
Enforcing Least Privilege Memory Views for
Multithreaded Applications

Terry Ching-Hsiang Hsu
Purdue University

terryhsu@purdue.edu

Kevin Hoffman
eFolder Inc.

khoffman@efolder.net

Patrick Eugster
Purdue University and TU

Darmstadt
peugster@cs.purdue.edu

Mathias Payer
Purdue University

mathias.payer@nebelwelt.net

Abstract
Failing to properly isolate components in the same address
space has resulted in a substantial amount of vulnerabilities.
Enforcing the least privilege principle for memory accesses
can selectively isolate software components to restrict at-
tack surface and prevent unintended cross-component mem-
ory corruption. However, the boundaries and interactions
between software components are hard to reason about and
existing approaches have failed to stop attackers from ex-
ploiting vulnerabilities caused by poor isolation.

We present the secure memory views (SMV) model: a
practical and efficient model for secure and selective mem-
ory isolation in monolithic multithreaded applications. SMV
is a third generation privilege separation technique that of-
fers explicit access control of memory and allows concurrent
threads within the same process to partially share or fully
isolate their memory space in a controlled and parallel man-
ner following application requirements. An evaluation of our
prototype in the Linux kernel (TCB < 1,800 LOC) shows
negligible runtime performance overhead in real-world ap-
plications including Cherokee web server (< 0.69%), Apache
httpd web server (< 0.93%), and Mozilla Firefox web browser
(< 1.89%) with at most 12 LOC changes.

1. INTRODUCTION
Ideally, software components are separated logically into

small fault compartments, so that a defect in one compo-
nent cannot compromise the others. This concept of privi-
lege separation [35, 36] protects confidentiality and integrity
of data (and code) that should only be accessible from small
trusted components. However, most applications use a sin-
gle address space, shared among all components and threads.
Redesigning all legacy multithreaded applications to use pro-
cesses for isolation is impractical. Today’s software, such as
web servers and browsers, enhances its functionality through

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24-28, 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978327

libraries, modules, and plugins that are developed indepen-
dently by various third-parties. Failing to properly separate
privileges in applications and confine software components in
terms of their memory spaces leaves a system vulnerable to
attacks such as privilege escalation, denial-of-service, buffer
overflows, and control-flow hijacking, jeopardizing both the
stability and the security of the system.

Many proposals exist for privilege separation in a mono-
lithic application. The first generation privilege separation
techniques focus on splitting a process into different single-
process compartments. Provos et al. [33] presented an intra-
process privilege separation case study by manually parti-
tioning OpenSSH components into privileged master pro-
cesses and unprivileged slave processes. Privtrans [9] au-
tomated the partitioning procedure. Wedge [8] then intro-
duced capabilities to privilege separation and Salus [40] en-
abled a dynamic security policy. Unfortunately, all these
techniques cannot support multithreaded compartments.

Second generation privilege separation techniques like Ar-
biter [47] aimed to support multithreaded applications by
allowing concurrent thread execution. However, Arbiter’s
implementation for separating memory space and its serial-
ized user-level memory management impose prohibitive run-
time overhead (200% – 400% for memory operations). As
a result, the thread execution is not fully concurrent since
all threads must wait on a global barrier to tag memory
pages for capabilities. In addition, the required retrofitting
efforts for legacy software are non-trivial, as the case stud-
ies showed that at least hundreds of lines of code (LOC)
changes are required to separate software components even
for applications that have small code base sizes (8K LOC).

We postulate that a third generation privilege separation
technique for achieving intra-process isolation in monolithic
multithreaded applications such as the Cherokee web server,
Apache httpd, and the Mozilla Firefox web browser, needs
to fulfill the following requirements (which are only partially
addressed by existing solutions) for wide adoption:

- Genericity and flexibility (GF): Implementing privilege
separation in different types of applications requires pro-
grammers to employ completely different abstractions and
concepts. A general model with a universal interface and
isolation concept that supports both client- and server-
side multithreaded applications is needed (e.g., compart-
ments in the Firefox browser, worker buffers in Cherokee
web server, worker pools in Apache httpd web server).

393

http://dx.doi.org/10.1145/2976749.2978327

1st gen technique 2nd gen technique 3rd gen technique

Problem tackled Non-parallel privilege separation
Concurrent execution and
dynamic security policy

Concurrent memory operations
and high performance

Issue vs solution OpenSSH [33] Privtrans [9] Wedge [8] Salus [40] Arbiter [47] SMV (This paper)
Security principal Process Process Single thread Single thread Multiple threads Multiple threads
Parallel execution Not handled Not handled Not handled Not handled Partially handled Yes
Parallel tagging Not handled Not handled Not handled Not handled Not handled Yes
Security policy Static Static Static Dynamic Dynamic Dynamic

TCB OS Compiler, OS OS Library, OS Library, OS OS (<1800 LOC)
Refactoring efforts Fully manual Annotations Tool assisted Tool assisted Fully manual(>100 ∆ LOC) Library assisted(<20 ∆ LOC)

Use cases OpenSSH OpenSSH etc. OpenSSH etc. PolarSSL FUSE (8K LOC) etc. Firefox (13M LOC) etc.

Table 1: Issues and solutions for intra-process privilege separation techniques.

- Ease of use (EU): Programmers prefer to realize their de-
sired security policy in a model with a high-level API
rather than through low-level error-prone memory man-
agement tools without intra-process capabilities (e.g., mmap,
shmem.). In particular, porting legacy software to a new
model has to be easy despite the complexity of component
interweaving and the underlying assumption of shared
memory (e.g., Firefox, which contains 13M LOC), and
should be possible with minimal code refactoring efforts.

- No hardware modifications (NH): Over-privileged multi-
threaded applications are pervasive. A model that is
ready to run on today’s commodity hardware (even re-
gardless of the CPU brands/models) is necessary for wide
deployment.

- Low runtime overhead (LO): Monitoring application mem-
ory accesses at high frequency is unrealistic for practical
systems. A practical model must be implemented in a way
that incurs only negligible runtime overheads. In particu-
lar, enhanced security should not sacrifice the parallelism
in multithreaded applications. A model has to support se-
lective memory isolation for multiple computing entities
(i.e., multiple threads can exercise the same privilege to
parallelize a given workload and perform highly parallel
memory operations).

To address the above challenges, we propose a third gen-
eration privilege separation solution for monolithic applica-
tions: secure memory views (SMVs) – a model and archi-
tecture that efficiently enforces differential security and fault
isolation policies in monolithic multithreaded applications at
negligible overheads. SMV protects applications from neg-
ligent or malicious memory accesses between software com-
ponents. In short, the intrinsically shared process address
space is divided into a dynamic set of memory protection
domains. A thread container SMV maintains a collection
of memory protection domains that define the memory view
for its associated threads. Access privileges to the memory
protection domains are explicitly defined in the SMVs and
the associated SMVthreads must strictly follow the defined
security policies. The SMV model provides a well-defined
interface for programmers to exercise the least privilege prin-
ciple for arbitrary software objects “inside” a multithreaded
process. For example, a server’s worker thread can be con-
figured to allow access to its thread stack and part of the
global server configuration but not to the private key that
resides within the same process address space.

With the SMV model, the programmer can enforce dif-
ferent access permissions for different components in a sin-
gle address space (GF). New software can leverage the full
API and can be designed to only share data along a well-
defined API, and existing software can be retrofitted (with

minimal code changes) by instrumenting calls across com-
ponent boundaries to change the underlying memory view
(EU). Moreover, the privilege enforcement relies on OS ker-
nel level page table manipulation and standard hardware
virtual memory protection mechanisms (NH). Therefore, the
SMV model does not suffer from the performance overheads
(LO) imposed by IPC (vs in-memory communication), user
level memory management (vs kernel level), or per-instruction
reference monitors (vs hardware trap). The SMV model’s
programmability and efficient privilege enforcement mecha-
nism allow it to protect both client- and server-side multi-
threaded applications with low overhead.

We implemented a prototype of the SMV model in the
Linux kernel. Our evaluation demonstrates (a) its negligi-
ble runtime overhead in the presence of high concurrency
using multithreaded benchmarks that employ the general
producer-consumer pattern, and (b) the immediate benefit
of efficient software component isolation by compartmen-
talizing client connections for the popular Cherokee and
Apache httpd web servers and the compartments in the Fire-
fox web browser. SMVs incur only around 2% runtime
overhead overall with 2 LOC changes for the multithreaded
benchmark PARSEC, 0.69% throughput overhead with 2
LOC changes for Cherokee, 0.93% throughput overhead with
2 LOC changes for Apache httpd, and 1.89% runtime over-
head with only 12 LOC changes for the Firefox web browser.
Note that SMV focuses on restricting memory views for in-
dividual threads, access permissions for kernel APIs is an
orthogonal problem that is well covered by, e.g., AppAr-
mor [4], SELinux [39], or the seccomp framework [38].

