorithm A includes a call
to RandA, 4 point additions in G1 and G2, and 3 multi-
plications in GT . Since we use a dynamic table, the call to
RandA is a table-lookup operation and the online cost could
be omitted. As noted in [12], it takes roughly O(logq) mul-
tiplications to compute a bilinear pair. So the algorithms
(T, (U1, U2)) are a O(1/logq)-efficient secure outsourcing.
U1 could not distinguish a test query from a real query.

Note that we are under the OMTUP assumption, at least
one response about the test query is assumed to be honest.
So if U1 is dishonest, it fails with a probability 1/2. U2 could
not distinguish the two test queries from the real queries.
One test query is verified by the party T under the OMTUP
assumption. The other is verified by the party T with a
pre-computed value. So if U2 is dishonest, it fails with a
probability 1/2.

4. A FLEXIBLE ALGORITHM
This section includes the construction of “Algorithm B”

and its related security model and proofs.

4.1 Construction of Algorithm B
Algorithm B uses the same symbols as the algorithm A.

• Init: T calls RandB two times to produce values

(x1P1, x1x
−1
2 x3P1,

x−1
1 x2P2, x

−1
1 x4P2

e(P1, P2)x3+x4−x2)

and

(x′1P1, x
′
1x
′−1
2 x′3P1,

x′−1
1 x′2P2, x

′−1
1 x′4P2

e(P1, P2)x
′
3+x

′
4−x

′
2).

It randomly selects a small integer t ∈ {1, . . . , s}.

• Computation: T queries U1 in a random order

1. U1(A+ x1P1, B + x−1
1 x2P2)→ α1;

2. U1(tA+ x′1x
′−1
2 x′3P1,−x′−1

1 x′2P2)→ α2;

3. U1(−x′1P1, B + x′−1
1 x′4P2)→ α3;

Similarly, T queries U2 in a random order

1. U2(tA+ x′1P1, B + x′−1
1 x′2P2)→ α′1;

2. U2(A+ x1x
−1
2 x3P1,−x−1

1 x2P2)→ α′2;

3. U2(−x1P1, B + x−1
1 x4P2)→ α′3;

• Recover: T computes

o = α1α
′
2α
′
3e(P1, P2)x3+x4−x2

and

o′ = α′1α2α3e(P1, P2)x
′
3+x

′
4−x

′
2 .

If ot = o′ and o ∈ GT , T produces o as an output.
Otherwise, it rejects and produces “Error”.

Remark 4.1. According to a comment in [8], the mem-
bership test of an output is necessary. It is intended to en-
sure that a malicious program does not modify a response
by multiplying an element of small orders. For some pa-
rameter sets [23, 1], the membership test does not need an
exponentiation. A more general solution is to outsource the
membership test operation. Since U1 or U2 knows the order
q, we may use a secure public-exponent-secret-base outsourc-
ing algorithm [34] to compute oq and compare the result with
e(P1, P2) to determine whether o ∈ GT . Note that since q
is the order of GT , the blind factors in [34] should not be
selected from GT .

We further propose the following wrapper protocol for mem-
bership test in the setting of elliptic curve pairings where GT
is a subgroup of F∗pλ . Note p is a prime number and λ is
the embedding degree that is the smallest integer such that
q|pλ − 1. We use a public-exponent-public-base exponentia-
tion outsourcing algorithm [26] as a subroutine.

• Off-line Phase: T randomly selects u ∈ F∗pλ and com-
putes uq.

• On-line Phase:

1. T computes v = uo and calls a public-exponent-
public-base outsourcing algorithm to compute vq.

2. T checks whether vq = uq. If the equation holds,
T believe that o ∈ GT .

The simple protocol adds two online multiplications in F∗pλ .
The checkability is the same as that of the subroutine.

4.2 Security Model
Note that all definitions in Section 3.2 except the Defini-

tion 6 do not consider the number and trustability of pro-
grams, and they could be reused here. To emphasize the
TUP assumption, we give the following definition.

Definition 7. If the party U denotes two noninteractive
programs (U1, U2), and if U1, U2 are malicious, the algo-
rithms (T,U) are implemented under an TUP assumption.

4.3 Proofs

Theorem 3. The algorithms (T, (U1, U2)) of “Algorithm
B” are an outsource-secure implementation of a pairing e-
valuation under the TUP assumption where the input (a, u)
may be honest, secret, honest, protected, or adversarial, pro-
tected.

