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ABSTRACT

We make a case for packet-replay suppression at the network layer,
a concept that has been generally neglected. Our contribution is
twofold. First, we demonstrate a new attack, the router-reflection
attack, that can be launched using compromised routers. In this at-
tack, a compromised router degrades the connectivity of a remote
Internet region just by replaying packets. The attack is feasible
even if all packets are attributed to their sources, i.e., source au-
thentication is in place, and our evaluation shows that the threat
is pervasive—candidate routers for compromise are in the order of
hundreds or thousands.

Second, we design an in-network mechanism for replay suppres-
sion. We start by showing that designing such a mechanism poses
unsolved challenges and simple adaptations of end-to-end solu-
tions are not sufficient. Then, we devise, analyze, and implement
a highly efficient protocol that suppresses replayed traffic at the
network layer without global time synchronization. Our software-
router prototype can saturate a 10 Gbps link using only two CPU
cores for packet processing.

1. INTRODUCTION

End-to-end replay detection and suppression has been studied for
over three decades and practical mechanisms have been deployed
in many client-server [1–5], and host-to-host applications [6–9].

In contrast, in-network replay detection and suppression has been
generally considered unnecessary. For example, the end-to-end ar-
gument in network design states that since an end application will
detect and suppress replayed packets if deemed necessary, replay
suppression is unnecessary at the network layer [10]. In this pa-
per, we show that despite this seemingly persuasive argument, in-
network replay detection and suppression is becoming an indis-
pensable network functionality, and we provide a highly efficient
mechanism that can be used on commodity routers.

We begin by the following two observations: 1) The common
assumption that routers are trustworthy no longer holds, as attack-
ers are becoming increasingly interested and successful in com-
promising network infrastructure. Poor security practices [11–13]
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enable attackers to obtain access to routers. More significantly,
the adoption of emerging technologies such as software-defined
networking (SDN) enables attackers to compromise the network
directly [14, 15]. 2) In-network source and content authentica-
tion [16–19] is insufficient to thwart a broad range of replay at-
tacks enabled by compromised routers. In the following, we de-
scribe three adverse consequences of packet replays by compro-
mised routers.

First, source authentication—counter-intuitive as it may sound—
can help an attacker to frame an innocent source. For example, a
compromised router can deliberately replay packets to cause ab-
normally high packet rates and trigger intrusion detection systems.
Here, the adversary takes advantage of typical intrusion classifica-
tion rules to falsely accuse a source of misbehavior; e.g., to make
it appear malicious. Such attacks are particularly insidious, since
the source has no readily available recourse; e.g., because traffic
repudiation mechanisms require global inter-ISP cooperation [20],
which is difficult to orchestrate across different jurisdictions.

Second, replaying packets can be used to deliberately waste net-
work resources and corrupt accounting mechanisms. For instance,
a system that allocates network resources (e.g., bandwidth) to au-
thenticated sources [21, 22] can be easily overwhelmed by replay-
ing authentic packets. Furthermore, to increase billable traffic on
one of its underutilized paths, a malicious network (e.g., Tier-1 ISP)
could compromise a router in an upstream network, replay authen-
ticated traffic there, and then charge its customers for the artificially
generated extra traffic.

Third, we show that the effects of potential attacks are not local,
i.e., they do not affect only the implicated source(s). We present
a new attack—the router-reflection attack—that enables an adver-
sary to attack a geographic region of the Internet. The adversary
uses a compromised router and leverages services that do not per-
form end-to-end replay detection (e.g., DNS or NTP): the attacker
finds the routing bottlenecks of the target region [23] and replays
requests whose responses will target these bottleneck links on the
return path. The attacker can easily find such bottleneck links as
they are both pervasive and hard to remove in the current Internet;
and that these links are sufficiently provisioned only for a normal
mode of operation, but not for targeted flooding [24, 25]. We dedi-
cate Section 2 to the design and analysis of the attack.

In our quest to devise a practical in-network replay-suppression
mechanism, we found that simple adaptations of well known end-
to-end mechanisms cannot be used at the network layer: process-
ing, storage and communication overheads, and time synchroniza-
tion requirements raise numerous challenges.

Our in-network replay detection and suppression design is based
on a combination of per-interval sequence numbers with small ro-

tating Bloom filters that store observed packets for the currently
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active sequence-number window. Our design requires only mini-
mal coordination between domains (the sequence-number-window
update interval) and does not rely on global time synchronization.
Furthermore, we optimize the protocol parameters to ensure very
low overhead with respect to processing, storage, and communi-
cation latency. In fact, our software prototype demonstrates that
in-network replay suppression is practical to perform even on com-
modity routers.

In-network replay suppression comes with further interesting reper-
cussions: it ensures that every bit in transit is attributable to its
actual source, which is necessary for all accounting mechanisms.
Moreover, loops are inherently prevented, thus the Time-To-Live
field is no longer necessary.

In summary, this paper makes the following contributions:

• illustrate attack capabilities enabled by in-network replays and
evaluate their use in a new link-flooding attack (Section 2);

• show that traditional end-to-end replay detection is not suitable
to prevent in-network replays (Section 3);

• define a new protocol for in-network replay detection and present
its salient features (Section 4);

• evaluate the new protocol and show that it provides efficient and
scalable replay detection (Section 5).

2. ROUTER-REFLECTION ATTACK

In this section, we describe the router-reflection attack, a new attack
in which an adversary degrades, or blocks, legitimate traffic from
flowing into a chosen geographic region of the Internet. The ad-
versary compromises routers and replays packets in order to flood
targeted links that carry a majority of routes into the region. The
attack has similar goals as that of the Crossfire attack [24], but the
strategy and the adversary’s capabilities are different: it does not
rely on large botnets; it focuses on responses from public servers,
rather than requests to public servers.

2.1 Overview

Consider a set of hosts V , which are distributed over the Internet,
and a set of hosts T inside a confined region of the Internet—the
target area—against which the adversary launches the attack. A
target area can include the hosts of a city, an organization, or even
a small country. We refer to the traffic direction from V to T as
the inbound direction and to its reverse as the outbound direction.
The set of layer-3 links that carry a majority of routes from V to T

are the routing bottlenecks of the target area. A routing bottleneck
is different from a bandwidth bottleneck [26] in that a bandwidth
bottleneck is determined by the traffic load, whereas a routing bot-
tleneck is determined by the number of flows (source-destination
pairs) that it carries. Typically, routing bottlenecks are adequately
provisioned and the traffic flows do not experience degraded per-
formance in the absence of flooding attacks. Henceforth, the term
bottleneck refers to routing bottlenecks.

The goal of the adversary is to turn the routing bottlenecks of
the target area into bandwidth bottlenecks and degrade the perfor-
mance of as many flows as possible. To this end, the adversary
compromises a router near the target area and replays observed traf-
fic. Specifically, the adversary replays legitimate outbound requests
from hosts in T to selected services of hosts in V that do not per-
form end-to-end replay detection (e.g., most UDP-based services).
The corresponding responses from hosts in V hit the routing bottle-
necks of the target area in the inbound direction and consume the
bandwidth of these links (e.g., router R1 in Figure 1).

In its simplified version, the attack does not rely on traffic re-
sponses: a router can replay inbound traffic and hit routing bot-

Hosts in set V

Hosts in set T

Routing

Bottlenecks
R1

R2

Figure 1: Router-Reflection Attack: compromised routers R1

and R2 can target routing bottlenecks by replaying legitimate

traffic.

tlenecks that are located downstream (e.g., router R2 in Figure 1).
Hence, a router can replay a larger portion of the observed flows –
not only UDP-based services.