In summary, this paper makes the following contribu-
tions:

Design of the SMV model which provides threads with fine-
grained control over privileges for a shared address space.

Specification of an SMV API for programmers that facili-
tates porting existing pthread applications.

Implementation of the SMV model that consists of a trusted
Linux kernel component (implementing enforcement) and
the corresponding untrusted user-space library that im-
plement the SMV API, which is publicly available along
with our benchmarks and test suite1.

Evaluation of our prototype implementation showing that
SMVs achieve all four desired requirements as a practical
and efficient model for enforcing least privilege memory
views for multithreaded applications in practice.

1https://github.com/terry-hsu/smv

394

https://github.com/terry-hsu/smv

2. THREAT MODEL AND OBJECTIVES
Threat model. We assume that the attacker, an unpriv-

ileged user without root permissions, can control a thread
in a vulnerable multithreaded program, allocate memory,
and fork more threads up to resource limits on a trusted
kernel with sound hardware. The adversary will try to es-
calate privileges through the attacker-controlled threads or
gain control of another thread, e.g., by reading or writing
data of another module or executing code of another mod-
ule. In this model, the adversary may read or write any
data that the controlled thread has access to. The adver-
sary may also attempt to bypass protection domains by ex-
ploiting race conditions between threads or by leveraging
confused deputy attacks, e.g., through the API exported by
other threads. We assume that the OS kernel is not com-
promised (OS kernel security is an orthogonal topic [24])
and user-space libraries installed by root users are trusted.
We assume that the access permissions both of the memory
views (enforced through SMV) and for the kernel (enforced
through AppArmor, SELinux, or seccomp) are set correctly.

Objectives. The key objective of the SMV model is to
efficiently protect memory references of threads to prevent
unintentional or malicious accesses to privileged memory ar-
eas during the lifetime of a program. Threads may commu-
nicate with other threads through mutually shared memory
areas set up by the programmer through SMVs. The SMV
model restricts the memory boundaries and memory access
permissions for each thread. Without SMVs, an untrusted
thread (e.g., a compromised worker thread) may access ar-
bitrary software objects (e.g., the private key) within its
process (e.g., a web server). Existing programs assume a
shared memory space for threads and SMVs must therefore
validate that all threads follow the memory rules defined
by the programmer (cf. Section 3.2). Threads that deviate
from these memory reference rules are killed by the system.

The SMV model aims to strictly confine the memory ac-
cess boundaries for multithreaded programs while preserv-
ing all four desired requirements for intra-process isolation.
We argue in Section 3 that the SMV model along with the
memory access enforcement can constrain threads within the
programmer-defined memory boundaries.

3. SMV MODEL DESIGN
The SMV model consists of three abstractions: memory

protection domains, secure memory views, and SMVthreads.
The SMV model uses user-defined security policies to en-
force the threads’ privileges in accessing the shared memory
space. The flexibility and programmability of the model al-
lows a programmer to specify the protection domains using
high-level abstractions while enforcing the security policy
at the lowest level of the software stack (page tables) with
acceptable runtime overhead.

3.1 Memory Protection Domains
We define a memory protection domain as a contiguous

range of virtual memory. Any memory address can only
belong to one memory protection domain. In this way, a
large shared memory space such as the heap can be divided
into several distinct sets of memory protection domains. For
example, a process can create a private memory protection
domain that is only accessible by one thread, or a partially
shared memory protection domain such that only threads

with explicit privileges can access it. In addition, an in-
memory communication domain can be allocated with global
access privileges so that all threads can exchange data with-
out relying on expensive IPC. In general, an unprivileged
thread cannot tamper with a memory protection domain
even if there exists a defect in the code of the thread. We
use the term memory domain to refer to the memory pro-
tection domain in the rest of the paper.

3.2 Secure Memory Views
We define a secure memory view (SMV) to be a thread

container with a collection of memory domains. The mem-
ory blocks covered by a memory view can only be accessed
by threads explicitly given permission to run in the corre-
sponding privileged SMV. Therefore, we consider a memory
view to be secure.

We define three abstract operations for defining the com-
position of an SMV:

• Register(SMV,MD): registers memory domain MD as part
of SMV ’s memory view.

• Grant(SMV,MD,P): grants SMV the capability to access
memory domain MD with access privilege P.

• Revoke(SMV,MD): revokes SMV ’s capabilities to access
memory domain MD.

We categorize the privileges P of an SMV to access a
memory domain into four operations:

• Read : An SMV can read from the memory domain.

• Write: An SMV can write to the memory domain.

• Execute: An SMV can execute in the memory domain.

• Allocate: An SMV can allocate/deallocate memory space
in the memory domain.

The access privileges to each of the memory domains for
an SMV can be different. Two SMVs can reference the
same memory domain but the access privileges can differ.
The programmer can set up the SMV’s privileges to access
memory domains in the way needed for the application at
hand. For example, multiple threads sharing the same secu-
rity context can be assigned to the same SMV to parallelize
the workload (LO). To minimize an application’s attack sur-
face, the programmer can assume the main parent thread
to be the master thread of a program. All the permission
modifications must be done by the master thread and are
immutable by child threads. The SMV model considers any
access to a memory domain without proper privileges to be
an SMV invalid memory access. We implemented the privi-
lege enforcement at the OS kernel level and detail the design
in Section 4.5.

3.3 SMVthread
An SMVthread is a thread that strictly follows the privileges

defined by an SMV to access memory domains. SMVthreads
run in the memory view defined by an SMV and cannot
change to other SMVs. While the popular pthreads have
to trust all pthreads running in the same memory space,
SMVthreads distrust other SMVthreads by default. SMVthreads –
unlike pthreads – must explicitly share access to the intrin-
sically shared memory space with other SMVthreads. We de-
signed SMVthreads to partially share the memory space with

395

 Virtual Memory

 Kernel Space

 OS Memory Management Subsystem

 User Space

Sec. 4.1: SMV Netlink Kernel Module

Private
Memory

Domain #1

Shared
Memory Domain

In-Memory
Communication

Domain

Private
Memory

Domain #2

System Library (glibc)

Page Fault Handler

Original object

SMV object

SMVthread

Interaction

Memory domain

Key

 Multithreaded Application Protected by SMV Model

SMV
thread #3

Sec: 3.4: SMV Userspace API

SMV
thread #4

SMV
thread #5

SMV
thread #1

SMV
thread #2

Sec. 4.5:
SMV Privilege Checks

Sec. 4.2:
SMV Metadata
Management

Sec 4.3:
Partially Shared

Page Table
Management

The yellow rounded
boxes represent
the new objects
introduced by the
SMV model.

Figure 1: SMV architecture.

other SMVthreads according to the policy specified by the pro-
grammer through the API. Section 4.3 explains the imple-
mentation of the partially shared page tables for SMVthreads.
SMVthreads are glibc-compatible, meaning that our SMVthreads
can directly invoke the library functions in glibc. SMVthreads
can cooperate with pthreads through all the synchronization
primitives defined by the pthreads API. For SMV manage-
ment, privileged SMVthreads have to invoke the SMV API to
set up the memory boundaries for least privilege enforce-
ment. pthreads can access the whole process address space.
Changing such accesses would hamper the correctness of
legacy programs that do not require any memory segregation
(backward compatibility). While possible, programmers are
advised against mixing SMVthreads and pthreads in one pro-
cess when an application requires isolation as pthreads will
have unrestricted access to all memory of the process.

3.4 SMV API: User Space Library
We implemented our SMV model as a user-space library

that offers an API to support partially shared memory multi-
threading programming in C and C++. Table 2 summarizes
the primary SMV API with descriptions of the main func-
tions. For instance, a programmer can use memdom_create

to create a memory domain and memdom_alloc to allocate
memory blocks that are only accessible by SMVthreads run-
ning in the privileged SMVs. Each memory domain and
SMV has a unique ID assigned by the SMV model in the
system. SMVthreads are integrated with pthreads for easier
synchronization and every SMVthread thus also has an asso-
ciated pthread_t identifier. Note that casting an SMVthread

to a pthread does not bypass the privilege checks. The
SMV interface allows programmers to structure the pro-
cess memory space into distinct memory domains with dif-
ferent privileges for SMVthreads and to manage the desired
security policy. Furthermore, our library provides options
for programmers to automatically override related function
calls to significantly reduce the porting efforts. For example,
pthread_create can be automatically replaced by smvthread_create,
which internally allocates a private memory domain for the
newly created SMVthread. Similarly, when an SMVthread calls
malloc, the library allocates memory in the calling thread’s
private memory domain.

