
Robust Network Traffic Identification with Unknown
Applications

Jun Zhang
School of Information

Technology
Deakin University, Australia

jun.zhang@deakin.edu.au

Chao Chen
School of Information

Technology
Deakin University, Australia
zvm@deakin.edu.au

Yang Xiang
School of Information

Technology
Deakin University, Australia

yang.xiang@deakin.edu.au

Wanlei Zhou
School of Information

Technology
Deakin University, Australia
wanlei@deakin.edu.au

ABSTRACT
Traffic classification is a fundamental component in advanced
network management and security. Recent research has
achieved certain success in the application of machine learn-
ing techniques into flow statistical feature based approach.
However, most of flow statistical feature based methods clas-
sify traffic based on the assumption that all traffic flows are
generated by the known applications. Considering the per-
vasive unknown applications in the real world environment,
this assumption does not hold. In this paper, we cast un-
known applications as a specific classification problem with
insufficient negative training data and address it by propos-
ing a binary classifier based framework. An iterative method
is proposed to extract unknown information from a set of un-
labelled traffic flows, which combines asymmetric bagging
and flow correlation to guarantee the purity of extracted
negatives. A binary classifier is used as an application sig-
nature which can operate on a bag of correlated flows instead
of individual flows to further improve its effectiveness. We
carry out a series of experiments in a real-world network traf-
fic dataset to evaluate the proposed methods. The results
show that the proposed method significantly outperforms
the-state-of-art traffic classification methods under the situ-
ation of unknown applications present.

Categories and Subject Descriptors
C.2.3 [COMPUTER-COMMUNICATION NETWORKS]:
Network Operations
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1. INTRODUCTION
As a basic technique for securing modern information in-

frastructure, traffic classification aims to identify the gen-
erating application/protocol of any network traffic in the
complex environment [18, 4, 11]. For instance, identifying
network traffic is an essential requirement in full deploy-
ment of QoS control and intrusion detection [21, 10]. Tra-
ditional traffic classification methods rely on checking IP
port numbers since early well-known applications always use
own unique ports for transmitting IP packets. In the last
decade, many applications employ dynamic ports to evade
port-based traffic identification. Taking this problem into
account, current industry products apply deep inspection to
traffic classification that checks the applications’ signature
strings in the payload of IP packets [14]. While the payload-
based methods are accurate, they fail to handle encrypted
applications and protect user privacy. Recent research in the
area tends to investigate flow (i.e., successive IP packets)
statistical features which can be extracted from IP head-
ers without deep inspection. Substantial attention has been
paid on the application of machine learning techniques into
statistical feature based traffic classification [18].

Traffic classification using flow statistical features is con-
ventionally considered as a multi-class classification problem
and addressed by using supervised and unsupervised ma-
chine learning algorithms. In supervised traffic classification
[16, 1, 2, 5, 9], a classification model is learned by using the
labelled training samples from each predefined traffic class.
By contrast, the unsupervised (clustering) methods [23, 7,
3] automatically group a set of unlabelled training samples
and apply the clustering results to construct a traffic classi-
fier with the assistance of other tools such as payload-based
software. In the multi-class framework, it is assumed that
any testing flow comes from a predefined traffic class. While
these multi-class classification methods have reported good
performance, they cannot effectively handle the emerging
applications which are unknown to the traffic classification
system.

In another point of view, statistical feature based traffic
classification can break down to a series of detection prob-
lems by revisiting the concept of application signature. In
payload based traffic classification, any testing flow is in-
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spected to determine whether it contains the signature of
a known application. If an application signature is found,
the flow is categorized to the application-based traffic class.
Otherwise, the flow does not belong to the class. When the
flow does not contain the signature of any known applica-
tion, it is labelled as unknown. Based on the signatures of
known applications, we can see that any traffic flows of ei-
ther known or unknown applications can be identified. In
the same way, once any known application has a statisti-
cal feature based signature, all flows generated by known
and unknown applications can be dealt with straightforward.
However, few work has contributed to propose a statistical
feature based signature including one-class support vector
machine (SVM) [9] and normalized threshold [6]. Moreover,
one-class SVM classifier usually suffers from poor decision
boundary without the negative information and the normal-
ized threshold method is heuristic.
Naturally, we can cast signature construction using statis-