Our attack builds on intuition gained by recent work [23]: rout-
ing bottlenecks are target-area-specific, pervasive, and long-lived.
Furthermore, the attack has three distinguishing characteristics.

1. It exploits the fact that services that do not perform replay de-
tection are ubiquitous. There is an abundance of UDP-based
services used for common tasks (e.g., DNS, SSDP, NTP) that
will generate responses for replayed requests.

2. It does not inject “new” traffic nor does it modify the observed
traffic. Thus, the attack does not require large botnets to cre-
ate traffic and it is feasible even with source-authentication sys-
tems [16–18] in place. Note the difference from common reflec-
tion attacks that spoof the source address, directing the response
traffic to a victim.

3. It exploits the fact that Internet paths tend to be asymmetric,
especially when they traverse core backbone links [27,28]. This
means that the responses generated by the replayed requests will
likely follow a different inbound path back to the target area.
Thus, a compromised router can launch such an attack without
attacking itself in the inbound direction.

We emphasize that we assume a source-authentication scheme is
in place. That is, a router can verify the authenticity of a packet
(e.g., at the AS level) and drop modified and injected traffic. In
the strict sense, source authentication should detect replayed pack-
ets as well, since the actual source of a replayed packet is the en-
tity that injects the replayed packet. However, none of the source-
authentication schemes handle in-network replay detection explic-
itly; this raises the new class of attacks that we describe in this
section.

2.2 Execution

To launch a router-reflection attack against a target area, the adver-
sary proceeds in four stages: first, she selects the set of hosts T and
V ; then, she computes the routing bottlenecks for the target area;
next, she identifies candidate routers for compromise; and finally
she uses a compromised router to replay packets of specific flows.

2.2.1 Stage 1: Selection of Host-Sets T and V

The adversary begins by selecting a set of public servers in a tar-
get area (set T ). Furthermore, she selects a set of nodes that are
geographically distributed across the globe and will act as vantage
points for the target area (set V ). Note that the hosts in V do not par-
ticipate in the attack and are not under the adversary’s control; they
are used only to map the target area. The set V can be constructed
using Looking Glass (LG) servers that are globally distributed. An
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LG server is an Internet node that is accessed remotely (usually
through a web interface) and runs a limited number of commands
(e.g., traceroute and ping). For instance, CAIDA provides a list
with approximately 1500 LG servers located in 77 different coun-
tries and 268 different ASes [29].

2.2.2 Stage 2: Routing-Bottlenecks Computation

In order to compute the bottleneck links, the adversary constructs
a link-map that is centered at the target area and then computes
the flow density for every link in the map. We briefly present this
procedure, as it has been proposed in previous work [24].

Link-Map. To construct the link-map, the adversary performs
traceroutes from all vantage points (set V ) to all public servers in
the target area (set T ), which yields |V | · |T | distinct traces. A trace
consists of a sequence of IP addresses that belong to the interfaces
of the routers on the path. The IP addresses of two adjacent routers’
interfaces define a link. Thus, using all obtained traces, we get a
link-map centered at the target area.

The computed link-map includes unstable routes that must be
eliminated. In order to increase reliability and resource utilization,
routers are often configured to load-balance their traffic over multi-
ple paths; e.g., using per-flow or even per-packet policies [30, 31].
Thus, for the same source-destination pair, some links appear al-
ways in the traces— persistent links—and some do not—transient

links.1 The adversary eliminates transient links from the link-map,
as they do not qualify for candidate routing bottlenecks: it is un-
clear whether and under which conditions replayed traffic can in-
deed reach a transient link.

Flow-Density. Given the link-map and the traces, the adversary
computes the flow density for each persistent link, i.e., the num-
ber of flows that traverse the link. A high flow density for a link
means that it carries a large number of the generated traces and is
an indicative metric of the overall number of flows as well.

Routing bottlenecks are determined by sorting the links in a de-
scending order of flow density and then selecting the b highest
ranked links. Higher values of b mean that more links (and thus
more flows) can be considered. However, attacking only a few
links is sufficient to affect a large fraction of the inbound traffic
and achieve the adversary’s goal.

2.2.3 Stage 3: Attack-Router Selection

In the third stage of the attack, the adversary discovers candidate
routers for compromise. The adversary will then try to compromise
routers that can target as many bottlenecks as possible.

Routers for outbound replay. The adversary discovers routers
that can replay outbound traffic whose inbound responses will tra-
verse one or more bottlenecks.

To execute this step, the adversary performs traceroutes from
nodes in the target area to all hosts in V . The goal of the step
is to discover as many interfaces (and thus candidate routers) as
possible; thus, interfaces that perform load balancing are not elimi-
nated. Furthermore, the adversary must perform alias resolution for
the discovered interfaces, since the goal is to identify routers—not
links as in the inbound direction. Note that the adversary does not
control nodes in the target area, but there is a number of options to
perform this step. For example, she can use an LG server that is
located in the target area; or she can issue reverse traceroutes [32]
to hosts in V ; or use existing tools to discover the topology of an
ISP [33].

1The traceroute dataset for our experiments (See Section 2.3) con-
tains 2.3 million links, 44.6% of which are persistent.

Routers for inbound replay. For the simpler version of the attack,
the adversary uses the traceroutes from Stage 1. Using the traces
from V to T , the adversary locates the interfaces (and with alias
resolution the corresponding routers) that can replay packets and
target bottlenecks downstream.

Our evaluation (Section 2.3) follows the first three stages of the
attack and demonstrates that candidate routers are in the order of
hundreds or thousands.

2.2.4 Stage 4: Packet Replay

In the final stage, the adversary has compromised one or more of
the candidate routers and launches the attack. The adversary fol-
lows a similar procedure as in Stage 3, but this time using the
actual observed traffic. For outbound traffic, the adversary deter-
mines which flows will result in responses that will traverse bot-
tleneck links and ensures that she is not on the inbound path. To
gain insight about the reverse path, she can use similar methods as
described in Stage 3 (e.g., LG servers and reverse traceroute). For
inbound traffic, the adversary must determine which of the flows
can be replayed in order to target a bottleneck link that is located
downstream. The adversary can simply traceroute to the destination
of the flows and compare the traces with the bottlenecks computed
in Stage 1. In Section 2.4, we discuss more practical considerations
for launching the attack in both directions.

2.3 Experimental Results

In this section, we show that the router-reflection attack is practi-
cal; that is, we show that for a chosen target area there is an abun-
dance of candidate routers that can be compromised to attack rout-
ing bottlenecks. Our chosen target areas {Area1, Area2, Area3,

Area4} are a permutation of the alphabetically ordered list {Japan,

Rome, Seoul, Singapore}. We emphasize that the feasibility and
severity of the attack is not target-area specific since routing bot-
tlenecks are an elemental property of today’s Internet due to route-
cost minimization [23]; thus, our findings are not limited to the
above-mentioned areas.

In our experimental setup, we follow Stages 1-3 as described in
Section 2.2. For Stages 1-2, we use approximately 200 Planetlab
nodes as our vantage points, which are distributed in 34 different
countries and 97 different ASes. We choose 1000 public servers
in the target area using a public search engine with geolocation
properties.2 Furthermore, we vary the number b of links that we
consider as bottleneck links from 20 to 40. For Stage 3, we choose
a small number of measurement points in the target area that will
be used to perform traceroutes to the vantage points; we obtain
the measurement points from RIPE Atlas [34]. Finally, we per-
form traceroutes from all Planetlab nodes to all nodes in the target
area, and from all measurement points to all Planetlab nodes. This
gives us both the list of routing bottlenecks and the list of candidate
routers.