3.5 SMV Architecture
The SMV architecture consists of two parts: a user space

programming interface and a kernel space privilege enforce-
ment mechanism. Figure 1 gives an overview. In short, a
user space application can call the SMV API to use the SMV
model. In the OS kernel, the SMV kernel module is respon-
sible for exchanging the messages between the user space
component and the kernel memory management subsystem.
We added SMV metadata management to the OS memory
management subsystem to record the memory access privi-
leges for the SMVs. We modified the page table management
logic to support partially shared page tables and added the
SMV privilege checks to the page fault handler that enforces
the memory access control.

With the user space interface and the support from the OS
kernel, applications can explicitly structure the intrinsically
shared process memory space into distinct memory domains
with different access privileges without any hardware mod-
ifications. Therefore, our approach can be run directly on
today’s commodity hardware (NH).

3.6 Application Examples
The SMV model allows privilege separation of individual

components and data regions in an application. We present
one example of the popular design model in general multi-
threaded applications and two concrete application exam-
ples of how the SMV model can protect applications by or-
ganizing the process address space with different privileges
for threads (GF and EU).

3.6.1 Producer-Consumer Model
First, the SMV model can support the common producer-

consumer model with strict memory isolation while main-
taining efficient data sharing. Figure 2 illustrates how the
SMV model can secure interacting components according to
a generic producer-consumer model that is employed by all
the applications in PARSEC we evaluated. In this example,
the SMVthreads run in the process address space that contains
four SMVs and six memory domains. The SMVs confine the
memory access privileges of SMVthreads according to the se-
curity policy. In this case, the queue domain is the shared
memory domain for all SMVthreads to cooperate with each

Process

SMV

SMVthread

Memory Domain

Read Privilege

Write Privilege

Allocate Privilege

Key

Queue Domain

Secure
Communication

Domain

Master
SMV

Master
Domain

Producer
SMV

Producer
Domain

Consumer
SMV 1

Consumer
Domain

Consumer
SMV 2

Consumer
Domain

Arrow points from
source SMV to

destination domain

Figure 2: Security-enhanced producer/consumer
model with fine-grained memory protection do-
mains.

396

Table 2: List of primary SMV API.
SMV API Description

int smv_main_init (bool allow_global) Initialize the main process to use the SMV model. If allow_global is true, allow child
threads to access global memory domains. Otherwise distrust all threads by default.

int memdom_create (void) Creates a new memory domain, initializes the memory region, and returns the kernel-
assigned memory domain ID.

int smv_create (void) Creates a new SMV and returns the kernel-assigned smv_id.

pthread_t smvthread_create (int smv_id,
(void*)func_ptr, struct smv_data* args)

Creates an SMVthread to run in the SMV specified by smv_id and returns a
glibc-compatible pthread_t identifier.

void* memdom_alloc
(int memdom_id, unsigned long size)

Allocates a memory block of size bytes in memory domain memdom_id.

void memdom_free (void* data) Deallocates a memory block previously allocated by memdom_alloc.

int memdom_priv_grant
(int memdom_id, int smv_id, int privs)

Grants the privileges privs to access memory domain memdom_id for SMV
svm_id and returns new privileges.

int memdom_priv_revoke
(int memdom_id, int smv_id, int privs)

Revokes the privileges privs to access memory domain memdom_id from
SMV svm_id and returns new privileges.

int memdom_kill (int memdom_id) Deletes the memory domain with memdom_id from the process.

int smv_kill (int smv_id) Deletes the SMV with smv_id from the process.

Multithreaded Cherokee Web Server Main Process

Shared Domain
(accept mutex, configuration etc.)

Worker
SMV 1

Worker
Domain

1

Worker
SMV 3

Worker
Domain

3

Worker
SMV 2

Worker
Domain

2

Secure Communication Domain

Process

SMV

SMVthread

Memory domain

Read privilege

Write privilege

Allocate privilege

Server’s private key

Key

Arrow points from
source SMV to

destination domain

https://http://

Worker
Main

Thread

http://

Figure 3: Security-enhanced Cherokee web server.

other, but any write or allocate request from the producer
SMV to the consumer domains is prohibited; only reads are
permitted. The secure communication domain works as a
one-way communication channel for the master SMVthread to
transmit data to the consumer SMVthreads and is inaccessi-
ble to the producer SMVthread due to the restricted privileges
of the producer SMV. In this case, the SMV model strictly
enforces memory access boundaries, constraining memory
safety bugs to the current component’s memory view.

3.6.2 Case Study: Cherokee Web Server
Cherokee [12] is a high-performance and light-weight mul-

tithreaded web server. To isolate connections, Cherokee uses
worker threads to handle incoming requests stored in per-
thread connection queues. One worker thread handles all the
requests coming from the same connection. However, only
one worker thread on the server needs to be compromised
to leak sensitive information. To provide an alternative for
isolating server workers in different processes, we show how
the SMV model can compartmentalize the process memory
into memory domains and provide reasonable isolation for
the multithreaded Cherokee web server. As shown in Fig-

Mozilla Firefox Web Browser Main Process

Shared Domain
(GC, GUI, timer, etc.)

Process

SMV

SMVthread

Memory domain

Read privilege

Write privilege

Allocate privilege

Banking credentials

Login credentials

Malicious payloads

Denied access

Key

eBay
SMV

eBay
Domain

PayPal
SMV

PayPal
Domain

TrojanWorld
SMV

TrojanWorld
Domain

 TrojanWorld

Figure 4: Security-enhanced Firefox.

ure 3, the SMV model defines the memory boundaries for
worker SMVthreads and enforces the memory access privileges
to protect the server. The SSL connections are handled only
by the SMVthreads running in SMV 3 that have the privilege
to access worker domain 3, which contains the server’s pri-
vate key. If SMVthreads in SMV 2 (handling only HTTP
requests) make any attempt to access the private key, the
SMV model will reject such invalid memory accesses because
of insufficient privileges. In this way, when an exploited
worker thread attempts to access memory in an invalid do-
main, the SMV model detects such invalid accesses and stops
further attacks triggered by the memory bugs (e.g., CVE-
2004-1097). The original pthread Cherokee server does not
have this security guarantee since all the threads can ac-
cess the complete process address space (with unanimously
shared permission). We show how accessing invalid memory
domains is prevented by the SMV model in Section 5.4.

3.6.3 Case Study: Mozilla Firefox Web Browser
The SMV model allows multithreaded web browsers such

as Firefox and its JavaScript engine SpiderMonkey to achieve
strict compartment isolation enforced by hardware protec-

397

tion, preventing one malicious origin from accessing sensi-
tive data such as bank accounts hosted by another origin.
Figure 4 presents an example of how the SMV model can
isolate browser tabs in SMVs based on the same-origin pol-
icy [37]. With SMVs, the malicious origin TrojanWorld can-
not escape from its compartment to access the PayPal bank-
ing account (add recipient account by allocating memory or
transfer money to attacker’s account by writing to memory)
or read the user credentials hosted by eBay. Such strong iso-
lation guarantees inspired Google to design Chrome to use
process isolation for its rendering process.

4. IMPLEMENTATION
This section details the OS kernel level implementation of

the SMV model and discusses its security guarantees. We
modified the Linux kernel version 4.4.5 for the x64 architec-
tures to support the SMV model. Table 3 summarizes the
component sizes in our prototype.

4.1 SMV Communication Channel
We developed an SMV loadable kernel module (LKM)

that allows the user-space SMV API to communicate with
our kernel using the Netlink socket family. Once loaded, the
SMV LKM is effectively part of the kernel. The SMV LKM
works as a dispatcher in the SMV model that sanitizes the
messages from the user space SMV API and invokes SMV-
related kernel functions.

Security guarantee. The attacker cannot replace our
SMV LKM with a malicious SMV LKM to perform a man-
in-the-middle attack and escalate permissions for a given
SMVthread. Such a system-wide change requires the attacker
to have root privilege on the system.

4.2 Metadata Management
To efficiently maintain the state of the processes that have

SMVthreads, we added two major objects to the OS kernel.
(1) memdom_struct: memory domain metadata for tracing the
virtual memory area and the memory domains mappings.
(2) SMV_struct: the SMV privilege metadata for accessing
memory domains. These kernel objects cooperate with each
other to maintain the fine-grained privilege information of
each SMV in a process.