tical feature as a binary classification problem. For a target
known application, the positive class consists of the flows
generated by the application and the negative class is cre-
ated by all other flows. To obtain an accurate classifier, we
need the sufficient positive and negative training samples.
It is generally accepted that the sufficient training samples
for known applications can be easily obtained. Consider-
ing the specific binary classification problem, we can have
a sufficient positive training set, but the negative training
set is always insufficient since unknown applications present.
Note that it will lead to a biased classifier by simply using
the training samples of other known applications as the neg-
atives. The problem of insufficient negative training set has
not been addressed in previous work [9, 6] on statistical fea-
ture based signature.
This paper is aimed to achieve robust network traffic clas-

sification with unknown applications, which relaxes the un-
realistic assumption that all classes are known to the classi-
fier. The following lists the major contributions.

• Considering unknown applications, we formulate sta-
tistical feature based signature construction as a spe-
cific binary classification problem with insufficient neg-
ative samples.

• To solve this problem, we develop a generic approach
to extract unknown application information from a set
of unlabelled traffic flows and propose to incorporate
asymmetric bagging and flow correlation to guarantee
the purity.

• We propose to use a binary classifier as the application
signature which can operate on a bag of correlated
flows instead of individual flows.

For performance evaluation, a series of experiments are car-
ried out in two real-world network traffic datasets. The re-
sults show that the binary classifier based signature is su-
perior to the-state-of-art traffic classification methods when
unknown applications present.
The rest of this paper is organized as follows. Section 2

states the research problem by analysing the existing meth-
ods using flow statistical features. In Section 3, a new
method for unknown information extraction is proposed,
which is followed by a binary classifier based application
signature in Section 4. Section 5 reports the experiments
and results. Finally, Section 6 concludes this paper.

Unknown
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Known-3

Known-2

w

The right part will be

classified into known class 3The left part will be

classified into known class 1

Figure 1: Problem of unknown application

2. PROBLEM STATEMENT AND ANALY-
SIS

What is the problem of traffic classification with unknown
applications and why is it difficult to solve? In this section,
we answer this question by providing a critical analysis on
several typical methods using flow statistical features.

Considering a real-world network scenario, the traffic dataset,
Ω, consists of K known classes and U unknown classes, Ω =
{ω1, ..., ωK , ω1, ..., ωU}. A known class ωk is corresponding
to an application which is well known by the traffic classifi-
cation system. In this paper, it means that a set of labelled
flow samples, ψk, is available for a known class, ωk. By con-
trast, an unknown class is related to an unknown applica-
tion of the system and no labelled flow samples are available.
This scenario is common since a lot of new applications are
emerging every day on Internet. Given the labelled flow sam-
ples {ψ1, ..., ψK}, the problem is how to identify the class of
the flows in Ω. In this paper, a flow consists of successive
IP packets with the same 5-tuple: source ip, source port,
destination ip, destination port, transport protocol. A num-
ber of statistical features, such as number of IP packets, are
used to represent a flow x for traffic classification.

Conventional traffic classification methods address a K-
class classification problem, which is under the multi-class
framework and cannot deal with unknown classes [16, 1,
2, 5, 9, 23, 7, 3, 12, 15, 17]. These methods use the la-
belled flow samples to form a training set straightforward,
T = {ψ1, ..., ψK}, and employ a learning algorithm to seek
a classification model. The classifier trained by using T will
classify any flows into a known class. Thus, the flows in the
unknown classes, {ω1, ..., ωU}, will be inaccurately classified
into K known classes. Traditional pattern classification al-
gorithms assume that all testing flows come from the known
(predefined) classes, so they all suffer from this issue. Fig. 1
illustrates the problem of unknown application class under
the multi-class framework. We take the classification algo-
rithm using decision boundary as an example. One can see
that the optimized decision boundary in the feature space
can effectively separate the known classes, but it will inac-
curately classify the flows of unknown class into known class
1 and known class 3.