Routing Bottlenecks. The first interesting result is the location of
the routing bottlenecks in terms of hop distance from the vantage
points and the target area. We measure the average hop distance
from the source and compare it to the average path length. For
many of our traces, we do not obtain responses from the last hops;
usually this is due to firewalls in the hosts’ local networks. In such
cases, we assume that the destination resides after the last respond-
ing hop, resulting in a shorter average path length. In other words,

2We used SHODAN (https://www.shodan.io/) as our search en-
gine. When target areas are more confined regions (e.g., a city),
the location of the public servers must be cross-verified with other
geolocation services.
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Figure 3: Relative location and standard deviation of routers

that can target at least one bottleneck, for inbound and out-

bound replays.

we obtain an upper bound for the relative location of the bottle-
necks with respect to the average path length.

Figure 2 shows the average relative location and standard devia-
tion of the bottleneck links for each target area. The result shows
that the routing bottlenecks are located approximately in the middle
of the routes and confirms the results of previous work [23]. Fur-
thermore, the location of the links does not fluctuate significantly
as the number of bottleneck links increases.

Attack Router Identification. We discover routers that can re-
play packets in the outbound and inbound direction, and hence, are
candidates for compromise. We show the average location of can-
didate routers and the number of routers that can target at least one
bottleneck link.

Figure 3 shows the average location of the candidate routers that
can replay packets; the upper and lower box plots show the loca-
tion of the routers for inbound and outbound replay, respectively.
For inbound replay attacks, the candidate routers are located be-
fore the bottleneck links; this is expected, since bottleneck links
must be located downstream with respect to the candidate routers.
For outbound replay attacks, the candidate routers are located ap-
proximately in the middle of the routes; this happens because route
diversity increases close to the core, and thus, routers can launch at-
tacks without attacking themselves in the inbound direction. Again,
we see no considerable change as b changes.

Figure 4 shows the number of candidate routers that can target at
least one routing bottleneck; the upper and lower portions of each
bar represent the number of candidate routers that can be used for
outbound and inbound replay attacks, respectively. We observe two
interesting findings. First, there is an abundant number of candidate
routers to compromise, ranging from hundreds to thousands. Sec-
ond, increasing the value of b does not significantly increase the
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number of candidate routers. This is because the additional links
that are considered are adjacent to the initial routing bottlenecks,
and thus, only a few more candidate routers are discovered.

2.4 Practical Considerations

Mitigating Measurement Inaccuracies. We had to handle two
common sources of inaccuracies related to traceroutes.

First, traceroute may miss nodes, links, or even report false links [35].
We do not use specialized traceroute tools (e.g., Paris traceroute [35]),
since load-balanced links cannot become routing bottlenecks. In-
stead, we obtain multiple traces for every flow (10 probe packets
per trace) to eliminate inaccuracies due to load balancers.

Second, alias-resolution tools are mostly based on implementa-
tion specific details of routers and may introduce false negatives
and false positives. False negatives fail to cluster interfaces that
belong to the same router, which may reduce the number of can-
didates for attack routers. However, this is not an issue since we
can still find plenty of candidate routers. False positives associate
interfaces of different routers to the same router, which can lead
to false router identification as good targets. To reduce/eliminate
false positives, we use the Monotonic ID-Based Alias Resolution
(MIDAR) [36] tool from CAIDA for two reasons. First, the mono-
tonic bound tests of MIDAR yield a very low false positive rate.
Second, its efficiency in resolving aliases in large lists of interface
IP addresses: to resolve aliases in a list of N IP addresses it probes
O(N) pairs instead of testing the O(N2) candidate pairs.

Compromising Routers. In this paper, we focus on one severe
consequence of router compromises rather than software security
of routers; the latter is a research topic on its own right.

Our work, however, is motivated by the observation that com-
promised routers are already a major concern for ISPs. It is known
that state-level adversaries are massively targeting routers—they
are easy to compromise as they are rarely updated and lack security
software to detect breaches [37]. Cisco has issued a document to
warn operators of attacks against their routers and to inform them
about commonly used attack vectors [38]. Security companies con-
sider these attacks only the tip of the iceberg and highlight the dif-
ficulty of detecting such compromises, allowing attackers to main-
tain access for long time periods [39].

In addition, the emergence of SDN in ISP networks provides
endless possibilities for infrastructure compromises, since SDN se-
curity is not yet mature. Researchers have warned that attackers
can compromise networks directly [14,15]: First, controller vulner-
abilities allow attackers to compromise controllers and take con-
trol over the entire underlying infrastructure [40]. Second, SDN
switches have proven insecure as well, allowing attackers to install
persistent malware [41].
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Amplification Effect. Our attack leverages UDP services since
they do not perform replay suppression and they commonly have
responses that are much larger than the requests that caused them,
i.e., we exploit the UDP amplification effect. Recent attacks have
exploited extreme amplification factors (e.g., NTP monlist com-
mands can have a factor up to 4700) of misconfigured services,
however, moderate amplification factors are common in legitimate
requests as well. For example, DNSSEC requests can have an am-
plification factor of 30; the GetBulk operation in SNMPv2 has an
amplification factor of 6.3; and the BitTorrent hash searches have
an average factor of 3.8. Routers that replay packets in the in-
bound direction have to rely on their available capacity to cause
congestion. Note that although bottleneck links are adequately pro-
visioned for normal network conditions, the additional load caused
by small-to-moderate amplification at a router’s full capacity would
significantly degrade the available capacity.

Early Congestion. In case of early congestion, a link that is located
upstream of the bottleneck link gets congested. Early congestion
does not render the attack impossible, but confines its effect. A
router that replays outbound traffic has no visibility in the inbound
direction and thus cannot react to early congestion. A router that
replays inbound traffic, however, has the bottleneck links located
downstream. Thus, the router can perform traceroutes to the target
area and determine early congestion based on the responses: in
case of early congestion the router would not receive most of the
ICMP replies. The router can then react by decreasing the replay
rate of the corresponding flows; at the same time, it can increase
the replay rate of flows that exit from the same interface, but hit
another bottleneck.

Attack Detectability. A high replay rate of specific flows can
trigger firewall alarms whenever network operators employ rate-
limiting controls; e.g., Response Rate Limiting in DNS name servers.
Although, in principle, this may limit an adversary’s high-intensity
replays for outbound, in practice this is easily overcome: an attack
router can replay different flows that hit the same routing bottle-
necks in the inbound direction.

Replaying packets in the inbound direction (see simplified at-
tack) is less prone to rate-limiting. Intrusion detection systems and
protection mechanisms are typically deployed close to the hosts and
are not pervasive in the network, offering protection to resources of
end systems, but not network resources. Routing bottlenecks are
located in the middle of the routes and thus at a safe distance from
the actual targets of the attack. This yields such defense mecha-
nisms ineffective against inbound packet replay.

3. CHALLENGES FOR IN-NETWORK RE-
PLAY SUPPRESSION

End-to-end replay-suppression mechanisms, i.e., mechanisms real-
ized at the communicating end hosts, cannot be used at the network
layer due to fundamental operational differences:

1. The packet throughput of routers is orders of magnitude higher
than the packet throughput of the fastest services. Consequently,
a replay-detection overhead that is tolerable for a server may be
intolerable for a router.