Security guarantee. The metadata is allocated in ker-
nel memory space and is not mutable by any user space
programs without proper privileges through our API. Mem-
ory bugs in user space programs cannot affect the integrity
of the metadata stored in kernel memory. One of the main
sources of kernel 0-day attacks is the use of uninitialized
bytes in kernel memory (e.g., CVE-2010-4158) that allows
local users to read sensitive information. The SMV model
sanitizes the metadata by initializing objects to avoid any

Table 3: Summary of component sizes.

LOC† Source files Protection level

SMV API 781 6 user space
SMV LKM 443 2 kernel
SMV MM‡ 1, 717 24 kernel
† Lines of code computed by cloc.
‡ SMV MM stands for SMV memory management, which is
integrated into the OS memory management subsystem
as we show in Figure 1.

potential information leakage from this added attack sur-
face. Our kernel inherits the original kernel’s garbage col-
lection system using reference counting to ensure that the
additional metadata does not create any dangling pointers.

4.3 Partially Shared Memory Space
In the SMV model, SMVthreads can be perceived as un-

trusted tasks by default. Therefore, our kernel has to par-
tially separate the kernel objects; it also maintains the con-
sistent process address space for the SMV model. Overall,
our kernel: (1) separates the memory space of SMVs by us-
ing a page global directory (pgd_t) for each SMV; (2) frees
memory for all SMVs when one SMVthread frees the process
memory; (3) loads thread-private pgd_t into the CR3 register
during a context switch.

All SMVthreads in a process share the same mm_struct that
describes the process address space. Our kernel allocates
one pgd_t for each SMV in a process and stores all pgd_ts
in a process’s mm_struct. SMVthreads use their private page
tables to locate memory pages, yet their permissions to the
same page might differ. Note that we designed SMVs to
protect thread stacks as well. To ensure the integrity of the
process memory space, the page tables of all SMVs need
to be updated when the kernel frees the process page ta-
bles or when kswapd reclaims page frames. The original ker-
nel avoids reloading page tables during a context switch if
two tasks belong to the same process (thus using the same
mm_struct). We modified our kernel to reload page tables
and flush all TLB entries if one of the switching threads
is an SMVthread. Note that processors equipped with tagged
TLBs could mitigate the flushing overhead. However, SMVs
do not rely on this hardware optimization feature in order
to function correctly (NH).

Based on our extensive experiments, we found that using
different mm_structs to separate the address space for threads
is overkill and could significantly impact the performance
for practical applications (LO). This is because all the mem-
ory operations related to mm_struct need to be synchronized
in an aggressive manner in order to maintain the consis-
tent process address space for all threads (e.g., rotating the
vm_area_struct red-black tree). Using the clone syscall with-
out CLONE_VM flag to isolate a thread’s address space from its
parent is another approach. However, this approach has two
main drawbacks. First, the kernel creates a new mm_struct

for the new thread if CLONE_VM is not set. This leads to fre-
quent synchronization and imposes overhead. Second, de-
bugging (e.g., GDB [15]) and tracing memory activity (e.g.,
Valgrind [43]) become extremely difficult: GDB has to be
constantly detached from one process and then attached to
another in order to debug a parallel program; Valgrind does
not support programs with clone calls. In contrast, using
the same mm_struct preserves the system-wide process ad-
dress space assumption and allows the kernel to separate
process address space for threads efficiently.

Security guarantee. The security features of the par-
tially shared memory space rely on the protection guaran-
teed by the original kernel. The memory management sub-
system in the kernel space is completely unknown to user
space programs. The attacker has to exploit the permission
bits of the page table entries (PTEs) for a thread to break
the security features provided by our kernel. We argue that
this kind of exploit is highly unlikely without serious DRAM
bugs such as rowhammer [22].

398

Read Address of
Page Fault

Find Virtual
Memory Area

Original Linux
Page Fault
Handling

Procedure

Bad Area

Valid Area?
Expand

Nearby Area
Successfully?

SMV Has the
Valid Privilege to

Access the
Memory Domain?

Fault Address in
a Valid Memory

Domain?

SMV Demand
Paging

Send
SIGSEGV

Current Thread is
an SMVthread?

Yes

No No

Yes

Yes
No

Yes

Yes

Yes No

No

No

Kernel
Mode?

Original Linux
Exception
Handling

Procedure

No

Yes

Valid Access
Permission?

Figure 5: Page fault handler flow chart. The SMV
kernel performs additional privilege checks (marked
in the gray box).

4.4 Forking SMVthreads
The SMV API uses pthread_create to create a regular

pthread and signals the kernel to convert the pthread to an
SMVthread before the SMVthread starts execution. The kernel
instructs the SMVthread to use the private page tables defined
by the SMV that the SMVthread runs in. Once an SMVthread

is created, the kernel turns on the using_smv flag stored in
the process’s mm_struct so that future memory operations
must go through additional privilege checks.

To simplify porting efforts, the SMV API provides an op-
tion to override all pthread_create calls and automatically
allocate private memory domains for each SMVthread.

Security guarantee. The mm_struct of a thread is allo-
cated in kernel space and used solely by the kernel. There
are no interfaces that allow user space programs to directly
or indirectly modify the memory descriptor. This strong iso-
lation between user and kernel space is guaranteed by the
trusted OS kernel. In addition, the atomic fork procedure
ensures that the attacker cannot intercept the fork procedure
and steal the memory descriptor for the malicious thread.

4.5 Page Fault Handler
Figure 5 shows the flow chart of the page fault handler

in our kernel. The additional checks are surrounded by the
gray box with a dotted line. Our kernel kills the SMVthread

that triggers an SMV invalid (cf. Section 3.2) page fault
by sending a segmentation fault signal. For the privileged
SMVthreads, our kernel performs SMV demand paging to ef-
ficiently handle the page faults.

Indeed, since the SMVs use private page tables to sepa-
rate SMVs’ memory views, using the original demand pag-
ing routine for SMVthreads is insufficient as the page fault
handler only updates the page tables for the current SMV,
which causes inconsistent process address space. To solve
this problem, our kernel tracks all the faulted pages of a
process in the SMV shadow page tables. The page fault han-
dler deals with faults by using the SMV shadow page tables
and then copies the page table entry of the fault from the
shadow page tables to the running SMVthread’s page tables.
Note that one process has only one set of shadow page ta-

bles, which only serve as quick reference with no permission
implications when SMVthreads locate a memory page.

Security guarantee. The page fault handler cannot be
accessed, changed, or abused by the attacker as it resides in
the lowest level of the software stack. The PTE bits force
invalid memory accesses to be trapped to the kernel for the
additional privilege checks. To access a privileged memory
region, the attacker must first get around the page fault
handler. However, such a scenario is infeasible because the
kernel memory management subsystem must intervene and
prepare the data page before the attacker can access the
privileged memory region.

5. EVALUATION
The goal of our evaluation is to demonstrate that the SMV

model has all four desired requirements when enforcing least
privilege memory views for multithreaded applications in
practice. We show that the SMV model supports different
types of multithreaded programs with flexible policies (GF),
requires minimal code changes for legacy software (EU), re-
quires no hardware modifications (NH), and incurs negligible
runtime overheads while supporting complex thread interac-
tions and extremely intensive memory allocation/free calls
in parallel (LO).

5.1 Experiment Setup
Environment. We measured the performance of our

SMV model on a system with Intel i7-4790 CPU with 4
cores clocked at 2.8GHz and 16GB of RAM for our modified
x86 64-bit Linux kernel 4.4.5 Ubuntu 14.04.2 SMP (NH).
The benchmarks are compiled into two versions: pthread

and SMVthread.
Example policy. SMVthreads cannot access privileged

memory domains without being explicitly granted the proper
privilege. To test this security guarantee in all of our exper-
iments, the number of domains was set to N + 1, where N
is the number of worker threads and the additional domain
serves as a global pool for threads to securely share data.
Each worker has its own private memory domain that can
only be accessed by itself. We do not claim that the pro-
posed policy is optimal but instead focus on the mechanics
to enforce the policy. Setting up alternative policies is pos-
sible (GF).

5.2 Robustness Test
To examine the robustness, we tested our modified Linux

kernel with the Linux Test Project (LTP) [25] developed and
maintained by IBM, Cisco, Fujitsu, SUSE Red Hat, Oracle
and others. Specifically, we used the runltp script in the LTP
package to test the memory management, filesystem, disk
I/O, scheduler, and IPC. All stress tests completed without
error. We did not observe any system crashes.