A semi-supervised method [8] was proposed to address
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a (K + 1)-class classification problem, which extended the
multi-class framework by taking unknown applications into
account. Firstly, some mixture of labelled and unlabelled
training samples are grouped into k clusters by using tra-
ditional clustering algorithms such as k-means. Then, k
clusters are mapped to ω1, ..., ωK , or unknown according
to the locations of the labelled (supervised) training sam-
ples. For traffic classification, a flow will be predicted to the
class of its nearest cluster. Although this method demon-
strates the capability of dealing with unknown applications,
it is heuristic in nature, e.g., the number of clusters, k, is
manually adjusted. Moreover, a large k is necessary for gen-
erating high-purity clusters, while it will lead to many false
unknown clusters.
In contrast to the perspective of multi-class classification,

the signature-based approach offers another view for traffic
classification. By using statistical feature based signature,
any testing flow can be determined whether it belongs to a
known class. If the flow does not belong to any known class,
it is classified as unknown. The early work on normalized
threshold [6] for statistical feature based signature is heuris-
tic, which does not investigate the information of unknown
applications. One-class SVM [9] can be considered as an-
other type of signature. For a known class ωk, the training
samples in ψk are used to learn a one-class SVM and other
training samples in

⋃i=K
i=1,i 6=k ψi are used to adjust the deci-

sion boundary. There are two issues: firstly, one-class SVM
normally needs a large number of training samples and the
modified method cannot outperform a traditional two-class
SVM; secondly, the decision boundary is still poor due to the
lake of the information about unknown classes, {ω1, ..., ωU}.
The above analysis motives us to create statistical feature

based signatures by taking unknown applications into ac-
count. Since the signature based decision is binary, ‘Yes’ or
‘No’, we cast signature construction as a binary classifica-
tion problem. However, this binary classification problem is
special because only a partial negative training set is avail-
able in a real world scenario. In detail, for class ωk, the
positive training set is TP = ψk and the partial negative
training set is TK =

⋃i=K
i=1,i 6=k ψi. If we use TP and TK to

train a classifier Ck, the decision boundary of Ck will be bi-
ased towards the negative class in the feature space. In other
words, some negative samples from {ω1, ..., ωU} will be in-
accurately classified to the positive class. The reason is that
a sufficient negative training set should include the informa-
tion of unknown classes, while TK does not. Therefore, the
key problem in our work is how to obtain the information of
unknown classes, {ω1, ..., ωU}.
Inspired by the semi-supervised methods [8], we realize

that the samples randomly collected from the target network
are unlabelled, but they must contain traffic flows generated
by unknown applications. Formally, we can obtain a set of
unlabelled samples, Ωr ⊂ Ω. Then, the key problem be-
comes how to extract the examples of unknown classes from
Ωr. Once some flows from unknown classes are identified,
they can be combined with TK to form a better negative
training set, TN . Then, TP and TN can be used to learn an
accurate binary classifier which is considered as the signa-
ture of ωk

3. UNKNOWN INFORMATION EXTRACTION
This section presents our generic method of unknown in-

formation extraction. The proposed method is able to ex-

input : positive trainng set TP ; partial negative
training set TK ; unlabelled data set Ωr; a
binary classification algorithm Φ

output: sufficient negative training set TN

TN ← TK ;
// create output flow set

Use Φ to create a classifier C0 from TP and TK ;
// the biased classifier C0 will produce

many false positives

Classify Ωr by C0;
Put positive samples classified by C0 into P1;
Put negative samples classified by C0 into N1;
i = 1
while Ni 6= ∅ do

TN = TN ∪Ni;
Use Φ to create a classifier Ci from TP and TN ;
Classify Pi by Ci;
Put positive samples classified by Ci into Pi+1;
Put negative samples classified by Ci into Ni+1;
i = i+ 1;

end

Return TN ;

Algorithm 1: Unknown sample extraction

tract the negative samples from a large number of unlabelled
network traffic during an iterative process. Moreover, two
new techniques, asymmetric bagging and flow correlation,
are applied to improve the effectiveness of the iterative ex-
traction.

3.1 An Iterative Extraction Method
This method aims to identify the negative samples as

much as possible during an iterative process from the un-
labelled data which contains universal traffic flows of known
and unknown classes. The detailed process is listed in Al-
gorithm 1. We take the class ωk as an example to illus-
trate the proposed method. For the binary classification,
the positive class is ωk and the negative class includes other
known classes Ω′

K = {ω2, ..., ωK} and all unknown classes
ΩU = {ω1, ..., ωU}.