2. Routers are equipped with a few tens of MBs of fast memory
(SRAM) per data-path chip. Routers use fast memory for per-
packet operations in order to minimize latency and sustain a high
throughput. However, hardware manufacturers do not integrate
more than a few tens of MBs of memory per chip, as the yield
becomes too low to sustain the manufacturing process. On the
contrary, end servers can meet their performance requirements

by using larger and slower memory (DRAM) combined with the
fast memory of CPU caches.

3. Novel mechanisms at the network layer often require coordina-
tion and introduce complex interactions between network enti-
ties. For example, a mechanism may require time synchroniza-
tion among routers of different domains.

3.1 In-Network Mechanisms

To detect and suppress replayed packets in the network, a router
must inspect each packet it forwards; thus, the detection mecha-
nism must be efficient and lightweight so that it does not impair
forwarding performance. We consider three main challenges for
universally deploying a novel mechanism at the network layer:

1. Computation Overhead. In order to sustain a high through-
put, a router has a strict time budget to serve a packet. The two
major components that carve out this budget are latencies due
to memory operations and due to CPU-intensive operations. For
example, if the memory footprint for replay detection is too large
to fit into the fast memory of the router (e.g., on-chip caches),
forwarding performance will be degraded due to cache misses.
Likewise, if CPU-intensive operations, such as frequent public-
key signature verifications become necessary, the forwarding
performance will suffer.

2. Communication Overhead. The communication overhead comes
in the forms of latency overhead and bandwidth overhead. For
example, if a router needs to ask another entity (e.g., the source
host who created the packet or a remote router) to check the
authenticity of the packet, the communication latency will in-
crease substantially. Furthermore, additional data in packets or
additional messages will increase the bandwidth overhead (es-
pecially if they are sent frequently).

3. Time Synchronization. In one extreme, a replay detection mech-
anism does not require any of the entities (e.g., routers, ASes,
hosts) to be synchronized; and on the other extreme, it may re-
quire every entity in the Internet to be synchronized. A middle-
ground solution may require only parts of the networks to be
synchronized (e.g., entities within each autonomous system).

3.2 Inadequacy of E2E Replay Detection

Early work on replay detection identified four basic primitives, and
combinations thereof, that are found in all end-to-end protocols for
secure communication [42]. We present these primitives and study
their applicability for in-network replay detection.

Storing Packet Digests. A router stores a digest for every packet
that it forwards. When the router receives a new packet, it checks
whether it has seen the packet before. This has significant ad-
vantages: it has a relatively low processing overhead (i.e., a sin-
gle hash operation), no communication overhead, and no time-
synchronization requirement. However, it has a large memory foot-
print, which makes it impractical for routers: for a fully saturated
10-Gbps link, a router needs to store 109 bits of data for each
passing second. Even an efficient storage data structure, such as
a Bloom filter is impractical: a router would need 142 MB to store
packets received in one minute, assuming a target false positive rate
of 10−5 and the largest packet size of 1500-byte, i.e., the lowest
packet rate. No router can store 142 MB in its on-chip cache. Even
if the router stores packets for a minute, adversaries can still replay
packets after one minute. Thus, indefinitely storing observed traffic
without a mechanism to discard packets is not viable.

Sliding Time Windows. A router maintains a time window and
accepts packets whose timestamps fall within the window. This re-
quires time synchronization since the source needs to use a times-
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tamp that falls within the time window of the router. To prevent
replays, the router needs to store the packets that it has forwarded
in a buffer until the packets become invalid by falling out of the
sliding time window. This approach has minimal communication
overhead (the timestamp in the packet) since the router does not
exchange additional messages with the source. However, minimiz-
ing the size of the buffer comes at the cost of strict time synchro-
nization so that legitimate packets are not dropped. Since precise
Internet-wide time synchronization is impractical, we consider this
approach also impractical.

Per-Packet Sequence Numbers. A source and an intermediate
router maintain a sequence number for the source’s last observed
packet: the source inserts a sequence number in each packet, and
the router accepts packets that have a higher sequence number than
the router has previously seen from the source. This approach does
not require any time synchronization, does not incur any latency
overhead, and does not introduce prohibitive computation over-
head. However, packet reordering can cause dropping of legitimate
packets, when packets with higher sequence numbers arrive before
packets with lower sequence numbers. Furthermore, this mecha-
nism requires per-source state at routers; thus, the storage overhead
depends on the granularity at which sources are identified. For ex-
ample, if sources are identified at the granularity of a host, then this
approach requires per-host state at routers, which is impractical.

Challenge-Response. For each packet, a router asks the source
host to send a proof of transmission that verifies that the packet is
not a replay: the router inserts a nonce and expects from the source
a cryptographic signature over the nonce; alternately, the source
can produce a message authentication code (MAC) using a key that
is shared with the router. The latter approach has a relatively small
computation overhead and does not require time synchronization.
However, it has the largest communication overhead of all mech-
anisms since a separate challenge is needed for every packet that
traverses every router. Hence, it is impractical.

Second Chance. This hybrid approach [42] combines three of the
four primitives discussed above: it uses a variable-sized sliding
time window and uses a buffer to store past packets for the duration
of the window. To eliminate the requirement for time synchroniza-
tion between a source and a router, it uses a challenge-response
mechanism when needed: when the packet’s timestamp falls out-
side the router’s time window, the router asks the source to resend
the packet using a timestamp the router provides, thereby giving
the source a second chance. This approach is impractical at the
router level because packets typically go through multiple routers
that perform replay detection, and as a result, a packet may expe-
rience multiple rounds of second chances; thus incurring a large
communication overhead that makes the approach impractical.

4. IN-NETWORK REPLAY SUPPRESSION

We present our solution for in-network replay suppression, starting
with our assumption. Then, we provide a high-level overview of the
solution, followed by the protocol details. Finally, we formulate an
optimization problem to determine all the parameters.

Assumption: We assume that a source-authentication scheme is
deployed, i.e., every packet in the network is attributed to its source.
We emphasize that replay attacks are meaningful only if source
authentication is deployed; otherwise, an adversary controlling a
router can directly inject/spoof traffic and attack any target. There-
fore, source authentication is a fundamental requirement of such
security schemes; it is not a specific limitation of our mechanism.
As we show in Section 2, source authentication does not prevent

replay attacks, however it is necessary to prevent malicious routers
from tampering with traffic.

The source-authentication literature has several proposals that
can be used. For instance, OPT [18] uses dynamically re-creatable
keys in order to provide scalable source and data authentication.
Packet Passport [17,43] uses multiple message authentication codes
(MACs) to provide AS-AS authentication; each MAC is computed
with the shared-key between the source AS and the transit AS on
the path. Shared keys are generated through Diffie-Hellman key
exchanges, using the public and private keys of ASes; the public
keys are obtained from RPKI [44]. OPT and Passport are practical
at the router level and can be used by our mechanism.

4.1 Overview

We build our replay-suppression mechanism based on two primi-
tives: per-interval sequence numbers and storing packet digests in
a Bloom Filter (BF). A valid sequence number is the first control
check to ensure that a packet is legitimate (Section 4.1.1). If the
packet is accepted, it is then checked against a locally stored list of
previously observed packets that also have valid sequence numbers
(Section 4.1.2). In other words: packets that are stored and re-
played significantly after their observation time will be caught due
to a sequence-number mismatch; packets that are replayed shortly
after their observation will be caught by the BF; and packets that are
replayed with a modified sequence number will be caught by source
authentication. Through this combination, we build a mechanism
that does not require global time synchronization and does not in-
troduce communication overhead due to additional messages. Fur-
thermore, our mechanism does not require adoption at every router,
but can be deployed only at border routers of ASes; we discuss the
security implications of the deployment locations in Section 6.1.