Proof. The correctness is obvious from the following two
equations:

o = α1α
′
2α
′
3e(P1, P2)x3+x4−x2

= e(A,B)e(P1, P2)x2e(P1, P2)x3+x4−x2

e(P1, P2)−x3e(P1, P2)−x4

= e(A,B)

(11)

o′ = α′1α2α3e(P1, P2)x
′
1+x

′
2−1

= e(A,B)te(P1, P2)x
′
2e(P1, P2)x

′
3+x

′
4−x

′
2

e(P1, P2)−x
′
3e(P1, P2)−x

′
4

= e(A,B)t

(12)

Next, we focus on the security aspect.
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• EV IEWreal ∼ EV IEWideal:

For a round i, if the input (A,B) is protected or un-
protected, the simulator S1 behaves in the same way
as in a real round. Else if (A,B) is an honest, secret
input, the simulator S1 behaves as follows. S1 random-
ly selects points (t1P1, t2P2, t3P1, t4P2, t5P1, t6P2) and
t ∈ {1, . . . , s} for U1 and U2 to form random queries.
More clearly,

– U1(t1P1, t2P2)→ α1;

– U1(tt3P1, t4P2)→ α2;

– U1(tt5P1, t6P2)→ α3;

– U2(tt1P1, t2P2)→ α′1;

– U2(t3P1, t4P2)→ α′2;

– U2(t5P1, t6P2)→ α′3;

Next, according to the responses of U1 and U2, S1

behaves as follows.

– If (α1α
′
2α
′
3)t 6= α′1α2α3, S1 produces Y ip =“Error”,

Y iu = ∅ and repi = 1.

– If all responses are correct, S1 sets Y ip = ∅, Y iu = ∅
and repi = 0.

– Otherwise, S1 selects a random value or ∈ GT
and sets Y ip = or, Y

i
u = ∅ and repi = 1.

For each case, S1 saves the appropriate states.

The distributions of inputs in the real and ideal ex-
periments are computationally indistinguishable for U1

and U2. In the ideal experiment, the inputs to U1 or
U2 are chosen uniformly at random. In a real exper-
iment, the inputs to U1 or U2 are independently re-
randomized. Note that for U1 or U2, each input has
a new random value that is different to the random
values of other inputs.

If U1 and U2 behave honestly in the round i, S1 uses
the Alg to give the correct output that is the same
as the output of TU1,U2 . If U1 and U2 are dishonest,
with a probability about (1−1/3s)2, S1 and T produce
“Error”. With a probability about 1/3s(2 − 1/3s), S1

and T are cheated to produce a random output. Note
that in a real experiment, U1 and U2’s responses are
multiplied by a random value that is known only by
T , and the party E knows nothing about the honest,
secret input (A,B). In an ideal experiment, U1 and
U2’s responses are checked by the simulator. If their
responses pass the check equation and are not correct,
a random output is then produced, which means that
U1 or(and) U2 has(have) guessed the value t and the
order of inputs, and returns wrong results. Then we
conclude that EV IEW i

real ∼ EV IEW i
ideal, and then

EV IEWreal ∼ EV IEWideal by a hybrid argument.

• UV IEWreal ∼ UV IEWideal:

For a round i, the simulator S2 uses the same strategy
as S1 to produce random queries for U1 and U2, and
saves its states and the states of U1 and U2. Note that
E could not communicate directly with U1 and U2 af-
ter they are installed on a computing device. So E
could not tell U1 and U2 that the simulator produces

nothing as an output. And U1, U2 could not collabo-
rate to obtain extra information about the inputs since
they are noninteractive. Then U1 and U2 could not
distinguish random inputs from real inputs. Then we
conclude that UV IEW i

real ∼ UV IEW i
ideal, and then

UV IEWreal ∼ UV IEWideal by a hybrid argument.

Theorem 4. The algorithms (T, (U1, U2)) of “Algorithm
B” are a (O( logs

logq
), (1 − 1/3s)2)-outsource secure implemen-

tation of a pairing evaluation.