To start this process, we need an initial binary classifier
given TP = ψk and TN = TK =

⋃i=K
i=1,i 6=k ψi. As mentioned

before, if we use the classification algorithm Φ to create a
classifier from TP and TK , the biased classifier will inaccu-
rately classify some negative samples as positive. However,
in the other hand, it definitely can produce some new neg-
ative samples which may be from some known or unknown
classes. Based on this observation, we can construct an ini-
tial binary classifier C0 from TP and TK .

C0 = Φ(TP , TK), (1)

Then, C0 is used to classify the unlabelled data set Ωr, which
produces a positive sample set P1 and a negative sample set
N1.

C0 : Ωr = P1 ∪N1. (2)

In the training data, TP is sufficient, while TK is insufficient
without the samples for {ω1, ..., ωU}. Therefore, the decision
boundary of C0 will be biased towards the negative class.
Ideally, P1 will consist of the flows of ωk and many flows of
unknown classes ΩU . N1 will contain the flows of Ω′

K and
some flows of unknown classes ΩU . We can see that the

407



negative samples N1 classified by C0 could be high-purity
and contains the information of unknown classes. Thus, N1

can be complementary to the negative training set TN . In
addition, P1 includes many flows of unknown classes, which
motivates us to further extract the unknown information
from P1.
Iteratively, we can update the negative training set TN

by adding a high-purity negative set Ni and train a more
accurate classifier Ci from TP and TN . In fact, a series of
binary classifiers push the decision boundary back to the
real borderline of the positive class step by step. The stop
criteria is Ni = ∅, then TN becomes steady. Finally, we have

TN = TK ∪N1... ∪Ni, (where Ni = ∅). (3)

This iterative process has the capability of effectively extract
unknown information from a large number of unlabelled net-
work traffic and significantly improve the negative training
set.
The proposed method can employ most traditional clas-

sification algorithms such as SVM and random forest for
implementation. A similar method [22] has been proposed
for web page classification without negative examples, which
combines two algorithms: 1-DNF for constructing the initial
classifier and SVM for the iterative process. By consider-
ing the traffic classification situation, 1-DNF is difficult to
incorporate partial negative training samples. We need a
new classifier to ensure the high-purity of classified negative
flows and thus to extract unknown information accurately.
Therefore, we propose to apply two techniques, asymmetric
bagging and flow correlation, to construct a new classifier
for unknown information extraction.

3.2 Asymmetric Bagging
The purity of extracted negative samples is critical to the

performance of the final classifier used for testing. However,
we observed that simply applying a traditional classifier in
the iterative method cannot guarantee the high purity of
obtained new negative samples. On the one hand, the insuf-
ficient negative training set will let the decision boundary
be biased towards the negative class. On the other hand,
the size of the negative training set is much larger than that
of the positive training set. This imbalance will push the
decision boundary towards the positive class. In short, the
imperfect decision boundary cannot avoid false negative, i.e.,
classifying real positives as negatives, so the extracted neg-
ative set is not pure.
We propose to apply asymmetric bagging [19, 25] to help

address the problem of low-purity negative samples. The
idea is to train multiple classifiers using different negative
samples and combine the results of these classifiers. Each
time we randomly select a subset of negative samples with
the same size to the positive training set. Then, we combine
the selected negative training set with the positive training
set to train a classifier.

Ci = Φ(TP , TNi), TNi ⊂ TN & ‖TNi‖ = ‖TP ‖. (4)

Once the classifier is ready, we use it to classify all testing
flows. Therefore, we can train multiple classifiers to conduct
classification and obtain multiple class labels for each flow.
Finally, we combine the multiple predicted labels of each
flow to make a final decision. For example, random forest
can be used to train a classifier and the majority vote rule

can be used to combine classification results.

assign x −→ ωk if∑i=A
i=1 Ci(x) >

A
2
, (5)

where Ci(x) = 1 means flow x is classified to ωk. Ci(x) = 0
denotes that flow x is rejected by ωk.

In the asymmetric bagging-based training process, the
negative and positive training sets have the same size, which
can avoid the unbalance problem. The decision boundary of
a single classifier will be biased towards the negative class.
Classifier combination can be helpful to improve the final
classification accuracy. In this way, we can guarantee that
the purity of the extracted negative samples is high.