4.1.1 Per-Interval Sequence Numbers

Recall from Section 3 that the use of per-packet sequence num-
bers (seqNos) has two implications for a replay-suppression mech-
anism: the storage overhead depends on the granularity at which
sources are identified, and that legitimate packets may be dropped
if a packet with a higher seqNo arrives earlier than a packet with a
lower seqNo.

In our approach, every source AS uses a seqNo, and every other
AS (more precisely, their border router) remembers the seqNo of
the source AS; in other words, routers keep per-AS state. More
precisely, the source AS embeds a seqNo in every outbound packet,
and transit routers only accept packets with seqNos that fall within
a seqNo window. Furthermore, the source AS does not increment
its seqNo per packet, but at fixed time intervals; in essence, ASes
achieve loose synchronization without relying on global time syn-
chronization. Our approach raises two important issues: the update
frequency of the seqNos and the dissemination mechanism for new
seqNos.

Update Frequency. The source AS periodically increments its
seqNo in order to invalidate previously sent packets with smaller
seqNos. Note that to achieve loose synchronization, the seqNo-
update frequency is the only parameter that requires global agree-
ment among ASes: ASes update their seqNos at a constant interval,
but the seqNo values and the actual events of updating them are not
synchronized. This approach makes it easier to handle packet re-
ordering. A router maintains a seqNo window and only the packets
with seqNos within the window are accepted. The use of per-packet
seqNos makes it hard to determine an appropriate length for the
window so that legitimate packets are not dropped; the length de-
pends on parameters that change dynamically over time, such as
traffic patterns (e.g., packet bursts) and load balancing at interme-
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Table 1: Summary of Parameters and Notation

Parameters determined by the environment

r Incoming packet rate at the routers.
σ Maximum latency variation between packets.

Parameters determined by the optimization problem (§4.3)

T Sequence-number-update interval.
fp False-positive rate.
M Length of the sequence-number window.
L Bloom filter switching interval.
∆ Additional time to delay sequence-number updates.
N Number of bloom filters.
m Size of bloom filter.
k Number of hash functions or bloom filter indices.

Symbols for Source AS S

SNS Sequence number used by S.

Symbols for Router R

SNR
S Sequence number that router R maintains for S

T T LS TTL until R increments SNR
S .

BFi i-th bloom filter, where 0≤ i < N.
BFw Bloom filter where incoming packets are inserted.

Other Symbols

p An arbitrary packet.

SN
p
S Sequence number of S that is encoded in packet p.

diate routers. With our approach we mask away this complexity,
since we only need to consider the maximum variance in one-way
latency (more details in Section 4.3).

Update Dissemination. Transit routers must be informed and keep
up-to-date information for the valid seqNos of every AS, so that the
observed packets can be checked. To this end, we use the following
two mechanisms.

The first one is an in-band mechanism: the source AS incre-
ments its seqNo, which is carried in outbound packets, and thereby
informs routers in other ASes. Upon receiving a packet, router R

updates the locally stored seqNo SNR
S for the source AS S, if the

packet is authentic and it carries a higher seqNo SN
p
S than the one

stored. The benefit of this approach is that it does not require any
additional messages to disseminate updated seqNos.

The second one is a local mechanism: a router increments the
locally stored seqNo for the source AS by itself, if a new seqNo is
not seen for a prolonged period of time; we refer to the time inter-
val after which the seqNo for the source is incremented as T T LS.
This self-initiated update is necessary to limit the storage overhead
at routers, since a router stores all packets with valid seqNos to
prevent replays (Section 4.1.2); if the seqNo for a source is not up-
dated, the router cannot delete the stored packets from the source.
Thus, T T LS will be a function of the seqNo-update interval, so that
the router’s seqNo for the source closely follows the source’s seqNo
in every case.

4.1.2 Storing Packet Digests

A router stores digests for previously observed packets to guar-
antee that packets with valid seqNos are not replayed. This is a
consequence of using per-interval seqNos, since a seqNo does not
uniquely identify a packet.

We create a data structure that consists of multiple BFs that are
periodically rotated. In this data structure, a packet is inserted only
into one of the filters, which we denote as the writeable filter; how-
ever, when searching if the packet has been previously observed, all
filters are searched. Furthermore, the filters are periodically rotated
in a round-robin fashion to prevent flooding of a single filter with
too many insertions.

Algorithm 1 Processing of Packets p at Router R

authenticate(p) Checks if p is authentic

get_src_info(p) Retrieves SNR
S , T T LS for S

bf _lookup(p,BF) Lookup p in bloom filter BF

bf _insert(p,BF) Insert p into bloom filter BF

1: if !authenticate(p) then

2: return
3: end if

4: {SNR
S ,T T LS}← get_src_info(p)

5: if SN
p
S < SNR

S −M then

6: return
7: else

8: if SN
p
S > SNR

S then

9: SNR
S ← SN

p
S

10: T T LS← T +∆

11: else

12: for 0≤ i < N−1 do

13: if bf _lookup(p,BFi) then

14: return
15: end if

16: end for

17: end if

18: bf _insert(p,BFw)
19: Forward p

20: end if

We emphasize that a packet is inserted to a BF independent of
the seqNo in the packet; the packet is added only to the currently
active filter, the writeable filter. However, the observed packet is
checked for replay by checking all BFs for membership, includ-
ing the writeable one; a positive response from any of the filters
indicates a replay. In order to delete packets, the filter that be-
comes writeable is reinitialized to zero. Note that packets in the
zeroed filter have sequence numbers that are no longer valid and
will be discarded if replayed. This approach naturally raises two
inter-related issues: how to determine the number N of filters in the
data structure and the frequency of rotation L.

Recall that a router periodically rotates the BFs, but the rotation
is independent of the seqNo updates by the ASes. In order to ensure
replay detection, a router must remember a packet at least until the
packet seqNo is invalidated. That is, the BF coverage period must
be at least as long as that of the seqNo-window, so that valid seqNos
cannot be replayed. Hence, the time window that the BFs must
cover, which is N ·L, must exceed the amount of time that is needed
for the packet to become invalid. At the same time, BFs must be
small to reduce storage requirements and fit in fast memory. In
Section 4.3, we take N and L into account to compute the optimal
parameters for our replay-suppression protocol.

4.2 Protocol Operations

We present the tasks that are performed by the egress border routers
of the source AS S and by the ingress border routers R of the inter-
mediate and destination ASes. Table 1 summarizes the parameters
and the notation we use.

Source AS: S inserts its seqNo SNS in every outbound packet. In
addition, it increments its seqNo SNS after each interval T.

