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ABSTRACT
Modern social computing platforms (e.g., Facebook) are ex-
tensible. Third-party developers deploy extensions (e.g.,
Facebook applications) that augment the functionalities of
the underlying platforms. Previous work demonstrated that
permission-based protection mechanisms, adopted to control
access to users’ personal information, fail to control inference
— the inference of private information from public informa-
tion. We envision an alternative protection model in which
user profiles undergo sanitizing transformations before be-
ing released to third-party applications. Each transforma-
tion specifies an alternative view of the user profile. Unlike
permission-based protection, this framework addresses the
need for inference control.

This work lays the theoretical foundation for view-based
protection in three ways. First, existing work in privacy-
preserving data publishing focuses on structured data (e.g.,
tables), but user profiles are semi-structured (e.g., trees). In
information-theoretic terms, we define privacy and utility
goals that can be applied to semi-structured data. Our no-
tions of privacy and utility are highly targeted, mirroring the
set up of social computing platforms, in which users spec-
ify their privacy preferences and third-party applications fo-
cus their accesses on selected components of the user pro-
file. Second, we define an algebra of trees in which sanitiz-
ing transformations previously designed for structured data
(e.g., generalization, noise introduction, etc) are now formu-
lated for semi-structured data in terms of tree operations.
Third, we evaluate the usefulness of our model by illustrat-
ing how the privacy enhancement and utility preservation
effects of a view (a sanitizing transformation) can be for-
mally and quantitatively assessed in our model. To the best
of our knowledge, ours is the first work to articulate precise
privacy and utility goals of inference control mechanisms for
third-party applications in social computing platforms.
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1. INTRODUCTION
Today’s Social Network Systems (SNSs) are designed such

that their functionalities can be extended by third-party ex-
tensions (e.g., Facebook applications). Extensions can ac-
cess user data stored in the SNS through an SNS Applica-
tion Programming Interface (API). To protect user privacy,
a user can explicitly specify what she wants to hide from or
share with an extension. The SNS API requires the exten-
sion to seek permissions from the user. Access is allowed
only if the corresponding permission is granted by the user.

SNS API Inference Attacks. The inadequacy of permis-
sion-based protection for users of SNS extensions was first
articulated by Ahmadinejad et al. [3], through the follow-
ing example. Suppose a user does not want to share her
birthday with a Facebook application, but she is willing to
grant the application access to her “wall,” for such accesses
are needed by the application to deliver its functionalities.
She then sets up the permissions to reflect the above pri-
vacy preference: grant permission to access her wall, deny
permission to access her birthday. What she may not be
aware of is that a malicious application may scan through
her wall, looking for a day in the year in which there is a high
number of postings with “happy birthday” wishes, thereby
inferring her birthday, even though the latter has been made
inaccessible.

This type of information leakage, that is, inferring users’
sensitive information from their accessible information
through an SNS API, is called SNS API inference at-
tacks. This type of attacks was first introduced in [3] (note
that inference attacks in databases were firstly introduced
in [20], but our focus is on SNS API inference attacks). The
feasibility and accuracy of sample inference algorithms were
empirically evaluated in subsequent works [4, 5]. Success
rates of the inference algorithms were found to be alarmingly
high. It was also shown that SNS API inference attacks can
be employed as a building block for launching further secu-
rity attacks, including, for example, phishing and bypassing
authentication challenges.

829



View-based Protection of User Data. The above exam-
ple illustrates an important point: controlling access can-
not control inference. Privacy is not simply about access
authorization, but about breaking data correlation so that
inference becomes impossible.

In this work, we envision an alternative protection frame-
work in which user profiles undergo sanitizing transforma-
tions before being released to third-party applications. Each
transformation specifies an alternative representation of the
user profile that we call a view . A privacy policy is a speci-
fication of what transformations must be applied to the user
profile prior to its disclosure to various applications. We
call such a protection framework view-based protection .
Unlike permission-based protection, this framework can ad-
dress the need for inference control. A transformation per-
turbs the statistical correlation of data, and thus upsets the
attacker’s ability to infer sensitive information.