3.3 Flow Correlation
Due to unknown applications, the decision boundary of a

classifier trained by using insufficient negative samples could
not be optimal, which will affect the quality of extracted
unknown information. The previous work [24] showed that
flow correlation can improve the traffic classification perfor-
mance with an insufficient training set. Since flow corre-
lation focuses on investigating the relationship among real
world data, it can be applied to either known or unknown
applications.

We propose to incorporate flow correlation into the asym-
metric bagging-based classification process in order to fur-
ther improve the effectiveness of unknown information ex-
traction. We use the 3-tuple heuristic to determine corre-
lated flows which are modelled by “bag of flows” (BoF).

• 3-tuple heuristic: in a certain period of time, the flows
sharing the same 3-tuple {source ip, destination ip,
transport protocol}form a BoF.

For example, several flows initiated by different hosts are
all connecting to a same host at TCP port 80 in a short
period. These flows are very likely generated by the same
application such as a web browser. In general, we can apply
3-tuple heuristic to determine BoFs, but it needs to answer
which classes the BoFs belong to. With flow correlation, an
aggregation classifier aims to classify BoFs instead of indi-
vidual flows. Given a BoF X = {x1, ...,xB}, we aggregate
the results of B flows produced by a binary classifier C to
predict the class label of X. In this paper, we also employ
the majority vote rule to perform flow prediction aggrega-
tion due to its good performance. A BoF X can be classified
to class ωk only if

∑

x∈X

C(x) > ‖X‖/2. (6)

Algorithm 2 shows the ensemble classification with asym-
metric bagging and flow correlation.

4. APPLICATION SIGNATURE WITH FLOW
CORRELATION

This section presents the new approach to construct appli-
cation signatures with flow correlation (ASFC). Moreover,
the technical justification is also provided to confirm the ef-
fectiveness of the proposed approach.

4.1 Proposed Approach: ASFC
Taking unknown applications into account, this work fo-

cus on developing a new application signature based traffic
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input : positive trainng set TP ; negative training
set TN ; testing set Ωt; 3-tuple information
set Ω3; a binary classification algorithm Φ;
number of asymmetric bagging classifier A

output: testing class label set Lt

Construct BoFs X = {Xj} by running 3-tuple
heuristic on Ω3;
for i← 1 to A do

Obtain TNi by random sampling in TN ;
// TNi has the same size to TP

Use Phi to create Ci from TP and TNi

for j ← 1 to ‖X‖ do
for k ← 1 to ‖Xj‖ do

Classify xjk by Ci;
end

Use majority vote rule to aggregate the
predictions of flows in BoF Xj .

end

end

Obtain Lt by combining the predictions of BoFs
produced by A asymmetric bagging classifier
{C1, ..., CA};
Return Lt

Algorithm 2: Ensemble classification

classification. Section 3 has addressed the key problem of
unknown information extraction. Another problem is how
to construct the signature of each application using the avail-
able training data.
In this paper, we create a binary classifier and use it as

the application signature in a fast way. Given the positive
and negative training sets, we can train a binary classifier
for an application. If a testing flow is classified to positive, it
means this flow comes from the application. Otherwise, the
testing flow does not belong to the application. With the
consideration of flow correlation, we perform an ensemble
classification on BoFs instead of individual flows. Then, the
accuracy of the application signature can be improved by
inspecting a bag of correlated flows simultaneously .
We summarize the proposed approach for signature based

traffic classification as follows. For convenience, we take an
application as example.

1. Collect a set of unlabelled traffic flows Ωr from the
target network traffic;

2. Extract a complete negative training set TN from Ωr

using Algorithm 1;

3. Use TP and TN to train a binary classifier as the ap-
plication signature;

4. Perform BoF-based classification according to Section
3.3.

Any traditional binary classification algorithm can be used
in this approach. In our experiments, we select random for-
est as the basic classifier for our approach, but other algo-
rithms are also tested.

4.2 Technique Justification
The proposed approach relies on the techniques of un-

known information extraction. The critical problem is that

the system does not have any training samples for unknown
applications. The simple classifier by using the training sam-
ples of known applications cannot deal with the flows gen-
erated by unknown applications. The method of unknown
information extraction was proposed to extract samples of
unknown applications from a set of unlabelled network traf-
fic. In unknown information extraction, asymmetric bagging
balanced the positive and negative training sets which avoids
decision boundary moving towards the positive class, so as
to guarantee the purity of extracted negative samples. We
further applied flow correlation in asymmetric bagging based
classification, which can effectively increase the amount of
extracted negative samples.