Ingress Router: For each incoming packet from a neighboring AS,
R checks if the packet falls within the seqNo window for S and if
the packet is present in any of the BFs. Algorithm 1 describes the
procedure that R executes for incoming packets.
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Initially, the router checks the authenticity of the packet (Lines
1-2) and checks if the seqNo in the packet (SN

p
S ) falls within the

seqNo window (Lines 5-6). If the packet is not authentic or has
an invalid seqNo, the packet is dropped and the procedure termi-
nates. Then, for valid packets, the router checks if the packet has
been previously recorded in any of the N BFs (Lines 12-16). If the
packet has not been seen previously, it is added to the writeable fil-
ter (Line 18) and then it is forwarded (Line 19). Note that when
querying/adding a packet to a BF, the router computes a pseudo-
random-function (PRF) over the content of the packet, excluding
the mutable packet fields. The output of the PRF is used to deter-
mine the bits in the BFs that must be checked/set; the key for the
PRF is known only to the AS. The use of a PRF is necessary to pre-
vent an adversary from launching a chosen insertion attack against
the BFs: if the adversary can control which bits in the writeable
filter are set, it can set all bits in the BFs and cause all packets to be
recognized as replays.

Furthermore, if the seqNo in the packet is higher than the one
locally stored for S, R updates its seqNo and reinitializes T T LS to
T +∆ (Lines 8-10), which is the count-down timer used to self-
update the seqNo of the source. ∆ is an additional short delay that
is used to ensure that the router does not increment the source’s
seqNo faster than the source does. If a router were to increment the
source’s seqNo faster, then it could be that after a long time period
packets from the source AS would be dropped.

In addition, R performs one more task (not described in Algo-
rithm 1). It periodically decrements T T LS for each AS; if T T LS

becomes zero, the seqNo of the corresponding AS (SNR
S ) is incre-

mented and T T LS is reset to T +∆. This implements the count-
down timer that is used for the self-updates of the sources’ seqNos.

4.3 Optimization Problem

In this section, we formulate an optimization problem that involves
the inter-related parameters of our mechanism. An appropriate con-
figuration of the parameters and especially of the BFs is crucial to
guarantee a high forwarding performance for the routers. We de-
scribe performance as a function of all the involved parameters:
f (m,k,N,L,M). Then, we derive constraints between the parame-
ters, which gives us the following optimization problem:

minimize f (m,k,N,L,M)

subject to M >
σ

T
+1, (1)

N >
1.1(T +σ)

L
+1, (2)

m >
−krL

ln(1− (1− (1− fp)
1
N )

1
k )
, (3)

m,k,N,L,M ∈ Z+ (4)

Sequence-number update interval (T ). T represents the time pe-
riod for which a seqNo is used, before it is incremented. We con-
sider values on the order of a few milliseconds (e.g., 10ms), and we
show that it leads to an efficient implementation.

Additional delay window (∆). ∆ is a delay period that is used to
slow down the update rate of router’s R view for the seqNo of AS
S (SNR

S ). It ensures that R does not increment its seqNo faster than
S, i.e., does not increment at an interval shorter than T .

The main reason for an early update is the clock drift between S

and R. We define ∆ with respect to T , since the amount of clock
drift is proportional to the time period under consideration; we are
interested in estimating the seqNo-update inaccuracy for SNS and
SNR

S by S and R respectively. We conservatively assume that the
clock drift is lower than 0.05 · T ; Marouani et al., report that a

S

R

ti ti+1 ti+M-1 ti+M

< ti+M + ε2ti+1-ε1+σti+1-ε1

Sequence-number window: M

Maximum latency variation: σ

time +

Figure 5: The last arriving packet with seqNo i must arrive

before the first arriving packet with seqNo i+M.

clock variation of 0.5 ppm, i.e., a drift of 0.5 µs per second, is a
conservative estimate [45].

Furthermore, to account for the worst case, we assume that R has
the fastest clock, i.e., R thinks T has passed when in reality 0.95 ·T
has passed, and S has the slowest clock, i.e., S thinks T has passed
when in reality 1.05 ·T has passed. Thus, we set ∆ = 0.1 ·T .

Sequence-number window length (M). Equation 1 expresses the
length of the seqNo window that a router maintains, as a function
of the period that a single seqNo is used (T ) and of the maximum
latency variance (σ ) between two packets.

The inequality is derived as follows: let ti denote the time at
which S starts using seqNo i. Since seqNos are updated every T ,
the elapsed time between the start of two seqNos is ti− t j = (i−
j) · T , for i > j. Then, consider a router that accepts packets in
the window [i, i+M−1]. To ensure that a legitimate packet is not
dropped due to packet reordering, the last packet with a seqNo of
i should arrive at R before the first packet with a seqNo of i+M

(Figure 5). In the worst case, the last packet with seqNo i is sent
at ti+1− ε1 and received at ti+1− ε1 +σ , where ε1 is an arbitrarily
small positive constant. The first packet with seqNo i+M arrives at
R no earlier than ti+M +ε2, where ε2 is an arbitrarily small positive
constant. Mathematically, the relation between the packet-arrival
times can be described as ti+1−ε1+σ < ti+M +ε2. By rearranging
the inequality and using the fact ti+M−ti+1 =(M−1) ·T , we obtain
Equation 1.

Bloom-filter parameters (m, k, N, L). Equation 2 expresses the
number N of required BFs as a function of the BF rotation inter-
val L. Recall that R has to store a packet at least until the seqNo
of the packet is no longer valid, which is a time period of length
M · (T +∆).3 Therefore the complete rotation of the circular BFs,
which lasts for N ·L, should take longer than M · (T +∆), and this
yields that N ·L>M ·(T +∆). We obtain that N >M ·(T +∆)/L+1
filters are required; the additional filter is necessary to store the
incoming packets at the current time interval. We combine the
formed inequality with Equation 1 and by setting ∆ = 0.1 · T we
obtain Equation 2.

Equation 3 describes the size m of each BF as a function of the
BF rotation interval L, the number N of BFs, the number k of nec-
essary hash functions, and the BF’s target false-positive rate (fp).
Since an incoming packet is checked against all BFs, the overall
target false-positive rate is 1− (1− fp)N . To determine the value
for fp, we consider the average number of packets that a router re-
ceives in an interval L (which is r ·L, where r is the incoming packet
rate). Using the BF equations, we get fp = (1− ek·x·L/m)k and by
combining it with the equation for the size of a BF, we obtain Equa-
tion 3. The inequality indicates that any larger value for m yields a
lower false-positive than fp.

The formulated optimization problem is an integer programming
problem, which is known to be NP-hard [46]. Note that also the ro-

3In the worst case, a router does not receive seqNo updates from
the source and self-increments the seqNo every T +∆.
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Parameter Value Parameter Value

T 10 ms m 8 MB
r 14.88 Mpps k 11
σ 100 ms N 2
M 11 L 121 ms

Table 2: Software-router Implementation

tation interval L is an integer: a time period in a computing system
is expressed as a multiple of some minimum supported time gran-
ularity (e.g., 1 ns); in practice, we will use values at the order of
1 ms (Section 5). In our context, we obtain multiple solutions to
the problem by searching a constrained parameter space; for exam-
ple, we constrain the size of the BF to be less than 20 MB, since
ideally it should fit into a processor’s cache. Our grid search is per-
formed as follows: 10 ms ≤ L ≤ 200 ms, 2 ≤ N ≤ 20, 2 ≤ k ≤ 30,
1 MB≤ m≤ 20 MB.

Furthermore, the objective of the optimization problem changes
depending on the implementation platform (e.g., software vs. hardware-
based implementation). In Section 5.1, we adapt the optimization
problem to a software router and show how a selection of carefully
chosen parameters leads to an efficient implementation.