5.3 Inspecting Isolation
The SMV model treats invalid memory accesses as seg-

mentation faults. Suppose an attacker’s thread triggers a
segmentation fault by accessing an invalid memory domain
on purpose. The main process will crash to prevent fur-
ther information leakage. Our SMV library provides de-
tailed memory logs to the programmer. Listing 1 shows
an example of the memory activity log. For crashes due
to wrong isolation setup, the logs can help the programmer
immediately identify the SMVthread that accessed the invalid

399

Listing 1: Kernel log obtained by dmesg command.
1 [smv]Created memdom 2, start addr: 0x00f0f000 , end addr: 0x00f10000

2 [smv]SMVthread pid 11157 attempt to access addr 0x00f0f0e0 in memdom 2

3 [smv]Addr 0x00f0f0e0 is protected by memdom 2

4 [smv]Read permission granted to SMVthread pid 11157 in SMV 2

5 [smv]SMVthread pid 11155 attempt to access addr 0x00f0f260 in memdom 2

6 [smv]SMV 1 is not in memdom 2

7 [smv]Detected INVALID memory reference to: 0x00f0f260

8 [smv]INVALID memory request issued by SMVthread pid 11155 in SMV 1

9 [smv]<6>chorekee [11155]: segfault at f0f260 ip 00007 f09ba7d6656 error 4

protection domain and subsequently rectify the object com-
partmentalization. In addition, our library provides detailed
stack traces for debugging. The logs and stack traces are un-
readable by the attacker when debugging mode is disabled.
A binary compiled without debugging option makes it im-
possible for an attacker to learn about memory activity.

5.4 Security Evaluation
To further understand how the SMV model offers strong

intra-process isolation, we systematically discuss the secu-
rity guarantees described in Section 4.

Trusted computing base. The TCB of the SMV model
contains the SMV LKM and SMV MM with kernel level pro-
tection (cf. Table 3). The SMV API is untrusted and resides
in user space as system library. The attacker may try to per-
form an SMV API call with a malicious intent to escalate
permissions for an SMVthread. The SMV LKM sanitizes all
user space messages sent into the kernel and verifies that
the SMVthread executing the API call has the correct permis-
sions for the requested change. The attacker may attempt
to leverage the misuse of the SMV API to invalidate the
memory isolation guarantee provided by the SMV model.
Therefore, the security of the application relies on the cor-
rectness of the memory isolation setup. Once the memory
boundaries are defined, all SMVthreads must follow the mem-
ory access rules defined by the programmer. Note that un-
privileged users without root permission cannot compromise
the SMV LKM (cf. Section 4.1 security guarantee).

The SMV model also relies on the privilege level enforce-
ment imposed by the original Linux kernel to make sure that
the attacker cannot tamper with the SMV model operating
in the kernel space. To bypass the kernel protection, the
attacker must hijack the page tables of a privileged thread
or modify the metadata stored in the kernel space. The
original Linux kernel ensures the integrity of the metadata
and memory descriptors for all threads in the system. Us-
ing wrong page tables or metadata will cause a thread to be
killed once the kernel detects the tainted kernel data struc-
tures. Thus, it is impossible for the attacker to exploit the
metadata of any thread without kernel 0-day vulnerabilities
(cf. Section 4.2 security guarantee).

In addition to the software TCB, the SMV model also re-
lies on the hardware’s correctness. The hardware vendors
perform significant correctness validation. We believe that
the security features offered by sound hardware are unlikely
for the attacker to subvert (cf. Section 4.3 security guar-
antee). Given the extremely small source code base (less
than 2000 LOC), we believe that the SMV’s TCB could be
formally verified.

TOCTTOU attack: stealing page tables. The at-
tacker may attempt to steal the page tables of a privileged
thread by hijacking its memory descriptor. We consider an
oracle attacker who knows precisely when and how to launch
a time of check to time of use (TOCTTOU) attack to steal

the page tables of a privileged thread. If the attack suc-
ceeds, the attacker’s malicious thread will use the hijacked
page tables and read sensitive data in the privileged mem-
ory domain before the thread crashes. Assume the attacker
can fork threads up to the system limit with the objective to
hijack the page tables of an about-to-run privileged thread
in the fork procedure, which is the only point for the at-
tacker to exploit the pgd_t pointer. However, the malicious
thread has to wait until the privileged SMVthread finishes the
page tables setup in order to request the kernel to prepare
its unprivileged page tables. Therefore, the attacker cannot
intercept the fork procedure and steal the page tables. We
conducted an experiment where 1,023 malicious SMVthreads
tried to hijack the page tables of a privilege SMVthread. Dur-
ing the one million runs of the security test, every SMVthread

used the correct page tables for its memory view (cf. Sec-
tion 4.4 security guarantee).

Effectiveness of the SMV model. Listing 1 shows the
kernel log when an invalid memory access is detected by the
SMV model. In this example, the unprivileged SMVthread

pid 11155 in SMV 1 tries to access memory in the priv-
ilege memory domain that stores the server’s private key,
which is only accessible by SMVthread pid 11157 in SMV 2.
At line 5, the attempt to read the invalid memory domain
triggers the page fault. The kernel rejects the invalid mem-
ory request by sending a segmentation fault signal to the
unprivileged SMVthread pid 11155 at line 9, stopping the un-
privileged SMVthread from accessing the server’s private key.
The privilege checks cannot be bypassed because the refer-
ence monitor is implemented entirely in the page fault han-
dler, and arbitrary page table manipulation is beyond the
attacker’s scope (cf. Section 4.5 security guarantee).

5.5 PARSEC 3.0 Benchmarks
Overview. The multithreaded PARSEC benchmarks in-

clude several emerging workloads with non-trivial thread in-
teraction. Both data-parallel and pipeline parallelization
models are covered in the benchmarks with coarse to fine
granularity. We used all benchmarks in [7], covering all ap-
plication domains that were originally multithreaded using
the standard pthreads. The evaluated benchmarks all em-
ploy the producer-consumer pattern (cf. Section 3.6.1) that
is pervasive in systems programs and parallelization mod-
els. We used the parsecmgnt tool in the PARSEC package
to run the benchmarks with minimum number of threads set
to four for the large inputs as defined by the benchmarks.

Assessment of porting effort. We ported the PARSEC
benchmarks by replacing each pthread with an SMVthread

running in its own SMV with a private memory domain. In
each program, the main program allocates a shared memory
domain to store the working set for SMVthreads. The port-
ing procedure consisted of three parts: (1) including the
header files to use the SMV API, (2) setting up memory
domains and SMVs in the main program, and (3) replac-
ing the pthreads with SMVthreads. All these changes required
only 2 LOC changes as the SMV API eliminates the refac-
toring burden (EU). We needed to add only 1 line to include
the header file and another to initialize the main process
to use the SMV model. The SMV API automatically in-
tercepts pthread_create and malloc and replaces them with
smvthread_create and memdom_alloc calls. Therefore, each
SMVthread could automatically allocate memory in its pri-
vate memory domain (cf. Section 3.4).

400

0.39%
0.79%

3.01%

8.24%

0.98%

4.14%

6.77%

0.47%

1.88% 2.02%

4.22% 3.92%

2.07%

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

R
un

tim
e

O
ve

rh
ea

d
(%

)

Figure 6: Runtime overhead of the SMV model
for the multithreaded applications in the PARSEC
benchmark suite.

The security-enhanced PARSEC benchmarks demonstrate
a general case that could be applied to any multi-threaded
programs written in C/C++ (GF), even with the presence
of extremely intensive memory allocation/free calls in paral-
lel. In addition, the intra-process isolation can help prevent
attacks that arbitrarily modify data on the stack using ma-
licious threads, e.g., ROP-based attacks. One study has
shown that an attacker can perform ROP and use gadgets
(16 payloads is enough for > 80% of GNU coreutils [16])
to achieve Turing completeness. Note that ASLR/stack ca-
naries have been proven ineffective to protect against infor-
mation leakage [20]. With SMV, programmers can secure
the system with few changed lines of source code while also
handling nontrivial thread interaction, if needed.

Performance. Figure 6 shows the runtime overhead of
the ported PARSEC benchmarks with 10 runs for each pro-
gram. The results show that the SMV model incurs neg-
ligible runtime overhead. The overall geometric mean of
the runtime overhead is only 2.07% (LO) and the maximum
of the runtime overhead occurs for dedup due to the huge
amount of page faults and the highly intensive parallel mem-
ory operations.

5.6 Cherokee Web Server
Overview. The original Cherokee server uses a per-

thread memory buffer system for resource management to
isolate threads from remote connections. We leveraged the
SMV model to provide Cherokee with the OS level privi-
lege enforcement for different server components. Then we
compared the throughput of our security-enhanced Chero-
kee with the original Cherokee.