Moreover, the final ensemble classification process can im-
prove the classification accuracy by investigating the rela-
tionship in real world data. Suppose ϕ(x, L) is a simple
classifier (predictor) and L is the training set. The aggrega-
tion can be described as ϕA(X,L) = Ex∈Xϕ(x, L). Let y be
the class label of a flow x which belongs to a BoF X. Both
y and x are random variables which are drawn from the dis-
tribution independent of the training set L. The average
classification error on BoFs, estimated by the simple pre-
dictor ϕ(x, L), is Ey,x∈X(y − ϕ(x, L))2. The corresponding
classification error estimated by the aggregated predictor is
Ey,x∈X(y − ϕA(X,L))

2. Since

Ey,x∈Xϕ
2(x, L) ≥ (Ey,x∈Xϕ(x, L))

2, (7)

after some modification, we obtain

Ey,x∈X(y − ϕ(x, L))2 ≥ Ey,x∈X(y − ϕA(X,L))
2. (8)

This shows flow correlation can further improve the final
classification performance.

Let us take the majority vote rule as an example for flow
prediction aggregation. Suppose a basic classifier with an
error rate of p < 0.5, it means the classifier is better than
random guessing. Since the flows in a BoF are diverse, the
classifier will make different errors in predicting the class
of different flows. In the binary classification problem, for
the majority vote to be incorrect, it requires that ‖X‖/2 or
more flows in X are classified incorrectly. The probability
that r flows are classified incorrectly is

Cg
r · p

r(1− p)g−r =
g!

r!(g − r)!
pr(1− p)g−r (9)

Therefore, the probability that the majority vote is incorrect
is

P (error) =

‖X‖/2∑

r=⌊(‖X‖/2+1)/2⌋

g!

r!(g − r)!
pr(1− p)g−r. (10)

For example, given a BoF with g = 30 and the basic clas-
sifier with an error rate p = 0.3, the probability of the ma-
jority vote being incorrect is 0.006, which is much less than
the individual classification error rate. In general, we have
P (error) < p, so the classification accuracy can be improved
by classifying BoFs with the majority vote rule.

5. PERFORMANCE EVALUATION
We carried out a series of network traffic identification ex-

periments to evaluate the proposed ASFC approach. It was
aimed to answer an important question, why the proposed
ASFC approach is superior.
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Figure 2: Dataset Distribution

Table 1: Unidirectional statistical features
Type Unidirection features No.

Packets Number of packets transferred 2
Bytes Volume of bytes transferred 2
Packet Size Min., Max., Mean and Std Dev. 8

of packet size
Inter-Packet Min., Max., Mean and Std Dev. 8
Time of Inter Packet Time

Total 20

5.1 Datasets and Experiments
A real-world dataset was used to evaluate our new tech-

niques in this work. The isp dataset is a full payload traffic
dataset collected at a medium sized ISP in Australia [20].
In order to build ground truth, we have developed a deep
payload inspection tool (DPI) which uses string signature
of packets’ payload to accurately identify the class of traf-
fic flows. A number of application signatures were devel-
oped based on the previous experience and some open source
tools like l7-filter (http://l7-filter.sourceforge.net) and Tstat
(http://tstat.tlc.polito.it). For some encrypted or new ap-
plications, we inspected the flows manually to determine the
class of flows. Finally, the isp dataset is constituted by over
80,000 traffic flows from 11 application-oriented classes. Fig-
ure 2 shows the distribution of traffic classes in the dataset.
In the experiments, 20 unidirectional flow statistical features
were extracted to represent traffic flows, which are listed in
Table 1. We applied feature selection to further remove ir-
relevant and redundant features from the feature set [13].
The process of feature selection yielded 6 features for the
isp dataset.
In the experiments, each dataset was separated into three

parts, one for training, one for unlabelled, and the other
for testing. The training, unlabelled, and testing parts have
25%, 25%, and 50% of traffic flows in the dataset, respec-
tively. To simulate the problem unknown applications, the
idea is to set several small classes to “unknown”. In detail,
the classes of DNS, FTP, IMAP, MSN, XMPP in the isp
dataset are set as unknown. Therefore, the modified isp
dataset consists of 6 known classes and 5 unknown classes.
All unknown classes includes about 22% of traffic flows in the
dataset. For each known class, 1,000 flow samples are ran-
domly selected from the training part to form a supervised
training set. It is important to note that no any samples of
unknown classes are available for the classification system.
For the empirical study, we use different metrics to evalu-
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(b) Bayes Network
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(c) Random Forest