5. SOFTWARE PROTOTYPE

To demonstrate the practicality of our approach, we implement the
proposed replay-suppression mechanism on a software router. Our
evaluation focuses on the overhead of replay suppression and not
other functionalities (e.g., source authentication or longest prefix
matching). Thus, we do not consider a specific underlying network
architecture, but we make the following generic assumptions:

• Every packet injected into the network by a host has a unique
network-layer identifier. For example, the IP-ID field in IPv4 is
implemented by most operating systems as a packet counter [33].
We use this identifier together with the immutable content of a
packet to uniquely identify the packet and minimize the proba-
bility of a collision.

• A router can obtain the AS number (ASN) of the source-host for
every packet. For example, certain network architectures express
addresses as a (ASN : hostID) tuple [16,17]; or an IP forwarding
information base (FIB) can be extended to include this informa-
tion for every source-address prefix.

5.1 Implementation

The focus of our implementation is to optimize memory-access
patterns. Since our solution is a memory-intensive application4,
forwarding performance depends mostly on cache efficiency, i.e.,
it depends on the memory footprint of the application and on the
memory access patterns. Small data structures are more likely to fit
in the cache and, thus, reduce the importance of the access pattern.
However, in a software implementation the cache is shared with
other processes and a small memory footprint does not guarantee
optimal performance. Thus, we focus on minimizing cache misses.

To minimize cache misses, we use a blocked BF [47] instead
of a standard BF. A blocked BF consists of multiple standard BFs
(called blocks), each of which fits into the typical 64-byte cache
line. For each element that is checked/inserted, the first hash value
determines the block to be used and additional hash values deter-
mine which bits to check/set in the block. Thus, a blocked BF
needs one cache miss for every operation in the worst case. This
optimization comes at the cost of a larger memory footprint com-
pared to a standard BF with the same false-positive rate.

4For each packet, k ·N bits are accessed in the BFs; k bits for each
one of the N BFs.

The next step to minimize cache misses is to minimize the num-
ber of blocked BFs. Recall from the protocol description (Sec-
tion 4.2) that for every observed packet, we add it to the writeable
BF and check for its presence in all other filters. Since blocked BFs
may have one cache miss per checked/inserted element, we want to
minimize the number of filters.

We solve the optimization problem (Section 4.3) with the objec-
tive of minimizing the number of BFs. To account for the worst
case, we assume a packet rate of 14.88 Mpps, which is the theoret-
ically maximum packet rate for a 10 GbE Network Interface Card.
Also, we set a conservative value for the maximum latency varia-
tion σ to 100 ms, based on a recent latency-measurement study [48].
We target for an overall false-positive rate that is less than 5 ·10−6,
and we obtain multiple solutions that use N = 2 BFs (which is also
the lowest possible value according to Equation 2). Specifically, we
obtain solutions that have different filter sizes (m), different seqNo
window lengths (M), and that rotate BFs at different time intervals
(L). From these solutions we choose the one that has the smallest
memory footprint (lowest m value), under the constraint that the
filter size is a power of 2. This constraint provides a significant
processing speedup, as heavily used computations are transformed
to bitwise operations (e.g., modulo operations become bit-shifts).
Table 2 summarizes all the parameters of our solution.

Furthermore, to check/insert elements in the BF, we need to ob-
tain the pointers to the corresponding bits in the filter. To imple-
ment the keyed PRF (Section 4.2), we compute an AES based
CBC-MAC over a fixed length of the first bytes of a packet, as a
CBC-MAC is insecure for variable-length messages [49]. Also,
from our analysis of CAIDA traces [50], we found that the first 48
bytes of a packet’s content are sufficient to mitigate digest colli-
sions; the same result has been reported by previous work [51]. We
split the 16-byte output of the MAC into appropriately sized chunks
so that the first chunk points to the 512-bit block and the remaining
chunks point to the bits in the block.

The last required functionality is the FIB. The FIB holds for
every AS S the seqNo SNR

S and the count-down timer T T LS; we
decrement the TTL value every 1 ms.

Optimizations. We leverage the Data Plane Development Kit [52]
and Intel AES-NI [53] to build our prototype, and we perform the
following optimizations to the BF. To insert an element, we lever-
age 128-bit registers and an SSE OR instruction: we prepare the
inserting element by setting the respective bits obtained from the
MAC computation. Then, we set the required bits in the 512-bit
block with four 128-bit SSE OR operations. To check for member-
ship of an element, we use early exit, i.e., as soon as we discover
an unset bit we know the element is not a duplicate. This results in
better performance since false positives are low and it is very likely
to discover unset bits early.

5.2 Evaluation

We evaluate the switching performance of our software router on
a commodity server equipped with an Intel Xeon E5-2680 CPU
(20 MB L3 cache), 32 GB DDR3 RAM, and a 10 GbE Network In-
terface Card (NIC). We dedicate only two cores of the CPU to per-
form all required processing: one core processes incoming packets,
and the other core updates the TTL values and seqNos in the FIB.

We utilize Spirent SPR-N4U-220 as our packet generator to gen-
erate load on the router; the router processes the generated traffic
and sends it back to the generator. We generate a FIB with 55k
ASNs, and use random destination addresses to avoid spatiotempo-
ral locality for FIB cache accesses.

First, we test the forwarding performance of one port for two
packet sizes (64 and 128 bytes) and a representative mixture of In-
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Figure 6: Forwarding performance for packet sizes of 64 and

128 bytes and for iMIX.

ternet packet sizes (iMIX) [54]. Minimum-sized packets, 64 bytes,
translate to the highest possible packet rate and are the worst case;
we refer to the highest packet rate for each test case as the line-rate
performance. The baseline for the experiments is the forwarding
performance without any packet processing. Figure 6 shows the
forwarding performance we obtain. The results show a 25% de-
crease for minimum-sized packets; and that for longer packet sizes,
i.e., lower packet rates, optimal performance is achieved.

Next, we measure the latency overhead of our implementation
(Figure 7). We observe a two-fold increase in average latency only
for minimum-sized packets. The average latency and latency range
is almost identical for the other two test cases.

We observe a performance degradation, both for throughput and
latency, for minimum-sized packets. This performance degradation
is attributed to the penalty of cache misses and the overhead of the
MAC computation when the router is subjected to the maximum
load. We emphasize that a 10 GbE link, fully utilized with 64-byte
packets is far from a realistic workload. For a more realistic work-
load with iMIX, which has an average packet size of 417 bytes, our
implementation saturates line-rate.

6. SECURITY CONSIDERATIONS
6.1 Deployment Location and Topology

We discuss certain security issues that depend on the location of
routers that deploy replay suppression and on the network topology.

In Section 4, we mentioned that routers which deploy replay sup-
pression are located at the borders of ASes. This deployment model
raises certain security issues, which are mitigated if more routers
inside an AS deploy the protocol.

Packet replays create an attack surface, which includes the path
segments between the malicious router and the first deploying router
that will drop the replayed packets. If deploying routers are located
only at AS borders, then the attack surface is limited to a single
AS. If more routers inside an AS deploy the protocol, then the at-
tack surface is further reduced. For example, ASes could deploy
more such routers near routing bottlenecks.

Furthermore, a malicious router can strategically replay packets
even against deploying routers: since replay suppression is done by
routers individually, without coordination among them, a packet
that is sent to one deploying router can be successfully replayed
(once) to another deploying router. However, the effect of such
an attack is limited: the malicious router can replay a packet at
most once to a router that performs replay suppression; additional
replays after the first one will be suppressed.

6.2 Attacks on Bloom Filters

BF implementations are a common target for attackers [55]. We
consider two types of attacks that could be launched against our
protocol.