Assessment of porting effort. We enhanced the se-
curity of the Cherokee version 1.2.104 server as illustrated
in Section 3.6.2. The user-space SMV library automati-
cally replaced pthread_create with smvthread_create to cre-
ate SMVthreads for the workers to handle client requests.
Each SMVthread worker ran in its own SMV with a private
memory domain which is inaccessible by other workers. All
other shared objects such as the mutex are allocated in a
shared memory domain and accessible by all workers. We
modified only 2 LOC of Cherokee to enforce the least priv-
ilege memory access with the SMV model (EU). We believe
that the negligible porting effort demonstrates the practica-
bility of the SMV model to protect real-world applications.

0.61%
0.75%

0.38%

0.55%
0.39%

0.48%
0.57%

0.69%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

Th
ro

ug
hp

ut
 O

ve
rh

ea
d

(%
)

Figure 7: Throughput overhead of Cherokee server.

Performance. We used ApacheBench to measure the
server throughput for the original and security-enhanced
Cherokee. Both versions of Cherokee hosted two kinds of
web content: (a) social networking web pages, and (b) large
streaming files. Based on the total transfer size per page re-
ported in Alexa top one million websites [19], we tested web
page sizes from moderate amount of content to abundant
media objects (100KB to 8MB). We also evaluated the per-
formance of both servers hosting large streaming files (50MB
and 100MB) to show the practicability of our security-enhanced
Cherokee. The Cherokee server process created 40 worker
threads by default to handle client requests. The client ini-
tiated the ApacheBench for 100,000 requests with concur-
rency level set to four (matches the number of cores). We
conducted the experiment 20 times for each object size and
present the results in Figure 7. Overall, the SMV model
reduced throughput by only 0.69% in exchange for strictly
enforcing a least privilege security policy (LO).

We also ported the popular Apache httpd-2.4.18 with only
2 LOC (EU). Using Apache as a file sharing server (GF) to
host large objects with size of 10MB, 50MB, 100MB, and
1GB we conducted the same experiment. Overall, SMVs
reduced the throughput of the httpd server by only 0.93%
(LO). As Cherokee already presents the case for web servers,
we exclude the details for Apache httpd due to space limita-
tion.

5.7 Mozilla Firefox Web Browser
Overview. The developers of modern web browsers have

made tremendous efforts to ensure resource isolation. In
2011, Firefox introduced an abstraction called “compart-
ments” for its JavaScript engine SpiderMonkey to manage
JavaScript heaps with security in mind [45]. However, the
isolation is not enforced by any mechanism stronger than the
compartments’ logical boundaries. As a result, any memory
corruption can still lead to serious attacks. Here we demon-
strate that the SMV model can be easily deployed to protect
Firefox’s JavaScript engine from memory corruption by con-
fining each compartment to access only its private and the
system compartments.

Assessment of porting effort. Firefox uses threads
for UI rendering, processing network packets, monitoring
browser status, handling JavaScript jobs, etc. In our evalua-
tion, we replaced Firefox 45.0 SpiderMonkey’s NSPR (Netscape
Portable Runtime) threads with SMVthreads running in a pri-
vate memory domain by adding a new thread type named
PR_SMV_THREAD to the NSPR library. SpiderMonkey creates 8
threads (1 thread per core + 4 excess threads) in total. We

401

0.60%

4.14%

2.17% 2.32%
1.89%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

JetStream Kraken Octane SunSpider Geomean

R
un

tim
e

O
ve

rh
ea

d
(%

)

Figure 8: Runtime overhead of security-enhanced
Mozilla Firefox web browser.

modified only 12 LOC of the entire Firefox source to use the
SMV model. Although we designed a per-tab isolation pol-
icy, the workloads of individual JavaScript benchmark suites
are run in the same tab. For example, JetStream executes
40 benchmark programs in the same tab. The performance
numbers faithfully report the overhead for privilege checks
as each memory page reference is monitored by our page
fault handler.

Performance. We evaluated our security-enhanced Fire-
fox with four popular JavaScript benchmarks and report the
numbers in Figure 8. The overall geometric mean for all
benchmarks is only 1.89%. The performance numbers re-
port the overhead when Firefox performs additional privilege
checks for SpiderMonkey’s helper threads. We believe that
such negligible overhead numbers allow efficient and strong
isolation for multithreaded browsers to be used in practice
and provide the Mozilla team an alternative to the ongoing
multi-process Firefox e10s project [14].

5.8 Limitations
The low performance overhead for checking privileges in

the SMV model builds on the virtual memory protection at
page granularity. At this point, the SMV model does not
guard against unprivileged memory references within the
same page as the kernel relies on page table entry (PTE)
permission bits. However, poorly organized data structures
mixing privileged and non-privileged data within a region
are intrinsically insecure and avoided by real-world soft-
ware (e.g., Hoard [6] memory allocator, connection buffers
in Cherokee, worker pools in Apache httpd, compartments
in Firefox). Therefore, SMVs can be seamlessly integrated
into modern software, eliminating the chances for threads to
unintentionally access the same page while enforcing mem-
ory boundaries at kernel level. Software monitors for byte-
granularity protection has inevitably high overhead (e.g.,
decentralized information flow control systems) since the
memory boundary is neither supported by hardware nor the
kernel subsystem, making every memory load/store instruc-
tion a candidate for a privilege check. In contrast, page-
granularity offers strong memory isolation and superior per-
formance with hardware/kernel support.

Although SMVs cannot protect against malicious library
threads once they are installed on the system (requires root
privilege, which is out of scope), a user can compile any
third-party threading libraries to use SMVs, as we demon-
strated in the PARSEC benchmark with GThread in vips

and RTThread in raytrace.

6. RELATED WORK
Techniques for achieving intra-process isolation have been

studied for decades. In this section, we summarize and com-
pare the related work following a more detailed breakdown.

Memory safety is the goal of many proposals, as mem-
ory corruption is the root cause of various well-known soft-
ware vulnerabilities. We refer the reader to Nagarakatte et
al. [32] and Szekeres et al. [42] for two surveys on memory
safety. In short, solutions for complete memory safety do
not handle intra-process privilege separation problem and
impose significant cost for practical systems (cf. LO).

The first generation privilege separation techniques
focus on partitioning a process into single-process compo-
nents. Provos et al. [33] were the first to manually parti-
tion OpenSSH by running components in different processes
and coordinating them through inter-process communica-
tion (IPC). Privtrans [9] automated the retrofitting proce-
dure for legacy software by partitioning one program into a
privileged monitor process and an unprivileged slave process
with just few programmer-added annotations. Wedge [8]
extended the idea of privilege separation to provide fine-
grained privilege separation with static capabilities, which
was improved by Dune [5] through the Intel VT-x technol-
ogy (cf. NH) for better performance and by Salus [40] for dy-
namic security policy. The disadvantage of these first gener-
ation techniques is that they lack support for multiple com-
puting entities within the same compartment (cf. LO). This
limitation hurts performance of multithreaded programs and
restricts the usability of these solutions in practice.

The second generation privilege separation tech-
nique Arbiter [47] allowed multiple threads to run in the
same compartment. However, Arbiter still faces similar lim-
itations on parallel memory operations and their evaluation
does not use multithreaded benchmarks that have intensive
memory operations to demonstrate the system’s parallelism,
even though the design aims at concurrent execution for
threads (cf. LO). We identify two major causes of the limi-
tation on Arbiter’s parallelism. First, the highly serialized
memory management in their user-space library incurs in-
evitable runtime overhead of up to 400%. Second, the design
choice of separating mm_structs forces their kernel to aggres-
sively synchronize the global process address space for every
thread’s memory descriptors. The synchronization costs in-
crease when an application performs intensive memory op-
erations or generates a huge amount of page faults. These
limitations on parallelism manifest themselves when running
real-world applications (e.g., Firefox) with large inputs (e.g.,
web server hosting a 100MB file). However, the largest in-
put in the authors’ evaluation is only 1MB. In addition, pro-
grammers are on their own to partition applications as the
solution does not provide assistance in retrofitting applica-
tions (cf. EU). As we showed in this paper, the SMV model
addresses the limitations of the first and second generation
privilege separation techniques without sacrificing security
or parallelism.

OS-level abstraction mandatory access control so-
lutions such as SELinux [39], AppArmor [4], and Capsicum [48]
protect sensitive data at process/thread granularity. How-
ever, fine-grained privilege separation for software objects
(e.g., arrays) within a process is not supported in these tech-
niques. On the other hand, SMVs tackle issues for intra-
process data protection with capabilities. PerspicuOS [13]
separates privileges between trusted and untrusted kernel

402

components defined by kernel developers using an additional
layer of MMU. Such an intra-kernel design does not facili-
tate intra-process privilege separation as SMV does for user-
space applications (cf. GF and EU). These security policies
are orthogonal to the SMV memory policies and SMVs can
be used in conjunction with these techniques to gain addi-
tional inter-process protection.