Contributions. This work lays the theoretical foundation
for view-based protection. Specifically, we claim the follow-
ing contributions:

1. Existing work in privacy-preserving data publishing fo-
cuses on structured data (e.g., tables) [1], but user pro-
files are semi-structured (e.g., trees). In information-
theoretic terms, we formulated privacy and utility goals
that can accommodate semi-structured data, in which
“attributes” are defined via complex queries that lo-
cate, extract or even combine information dispersed in
various parts of the semi-structured data (§3). Our no-
tions of privacy and utility are highly targeted (§3.2),
mirroring the set-up of social computing platforms, in
which users specify their privacy preferences (what in-
formation needs protection) and third-party applica-
tions declare their accesses on selected components of
the user profile (what information needs to be avail-
able). We identified the conditions under which sani-
tizing transformations are safely composable, such that
the privacy enhancing and utility preserving effects
of successive transformations are accumulative (§3.3,
§3.5, §3.6). We formally articulated when there will
be an inevitable trade-off between privacy and util-
ity, and identified conditions under which a sanitizing
transformation performs the trade-off in a productive
manner (§3.4).

2. Suppression, generalization, permutation and noise in-
troduction are common sanitizing transformations orig-
inally designed for structured data. We defined an al-
gebra of trees through which analogues of these four
transformations are formulated for semi-structured data
(§4). The privacy enhancing and utility preserving
characteristics of these four transformations are for-
mally articulated (§5).

3. We evaluated our model in two ways (§6). First, we
illustrated how the privacy enhancing and utility pre-
serving effects of a view can be formally and quanti-
tatively assessed in our model (§6.1). Second, we used
our model to analyze the relative merits of different
sanitizing strategies on semi-structured data (§6.2).

To the best of our knowledge, ours is the first work to ar-
ticulate precise privacy and utility goals of inference control
for third-party applications in social computing platforms.

2. VIEW-BASED PROTECTION
This section gives an overview of view-based protection,

and motivates our methodology by drawing an analogy be-
tween the goal of this work and that of program verification.

Protection via Views. We assume every user is the ad-
ministrator of her own profile. Her responsibility as an ad-
ministrator is to specify, for each third-party application (or
each category of applications), what information is consid-
ered sensitive and thus requires protection. Note that this is
a specification of privacy preference, and not permissions.

We assume every third-party application will explicitly
declare what information in the user profile it plans to con-
sume in order to deliver its functionalities. Again, this is not
a request for permissions, but rather a utility declaration .

Intuitively, the privacy goal is to break the correlation
between the information declared to be sensitive by the pri-
vacy preference, and the information in the published user
profile. In that way, when the application accesses the pub-
lished user profile, it cannot infer the sensitive information.

This privacy goal is achieved in view-based protection not
by denying access to the sensitive information. Instead, a
sanitizing transformation is applied to the user profile before
the latter is made available to the third-party application.
The transformed profile is called a view of the original pro-
file. When the third-party application makes a query against
the user profile, the query is evaluated over the transformed
profile rather than the original profile. A properly designed
transformation is supposed to break the correlation between
the sensitive information and the transformed profile.

The transformation, however, may destroy the usefulness
of profile information. The utility goal, intuitively stated,
is to preserve as much as possible the availability of useful
information as specified in the utility declaration.

Who is responsible for engineering a view is a matter of
platform design. One possibility is to have dedicated third-
party developers engineer primitive transformations, with
formally certified effects on privacy enhancement and utility
preservation. These primitive transformations can become
building blocks for views. The users, under the guidance
of the social computing platform and the advice of the ap-
plication developer, can then compose a view out of these
building blocks. For this protection scheme to be viable,
there shall be formal means for verifying if the view that is
composed out of primitive transformations does indeed ful-
fill both the privacy preference of the user and the utility
declaration of the application.

Formal Verification of Views. The task of verifying views
is analogous to the formal verification of program correct-
ness, which aims at providing formal guarantees that the
program behaves according to specification. Program cor-
rectness is usually established in a compositional manner.
For example, in Floyd-Hoare Logic [12], a program is spec-
ified in terms of a precondition and a postcondition: if the
precondition is satisfied prior to program execution, the post-
condition shall be met when the program terminates. The
semantics of an individual program statement is specified in
terms of an inference rule, which delineates the precondition
and postcondition of that statement. A proof of correctness
is obtained by composing the inference rules of the state-
ments in the program, and thus inferring that the program
postcondition follows from the program precondition.

In this work, we propose a theoretical framework for ver-
ifying that a view meets its intended privacy and utility
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goals. This proposal is analogous to the compositional na-
ture of program verification. We envision that a view is
composed of more primitive transformations. We articu-
late the conditions under which the privacy enhancing and
utility preserving effects of individual transformations are
accumulative. Under such conditions, composition of trans-
formations is safe, and we can verify a view by verifying each
building block in turn. These conditions are captured in the
form of an inference rule. The inference rule are then instan-
tiated for various sanitization strategies, including suppres-
sion, generalization, permutation and noise introduction.