Figure 3: F-measure on isp

ate ASFC from multiple perspectives. All used metrics are
derived from the four different possible outcomes of a single
prediction for a two-class case, true positive (TP), true neg-
ative (TN), false positive (FP), and false negative (FN). A
false positive is when the real “negative” is incorrectly classi-
fied as“positive”. A false negative is when the real “positive”
is incorrectly classified as“negative”. True positives and true
negatives are obviously correct classifications. The average
performance over 100 runs are reported in this paper.

5.2 Identification Performance of ASFC
We performed a set of experiments to test the identifica-

tion performance of the proposed ASFC approach, in which
three different learning algorithms, k-Nearest Neighbour (k-
NN), Bayes Network (BayesNet) and RandomForest, are
used to construct a basic binary classifier. Following the

410



bt http pop3 smtp ssh ssl
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

 

 

RandomForest
AFSC−RandomForest

(a) Precision of each known class

bt http pop3 smtp ssh ssl
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

 

 

RandomForest
AFSC−RandomForest
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Figure 4: Precision and recall of using random forest

existing works in the area, we use Precision, Recall and F-
measure to measure the final performance.

• Precision is defined as the ratio of correctly classified
flows over all predicted flows in a class. It can be
calculated by

Precision =
TP

TP + FP
(11)

• Recall is defined as the ratio of correctly classified flows
over all ground truth flows in a class. It can be calcu-
lated by

Recall =
TP

TP + FN
(12)

• F-measure is a combination of precision and recall, it
is a widely adopted metric to evaluate per-class per-
formance. It can be calculated by

F −measure =
2 ∗ Precision ∗Recall

Precision+Recall
(13)

Fig. 3 shows the overall performance in terms of the F-
measure. To demonstrate the advantage of ASFC, the re-
sults of solely using these learning algorithms for flow iden-
tification are also reported. One can see that ASFC can
effectively improve the F-measure in each class which is in-
dependent to the basic learning algorithm. ASFC with ran-
dom forest can achieve the best performance as shown in
Fig. 3(c). For the classes, http, pop3, smtp, and ssl, the
improvements can achieve 10%. Although ssh class is easy
to identify, ASFC can further improve its F-measure. The
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Figure 5: Unknown False Positives Rate

F-measure of ASFC with random forest is higher than the
method without ASFC about 5%.

We take ASFC with random forest as an example to study
how ASFC can affect the precision and recall for each class.
Fig. 4 reports the precision and recall of each class produced
by ASFC with random forest, with comparison to the results
of random forest. An important observation for this figure is
that ASFC can significantly increase the precision without
decreasing the recall of each class. It’s why the F-measure
got much improved. For example, the precision of smtp can
be improved about 20% by using ASFC and its recall doesn’t
drop. In class ssl, ASFC can improve the precision over 15%
and the recall by 5% as well.

5.3 Impact of Unknown Information Extrac-
tion

This section aims to investigate why unknown information
extraction is helpful to deal with unknown applications. In
this section, we introduce two new metrics, unknown flow
extraction rate and unknown false positive rate. For con-
venience, the flows generated by unknown applications are
called “unknown flows” in the rest of the paper.

• Unknown flow extraction rate is defined as the ratio of
the number of extracted unknown flows to the amount
of all unknown flows in the unlabelled dataset. A high
rate means the proposed unknown extraction method
can automatically and effectively collect the informa-
tion of unknown applications from universal real world
network traffic.

• Unknown false positive rate is defined as the ratio of
the number of unknown flows that are inaccurately
identified as known to the amount of flows that are
classified to the known class. We use this rate to show
the impact of unknown applications to flow identifi-
cation. ASFC is developed to significantly reduce the
unknown false positive rate.