Proof. Algorithm B includes two calls to the RandB
algorithm, and O(logt) point additions and O(logt) modu-
lar multiplications. We use a dynamic table and the calls
to RandB are table-lookup operations. We then claim that
the online computation is about O(logs) since t ∈ {1, . . . , s}.
As we noted in Theorem 2, it takes roughly O(logq) mul-
tiplications to compute a bilinear pair. So the algorithms
(T, (U1, U2)) are a O(logs/logq)-efficient secure outsourcing.

We assume two malicious U1 and U2 without interactions.
The checking equation ot = o′ could be written as

(e(P1, P2)x3+x4−x2)tαt1α
−1
2 α−1

3

= e(P1, P2)x
′
3+x

′
4−x

′
2α′1α

′−t
2 α′−t3 .

(13)

In the right side of the equation (13), if U2 wants to change
α′2 or α′3 and to keep the equation holding, it should know
the value t. In the left side, if U1 wants to change the product
of α2α3 and to keep the equation holding, it should know
the value t. If U2 changes only α′1 and U1 changes only the
product of α2α3 and they keep the equation holding, then
the product of α′1α2α3 keeps unchanged and the output is
correct.

Now suppose Ui, i ∈R {1, 2} guesses a correct value t.
Considering U1, it now has to identify the query to produce
α1 out of the three queries. Since the inputs to U1 are in a
random order, the probability is 1/3 for U1 to identify the
query. Similarly, U2 has to identify α′1 with a probability
1/3.

In summary, the chance for U1 or U2 to change their out-
puts and to keep the verification equation holding is to guess
the value t and the inputting order correctly. The probabil-
ity of successful checking is then (1− 1/3s)2.

5. COMPARISON
We show two tables to compare the efficiency and security

properties between our algorithms and two up-to-date algo-
rithms [8, 12]. The“Alg. [8]”refers to their main protocol for
public points outsourcing. They propose a general conver-
sion for secure bilinear pairing delegation. That conversion
adds 2 scalar multiplications and 1 modular exponentiation,
which leads to a more inefficient implementation. For “Al-
gorithm B”, we set s = 4 to give a concrete example about
computations and computations. Note again the value s is
configurable. The symbols SM , ME and PA are defined in
Section 2.6 denoting a scalar multiplication, a modular ex-
ponentiation and a point addition. The symbol MT denotes
a membership test operation, and MM a modular multipli-
cation. From Table 2, it is obvious that our “Algorithm A”
has the best efficiency.

Table 3 shows the properties of different algorithms. It is
obvious the algorithm in [8] is under a convenient OUP as-
sumption and has the best checkability. However, the works
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Table 2: Efficiency Comparison of Up-to-date Algo-
rithms

SM ME MT PA MM

Alg. [8] 2 1 1 2 1
Alg. [12] 0 0 0 5 4
Alg. A 0 0 0 4 3
Alg. B 0 0 1 O(logs) O(logs)
Alg. B
(s = 4)

0 0 1 10 8

Table 3: Properties Comparison of Up-to-date Al-
gorithms

Assumptions Secrecy Checkability

Alg. [8] OUP No 1
Alg. [12] OMTUP YES 1/2
Alg. A OMTUP YES 1/2

Alg. B TUP YES (1− 1/3s)2

Alg. B
(s = 4)

TUP YES 0.84

in [25, 24] shows that their algorithm is meaningful for only
some parameters. Comparatively, our “Algorithm B” shows
an alternative approach to balance the security properties
and efficiency. The algorithm needs no scalar multiplica-
tions or modular exponentiations as the algorithm in [12].
And the client needs not to check the vendor of a program
to satisfy the OMTUP assumption. And a client could set s
larger to get a better checkability at the cost of more com-
putations. So we claim the algorithm B as a more flexible
algorithm. If s = 4, the probability to check a result is
about 0.84. Note that the “Algorithm B” is under the TUP
assumption. If the algorithm [12] is under the same TUP
assumption, their checkability is about 0.25.

6. CONCLUSION
This paper showed two algorithms for bilinear pairing out-

sourcing. One is more efficient than the state-of-the-art al-
gorithms. The other is more flexible to be deployed in a
really two-malicious-program environment, and enables an
approach to balance the computation cost and the check-
ability. It also showed two pre-computation algorithms to
compute off-line random vectors. Further, we are imple-
menting our algorithms for low power devices to study the
computation, memory and communication costs in practice
with real world examples.
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