Decentralized information flow control (DIFC) sys-
tems allow programmers to associate secrecy labels with
data and enforce information flow to follow security policies.
HiStar [51] is an OS that fundamentally enforces DIFC that
could likely address intra-process isolation. However, HiStar
is not based on a general OS kernel such as Linux and thus
cannot be incrementally deployed to commodity systems.
Moreover, the applications have to be completely rewritten
in order to use HiStar (cf. GF and LO). Thus, the solution
is infeasible for legacy software (e.g., Firefox) in practice.
Flume [23] focuses on process-level DIFC for OS-level ab-
stractions (e.g., files, processes) in UNIX but it does not han-
dle intra-process privilege separation within a multithreaded
application. Laminar [34] supports multithreaded applica-
tion running in its specialized Java virtual machine (cf. GF).
However, the additional layer in the software stack and its
dynamic checker incur significant runtime overhead (cf. LO).
As noted in Section 5.8, byte-granularity checkers in DIFC
systems incur high performance overhead in practical appli-
cations that have intensive memory operations (cf. LO).

Software-based fault isolation (SFI) [26, 46] isolates
software components within the same address space by con-
structing distinct fault domains for code and data. SFI pre-
vents code from modifying data or jumping to code out-
side of a fault domain. Native client [3, 50] utilizes SFI
with x86 hardware segmentation for efficient reads, writes,
control-flow integrity [1], and component isolation. How-
ever, the untrusted code is statically associated with a spe-
cific fault domain as the approach does not provide sim-
ple means of implementing a dynamic and flexible security
policy for practical multithreaded applications (cf. EU and
LO). In contrast, SMVs offers solutions for programmers to
structure the protected memory regions in a dynamic and
non-hierarchical manner.

Language-based techniques utilize safe language se-
mantics to provide isolation for applications written in type-
safe languages (e.g. [10, 21]) and implement information flow
control for objects within a process (e.g. [11, 30, 31]). How-
ever, the vast majority of legacy software are still written in
an unsafe language for efficiency. As a result, programmers
need to completely rewrite their legacy software using safe
languages (cf. GF). Ribbons [18] is a programming model
developed entirely for user space that provides fine-grained
heap isolation for multithreaded applications. While the
access privileges of threads are tracked pair-wise between
domains hierarchically in user space in Ribbons, the SMV
model leverages the OS memory management subsystem to
organize the access privileges of threads systematically in
kernel space at negligible overhead (cf. EU and LO).

Special hardware support and virtualization tech-
nologies is another line of research that seeks for strong iso-
lation of program secrets. Flicker’s [28] significant overhead
due to its intensive use of the TPM chip (cf. NH) makes
it impractical for performance-critical applications (cf. LO).
Although TrustVisor [27] mitigates the overhead by a hyper-
visor and a software-based TPM chip, the system is imprac-

tical for applications that require multiple compartments
with different capabilities (cf. GF). Fides [41] points out
the limitations in TrustVisor and improves it by support-
ing more flexible secure modules with a dual VM architec-
ture on top of its special hypervisor. Hypervisors can be
used for guest OSs (e.g. SMV OS kernel) on a shared host
while SMVs (providing a richer API) directly run on bare
metal at full speed (cf. GF and LO). The additional software
level in the hypervisor introduces overheads as the VMM
intervenes for the guest OSs page tables, causing TLB cache
misses. Recent studies [2, 17, 29] by Intel indicate that
hardware support for secure computing will become avail-
able on mainstream X86 environments in the near future.
Intel Software Guard Extensions (SGX) is a mechanism to
ensure confidentiality and integrity (but not availability) of
a trusted unprivileged software module under an untrusted
OS with limited trusted hardware. SGX protects one com-
ponent from possible interaction using an “enclave” enforced
by hardware. Although the goal of Intel SGX is similar
to SMVs, our pure-software solution allows SMVs to be
adopted by any OSs that have MMU subsystems with com-
modity hardware (cf. NH). Loki’s [52] tagged memory archi-
tecture, CODOMs’ [44] tagged pages, and CHERI’s [49] ca-
pability registers can isolate modules into separate domains
with efficient access protection check logic. But these ap-
proaches require hypothetical hardware support which make
them incompatible with commodity systems (cf. NH).

7. CONCLUSIONS
We have presented the design, implementation, and eval-

uation of SMVs, a programming abstraction that allows effi-
cient memory compartmentalization across concurrent threads.
SMVs yield a comprehensive architecture with all four de-
sired requirements – genericity and flexibility, ease of use, no
hardware modifications, and low runtime overhead – for effi-
cient fine-grained intra-process memory separation in multi-
threaded applications. Our performance evaluation demon-
strates that the SMV model imposes negligible overhead in
exchange for greatly improved security guarantees, enforc-
ing intra-process isolation for concurrent threads. The run-
time overhead of the multithreaded benchmark PARSEC
for using the SMV model is only 2.07% overall with only
2 LOC changes. For popular web servers, the reduction in
throughput is only 0.69% overall for Cherokee and 0.93%
overall for Apache httpd. Both applications required only
2 LOC changes. We also showed that the real-world web
browser Firefox can be easily ported to the SMV model
with only 1.89% runtime overhead overall, requiring only 12
LOC modifications to the large code base (13M LOC). The
simplicity of the porting effort allows legacy software to be
quickly adapted to the SMV model. In summary, we believe
that the SMV model can greatly reduce the vulnerabilities
caused by improper software component isolation and en-
courages more research on the efficient and practical intra-
process isolation for general multithreaded applications.

8. ACKNOWLEDGEMENTS
This work was supported by NSF TC-1117065, NSF TWC-

1421910, and NSF CNS-1464155. P. Eugster was partly
supported by European Research Council under grant FP7-
617805 “LiVeSoft – Lightweight Verification of Software”.

403

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow Integrity. In Proceedings of the 12th
ACM Conference on Computer and Communications
Security, CCS ’05, pages 340–353, New York, NY,
USA, 2005. ACM.

[2] I. Anati, S. Gueron, S. Johnson, and V. Scarlata.
Innovative Technology for CPU based Attestation and
Sealing. In Proceedings of the 2Nd International
Workshop on Hardware and Architectural Support for
Security and Privacy, HASP ’13, New York, NY,
USA, 2013. ACM.

[3] J. Ansel, P. Marchenko, U. Erlingsson, E. Taylor,
B. Chen, D. L. Schuff, D. Sehr, C. L. Biffle, and
B. Yee. Language-independent Sandboxing of
Just-in-time Compilation and Self-modifying Code. In
Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’11, pages 355–366, New York,
NY, USA, 2011. ACM.

[4] AppArmor. https://wiki.ubuntu.com/AppArmor.

[5] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: Safe User-level
Access to Privileged CPU Features. In Proceedings of
the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 335–348,
Berkeley, CA, USA, 2012. USENIX Association.

[6] E. D. Berger, K. S. McKinley, R. D. Blumofe, and
P. R. Wilson. Hoard: A Scalable Memory Allocator
for Multithreaded Applications. In Proceedings of the
Ninth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS IX, pages 117–128, New York, NY,
USA, 2000. ACM.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC Benchmark Suite: Characterization and
Architectural Implications. In Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, PACT ’08, pages 72–81, New
York, NY, USA, 2008. ACM.

[8] A. Bittau, P. Marchenko, M. Handley, and B. Karp.
Wedge: Splitting Applications into Reduced-privilege
Compartments. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, NSDI’08, pages 309–322, Berkeley,
CA, USA, 2008. USENIX Association.

[9] D. Brumley and D. Song. Privtrans: Automatically
Partitioning Programs for Privilege Separation. In
Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13, SSYM’04, pages
5–5, Berkeley, CA, USA, 2004. USENIX Association.

[10] C. Bryce and C. Razafimahefa. An Approach to Safe
Object Sharing. In Proceedings of the 15th ACM
SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications,
OOPSLA ’00, pages 367–381, New York, NY, USA,
2000. ACM.

[11] W. Cheng, D. R. K. Ports, D. Schultz, V. Popic,
A. Blankstein, J. Cowling, D. Curtis, L. Shrira, and
B. Liskov. Abstractions for Usable Information Flow
Control in Aeolus. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference,
USENIX ATC’12, pages 12–12, Berkeley, CA, USA,
2012. USENIX Association.

[12] Cherokee Web Server. http://cherokee-project.com/.

[13] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell,
and V. Adve. Nested Kernel: An Operating System
Architecture for Intra-Kernel Privilege Separation. In
Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, pages 191–206,
New York, NY, USA, 2015. ACM.