Table 2 lists the unknown flow extraction rate of ASFC
with random forest for each class. For example, the rate is
89.93% for bt that means our iterative method can auto-
matically extract 89.93% from all unknown flows in the un-
labelled dataset. In other words, we can successfully obtain
the representative samples of unknown applications. Then,
these extracted unknown flows are combined into the train-
ing set so as to effectively enhance the robustness of the final
classifier. From Table 2, we can see that the proposed iter-
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Table 2: Unknown flow extraction rate
Class bt http pop3 smtp ssh ssl3

Extraction Rate 89.93% 58.79% 76.91% 82.44% 99.74% 63.91%
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Figure 6: Methods comparison

ative method can extract most of unknown flows from the
unlabelled dataset for robust classifier training of each class.
Moreover, we studied how the extracted unknown flows

were helpful to improve the identification performance based
on the unknown false positive rates as shown in Fig. 5.
ASFC with random forest is compared to the method of
solely using random forest. The results show that our ASFC
with unknown information extraction can effectively reduce
the amount of unknown flows that are inaccurately classified
to known classes. For example, over 15% of unknown flows
in the testing data are inaccurately identified as smtp, but
this rate reduces to about 4% when using ASFC. In other
words, the proposed approach can effectively detect the flows
of unknown applications.
Based on the above results and analysis, we can draw an

initial conclusion that ASFC can automatically extract suf-
ficient information of unknown applications from unlabelled
network traffic and utilize it to significantly reduce the un-
known false positive rate. Therefore, ASFC demonstrates
the strong capability of improving the robustness of flow
identification.

5.4 Comparison with Other Methods
This section compares our proposed ASFC and two exist-

ing works, Erman’s semi-supervised method [8] and Este’s
One-class SVM method [9]. In Erman’s semi-supervised
methods, we run k-means on the mixture data consisting
of the training samples of known classes and the unlabelled
data, where k was set to 400 based on the experiments.

We found that the performance of flow identification using
one-class SVM is very poor. Considering Este’s idea, we
used SVM to construct a binary classifier, thus the positive
training samples and negative training samples can jointly
optimize the decision boundary.

Fig. 6 reports the F-measures of these methods. Based on
the results, the ranking list is ASFC-RandomForest, semi-
supervised, SVM, and one-class SVM. In particular, our
ASFC-RandomForest is much better than other competing
methods. For example, ASFC-RandomForest outperforms
semi-supervised over 15% in http class. The improvement is
about 10% in other classes except ssh. For ssh, both meth-
ods achieve nearly 100% F-measure.

Fig. 7 shows the precision and recall of all competing
methods. We can see that ASFC always significantly out-
performs other methods in either precision or recall for any
classes. For example, the precision of ASFC is higher than
the second best, semi-supervised, over 15% in http class.
The improvement on recall can achieve 20% in this class.
In class ssl, the improvements on both precision and recall
are over 15%. In general, ASFC has the superior capability
to improve precision and recall when unknown applications
present. The basic reason is ASFC can effectively extract
unknown information and combine correlated flows to make
more accurate decisions.
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Figure 7: Precision and recall of competing methods

6. CONCLUSION AND DISCUSSION
This paper solves a critical problem of traffic classifica-

tion with unknown applications presented, which normally
exists in real world networks. To address this problem, we
proposed an iterative method to extract unknown informa-
tion from a set of unlabelled traffic flows, which combines
asymmetric bagging and flow correlation to guarantee the
purity of extracted negatives. For traffic classification, a bi-
nary classifier was created as an application signature which
can operate on a bag of correlated flows instead of indi-
vidual flows to further improve classification accuracy. We
carry out a series of experiments in a real-world network traf-
fic dataset to evaluate the proposed methods. The results
show that the proposed method outperforms the-state-of-art
traffic classification methods under the extreme situation of
unknown applications present. It is due to the high un-
known extraction rate which leads to less unknown flows
inaccurately classified to known classes.
Our empirical study suggests that the iterative extrac-

tion method only works when the asymmetric bagging and
flow correlation techniques are used. Asymmetric bagging
and flow correlation both have significant impact to the fi-
nal performance. For example, with flow correlation, the
F-measure can improve 5% for a class. By combining asym-
metric bagging and flow correlation, the improvement can
achieve 10%. In the future, we will develop practical soft-
ware to facilitate unknown information extraction and apply
it to real-time traffic classification.
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