1. Chosen-insertion Attack. In a chosen-insertion attack, the ad-
versary crafts packets that fill up the bits in the BF so that the

Figure 7: Average, minimum, and maximum packet latencies

for packet sizes of 64 and 128 bytes and for iMIX.

false-positive rate becomes very high. Our protocol is resilient
against the attack because we use a keyed PRF to compute the
bit locations in the filter. Since the key is not known to the ad-
versary and the output of the PRF is uniformly random, the ad-
versary cannot set specific bits in the filter.

2. Query-only Attack. In the query-only attack, the adversary at-
tempts to launch a DoS attack against the BF by querying items
that take an abnormally long time to check. In our protocol,
we focus on cache efficiency, so that either the BFs fit entirely
in the cache or that checking for an item requires at most one
cache miss.

6.3 Sequence-number Wrap-around

The use of per-interval seqNos makes wrap-arounds (i.e., restarting
from zero) infrequent,5 but wrap-arounds will eventually happen.
In the event of a wrap-around, previously invalidated packets can
be replayed because the seqNos become valid again. Furthermore,
an adversary can replay previously seen packets that have higher
seqNos than the one currently used by a source AS, so that the
router would fast-forward the seqNo window for the source AS. As
a result, the router would drop all legitimate packets that are sent
by the source AS.

This problem is inherently solved by the underlying source au-
thentication mechanism. In source-authentication schemes, source
ASes periodically update their keys, so if the source AS updates
the key before its seqNo wraps around, then the old packets will be
invalid due to an authentication failure.

7. DISCUSSION

Hardware Implementation. In our software-router implementa-
tion, we used blocked BFs because the cache is shared with other
processes.

In a hardware implementation, however, the optimization objec-
tive changes since a NIC can have a dedicated cache for the purpose
of replay suppression. Standard bloom filters are a better option,
because they are more space efficient than blocked bloom filters
(for a given false-positive rate) and thus, can potentially fit into a
dedicated cache. Table 3 summarizes the parameters of the opti-
mization problem for a hardware-based implementation; the aggre-
gate footprint of the application is less than 12 MB, with a false-
positive rate of 9.85 ·10−7.

Compliance to Sequence-number-update Interval. Recall that
the only parameter that requires global agreement is the interval T

at which ASes update their sequence numbers. We argue that ASes
have no incentive to deviate from T . If AS S updates SNS too fast, S

may experience packet dropping due to packet reordering: packets
with higher sequence numbers may arrive faster than packets with
lower sequence numbers; this risk increases as T becomes smaller.

5For a 4-byte seqNo that is incremented every 10 ms, it takes about
497 days to wrap-around.
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Parameter Value Parameter Value

T 10 ms m 4 MB
r 14.88 Mpps k 11
σ 100 ms N 3
M 11 L 61 ms

Table 3: Hardware-based Implementation

If S updates SNS too slowly, S may experience packet dropping due
to low seqNos: a router R may self-update its seqNo for S and the
seqNos in the packets may fall out of the seqNo window.

Failure Recovery. Intermediate routers maintain seqNos and pre-
viously forwarded packets for all ASes. In an event of a failure
(e.g., loss of power), a router may lose this information and thus,
is unable to identify replayed packets after reboot. This is only a
temporary situation: upon receiving a packet from a source AS, the
router synchronizes its seqNo for the source, allowing it to filter
any packets that fall out of the seqNo window, but not replayed
packets with valid seqNos; however, after at most M · (T +∆) since
the seqNo update, the router has fully recovered from the failure
and can suppress all replayed packets.

A source AS (or a router) may fail as well. In case of a router
failure in the source AS, the router asks a neighboring router within
the same AS to determine the current seqNo as well as the time for
next seqNo update. In case of a catastrophic failure of the entire
AS, there are three choices. The source AS could use a sufficiently
high seqNo so that routers in other ASes can synchronize to the new
seqNo of the source AS. Or, the source AS can ask its neighboring
ASes (or their neighboring routers while re-establishing BGP ses-
sions) for the seqNo that it was using prior to failure. Alternately,
as a last resort, a transit AS can erase state for the source AS, if it
does not observe traffic from the source AS for a sufficiently large
period of time; then, the transit AS uses the seqNo of the source
AS when it observes again traffic from the source AS.

8. OTHER RELATED WORK

Section 3 describes the design space for end-to-end replay suppres-
sion. In this section, we describe some underspecified proposals
that mention in-network replay suppression. We highlight that all

related proposals do not satisfy the constraints for in-network de-
ployment (Section 3.2).

Passport [17] proposes a combination of rapid re-keying and
BFs. More specifically, a source domain and a transit domain use
their shared secret to seed a hash chain that is used in a decreasing
order. Then the hash value is used as a symmetric key to vali-
date MACs for a short interval, and a BF stores the packets that
were observed during the interval. To deal with packet reordering,
two BFs are used, each of them storing packets for an interval of
5 seconds. The authors estimate a throughput of 781 Kpps with an
SRAM requirement of 32 MB; we achieve 11.1 Mpps (over 1300%
increase) with an SRAM requirement of 16 MB. To support a fully-
saturated 10 GbE link with 64-byte packets, as in our evaluation,
Passport would need more than 300 MB of storage.6 Furthermore,
the BFs are vulnerable to chosen-insertion attacks, since a simple
hash function is used to compute the bit locations in the BFs. Thus,
an attacker can force a router to drop all traffic.

Secure Network Attribution and Prioritization (SNAP) [56] rec-
ognizes the need for in-network replay detection to prevent re-
play of high-priority packets that will consume link capacity. Each
router inserts a time-based serial number in every signed outgoing

6We note that Passport neglects important implementation details
that affect performance (e.g., the hash function); thus, it is hard to
provide a fair comparison. Our comparison favors Passport, as we
neglect the effect of cache misses when we project the load of a
fully utilized link to their scheme.

packet and every other router must verify the serial number; thus,
routers have to keep per-router state. Furthermore, it is not speci-
fied how the effects of packet reordering are mitigated.

Furthermore, in-network replay suppression has been studied in
a few other scenarios. Feng et al. devise a suppression mechanism
for wireless networks that relies on digital signatures and achieves
a throughput of 30 Kpps [57]. Replay attacks are also a notable
concern for Named Data Networking (NDN)—a novel communi-
cation architecture for the Internet [58]. Compromised routers can
capture and replay packets of content consumers at a later point
in time. Proposed mechanisms are based on digital signatures and
clock synchronization [59], but a concrete and practical mechanism
is not specified. Although previous work suggests directions to mit-
igate replay attacks in the network, we provide the only practical
mechanism that can sustain high throughput.

9. CONCLUSION

In this paper, we make the case for a seemingly counter-intuitive
argument: replay suppression is becoming a critical functionality
at the network layer. To demonstrate its importance, we present the
router-reflection attack, in which compromised routers target a re-
gion of the Internet by flooding routing bottlenecks through packet
replays. The attack is tenacious and pervasive: it is feasible even
with source authentication, and there are hundreds or thousands of
routers that can be compromised to carry out the attack.

We propose an in-network replay suppression protocol that is
practical for today’s hardware capabilities; our software-router pro-
totype achieves line-rate performance for a fully saturated 10 Gbps
link and for all but minimum-sized (64-byte) packets. The deploy-
ment of replay suppression at the network layer comes with fur-
ther interesting implications: loops are inherently prevented, thus
routers do not need to process the Time-To-Live field nor recom-
pute the checksum in packet headers. In addition, it ensures that
every bit in the network is attributable to its source.
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