[14] Multiprocess Firefox. https://developer.mozilla.org/
en-US/Firefox/Multiprocess Firefox.

[15] GDB: The GNU Project Debugger.
https://www.gnu.org/software/gdb/.

[16] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum.
Enhanced Operating System Security Through
Efficient and Fine-grained Address Space
Randomization. In Proceedings of the 21st USENIX
Conference on Security Symposium, Security’12, pages
40–40, Berkeley, CA, USA, 2012. USENIX
Association.

[17] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using Innovative Instructions to
Create Trustworthy Software Solutions. In Proceedings
of the 2Nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP
’13, pages 11:1–11:1, New York, NY, USA, 2013.
ACM.

[18] K. J. Hoffman, H. Metzger, and P. Eugster. Ribbons:
A Partially Shared Memory Programming Model. In
Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, pages
289–306, New York, NY, USA, 2011. ACM.

[19] Interesting stats based on Alexa Top 1,000,000 Sites.
http://httparchive.org/interesting.php.

[20] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and
Z. Liang. Automatic Generation of Data-Oriented
Exploits. In 24th USENIX Security Symposium
(USENIX Security 15), pages 177–192, Washington,
D.C., Aug. 2015. USENIX Association.

[21] K. Kawachiya, K. Ogata, D. Silva, T. Onodera,
H. Komatsu, and T. Nakatani. Cloneable JVM: A
New Approach to Start Isolated Java Applications
Faster. In Proceedings of the 3rd International
Conference on Virtual Execution Environments, VEE
’07, pages 1–11, New York, NY, USA, 2007. ACM.

[22] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu. Flipping Bits in
Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In Proceeding of
the 41st Annual International Symposium on
Computer Architecuture, ISCA ’14, pages 361–372,
Piscataway, NJ, USA, 2014. IEEE Press.

[23] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information
Flow Control for Standard OS Abstractions. In
Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles, SOSP ’07, pages
321–334, New York, NY, USA, 2007. ACM.

[24] A. Kurmus and R. Zippel. A Tale of Two Kernels:
Towards Ending Kernel Hardening Wars with Split
Kernel. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications
Security, CCS ’14, pages 1366–1377, New York, NY,
USA, 2014. ACM.

[25] Linux Test Project.
http://sourceforge.net/projects/ltp/.

404

https://wiki.ubuntu.com/AppArmor
http://cherokee-project.com/
https://developer.mozilla.org/en-US/Firefox/Multiprocess_Firefox
https://developer.mozilla.org/en-US/Firefox/Multiprocess_Firefox
https://www.gnu.org/software/gdb/
http://httparchive.org/interesting.php
http://sourceforge.net/projects/ltp/

[26] S. McCamant and G. Morrisett. Evaluating SFI for a
CISC Architecture. In Proceedings of the 15th
Conference on USENIX Security Symposium - Volume
15, USENIX-SS’06, Berkeley, CA, USA, 2006.
USENIX Association.

[27] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
Reduction and Attestation. In Proceedings of the 2010
IEEE Symposium on Security and Privacy, SP ’10,
pages 143–158, Washington, DC, USA, 2010. IEEE
Computer Society.

[28] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An Execution Infrastructure
for TCB Minimization. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2008, Eurosys ’08, pages 315–328, New York,
NY, USA, 2008. ACM.

[29] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R.
Savagaonkar. Innovative Instructions and Software
Model for Isolated Execution. In Proceedings of the
2Nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP
’13, pages 10:1–10:1, New York, NY, USA, 2013.
ACM.

[30] A. Mettler, D. Wagner, and T. Close. Joe-E: A
Security-Oriented Subset of Java. In Network and
Distributed Systems Symposium, NDSS 2010. Internet
Society, 2010.

[31] A. C. Myers. JFlow: Practical Mostly-static
Information Flow Control. In Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’99, pages 228–241,
New York, NY, USA, 1999. ACM.

[32] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
Everything You Want to Know About Pointer-Based
Checking. In 1st Summit on Advances in
Programming Languages (SNAPL 2015), volume 32 of
Leibniz International Proceedings in Informatics
(LIPIcs), pages 190–208, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[33] N. Provos, M. Friedl, and P. Honeyman. Preventing
Privilege Escalation. In Proceedings of the 12th
Conference on USENIX Security Symposium - Volume
12, SSYM’03, pages 16–16, Berkeley, CA, USA, 2003.
USENIX Association.

[34] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and
E. Witchel. Laminar: Practical Fine-grained
Decentralized Information Flow Control. In
Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’09, pages 63–74, New York,
NY, USA, 2009. ACM.

[35] J. Saltzer and M. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, Sept 1975.

[36] J. H. Saltzer. Protection and the Control of
Information Sharing in Multics. Commun. ACM,
17(7):388–402, July 1974.

[37] Same-origin Policy. https://developer.mozilla.org/
en-US/docs/Web/Security/Same-origin policy.

[38] SECure COMPuting with filters. https://www.kernel.
org/doc/Documentation/prctl/seccomp filter.txt.

[39] SELinux. https://wiki.centos.org/HowTos/SELinux.

[40] R. Strackx, P. Agten, N. Avonds, and F. Piessens.
Salus: Kernel Support for Secure Process
Compartments. EAI Endorsed Transactions on
Security and Safety, 15(3), 1 2015.

[41] R. Strackx and F. Piessens. Fides: Selectively
Hardening Software Application Components Against
Kernel-level or Process-level Malware. In Proceedings
of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 2–13, New
York, NY, USA, 2012. ACM.

[42] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK:
Eternal War in Memory. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, SP ’13,
pages 48–62, Washington, DC, USA, 2013. IEEE
Computer Society.

[43] Valgrind. http://valgrind.org/.

[44] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion,
and M. Valero. CODOMs: Protecting Software with
Code-centric Memory Domains. In Proceeding of the
41st Annual International Symposium on Computer
Architecuture, ISCA ’14, pages 469–480, Piscataway,
NJ, USA, 2014. IEEE Press.

[45] G. Wagner, A. Gal, C. Wimmer, B. Eich, and
M. Franz. Compartmental Memory Management in a
Modern Web Browser. In Proceedings of the
International Symposium on Memory Management,
ISMM ’11, pages 119–128, New York, NY, USA, 2011.

[46] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient Software-based Fault Isolation. In
Proceedings of the Fourteenth ACM Symposium on
Operating Systems Principles, SOSP ’93, pages
203–216, New York, NY, USA, 1993. ACM.

[47] J. Wang, X. Xiong, and P. Liu. Between Mutual Trust
and Mutual Distrust: Practical Fine-grained Privilege
Separation in Multithreaded Applications. In 2015
USENIX Annual Technical Conference (USENIX ATC
15), pages 361–373, Santa Clara, CA, July 2015.
USENIX Association.

[48] R. N. Watson, J. Anderson, B. Laurie, and
K. Kennaway. Capsicum: Practical Capabilities for
UNIX. In USENIX Security 2010, pages 29–46, 2010.

[49] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore,
J. Anderson, B. Davis, B. Laurie, P. G. Neumann,
R. Norton, and M. Roe. The CHERI Capability
Model: Revisiting RISC in an Age of Risk. In
Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA ’14,
pages 457–468, Piscataway, USA, 2014. IEEE Press.

[50] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In 2009 30th IEEE Symposium on
Security and Privacy, pages 79–93, May 2009.

[51] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making Information Flow Explicit in
HiStar. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation -
Volume 7, OSDI ’06, pages 19–19, Berkeley, CA, USA,
2006. USENIX Association.

[52] N. Zeldovich, H. Kannan, M. Dalton, and
C. Kozyrakis. Hardware Enforcement of Application
Security Policies Using Tagged Memory. In
Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’08, pages 225–240, Berkeley, CA, USA, 2008.
USENIX Association.

405

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://wiki.centos.org/HowTos/SELinux
http://valgrind.org/

	Introduction
	Threat Model and Objectives
	SMV Model Design
	Memory Protection Domains
	Secure Memory Views
	SMVthread
	SMV API: User Space Library
	SMV Architecture
	Application Examples
	Producer-Consumer Model
	Case Study: Cherokee Web Server
	Case Study: Mozilla Firefox Web Browser

	Implementation
	SMV Communication Channel
	Metadata Management
	Partially Shared Memory Space
	Forking SMVthreads
	Page Fault Handler

	Evaluation
	Experiment Setup
	Robustness Test
	Inspecting Isolation
	Security Evaluation
	PARSEC 3.0 Benchmarks
	Cherokee Web Server
	Mozilla Firefox Web Browser
	Limitations

	Related Work
	Conclusions
	Acknowledgements