3. PRIVACY AND UTILITY GOALS
This section develops a framework for assessing if views

composed of primitive transformations meet quantitative
goals of privacy and utility. The framework is general enough
to accommodate either structured or semi-structured data.

3.1 Preliminaries
We begin with some definitions which will be used through-

out the paper.
We write DA for the domain of a random variable A.

Definition 1 (Conditional Independence [19]).
Given random variables A, B and C, variables A and C
are said to be conditionally independent given B iff:

∀a ∈DA, b ∈DB , c ∈DC .

Pr(A = a ∣ B = b,C = c) = Pr(A = a ∣ B = b)

In other words, when B is known, learning C does not
change our knowledge of A. In such a case, we write (A á
C) ∣ B.

Bayesian networks, which are probabilistic graphical mod-
els, can help in showing the dependency between random
variables. Bayesian networks are directed acyclic graphs
where nodes are random variable, and an edge from one
random variable to another indicates that the former causes
the latter. In this work, we use Bayesian networks to depict
the dependencies among random variables.

Definition 2 (Shannon entropy [10]). The Shannon
entropy H(A) of a random variable A is defined as follows:

H(A) = − ∑
a∈DA

Pr(A = a) ⋅ log Pr(A = a)

Intuitively, H(A) measures the uncertainty about A.

Definition 3. Given another random variable B, the con-
ditional entropy H(A ∣ B) is defined by

H(A ∣ B) = ∑
b∈DB

Pr(B = b) ⋅H(A ∣ B = b)

If A is a deterministic function of B, then H(A ∣ B) = 0.

Definition 4. The mutual information between A and
B, which is the amount of information shared between A
and B is defined by

I(A;B) = I(B;A) =H(A) −H(A ∣ B) =H(B) −H(B ∣ A)

Proposition 1 (Data Processing Inequality [10]).
Given random variables A, B, and C:

(A á C ∣ B)⇒ I(A;B) ≥ I(A;C)

3.2 Sensitive and Useful Information
Suppose A is the set of all user profiles. The information

accessible via a profile is a random variable A where DA,
the domain of A, is A. A sanitizing transformation of a ∈
A is a (deterministic or probabilistic) function t ∶ A → A.
Furthermore, a transformation t induces a random variable
t(A) with distribution P (t(A) ∣ A).

The user specifies in her privacy preference (§2) what com-
ponents of her profile are considered sensitive. We model
this specification as a deterministic function s ∶ A → A that
extracts those components from the profile. Now s induces
a random variable S = s(A). Assuming s to be deterministic
is reasonable because, even if S is not originally a determin-
istic function of A, a rational adversary always infers S to
have the value that maximizes P (S ∣ A = a) for a given a.
This is the best strategy an adversary can adopt.

An SNS extension delivers functionalities to the user by
extracting certain information from the user profile A. In
practice, the extension specifies in its utility declaration (§2)
the components of the user profile it needs to query in order
to deliver its functionalities. We model this declaration as
a deterministic function u ∶ A → A that extracts the useful
components from the profile. Now u induces a random vari-
able U = u(A). The degree in which information concerning
U is preserved after the user profile undergoes sanitizing
transformation, is the utility of the sanitized profile.

The privacy and utility goals are now clear. A transfor-
mation t is to be devised such that the correlation between
t(A) and S is minimized (privacy), and the correlation be-
tween t(A) and U is maximized (utility). This implies the
need for a correlation measure. Let XY be a correlation
measure between random variables X and Y . The privacy
and utility goals are then respectively minimizing St(A) and
maximizing Ut(A).

Instantiating the correlation measures. The privacy and
utility goals can be instantiated by different choices of cor-
relation measure. Two possibilities are given below:

1. Shannon entropy: Take XY to be the mutual infor-
mation I(X;Y ) between X and Y , i.e., H(X)−H(X ∣
Y ).

2. Min-entropy/vulnerability [22]: Define XY to be
the following quantity:

H∞(X) −H∞(X ∣ Y ) = log
V (X ∣ Y )
V (X)

It has been shown in the literature that min-entropy is a
stronger measure compared to Shannon entropy and mu-
tual information [22]. However, sometimes a less restrictive
and less demanding notion is more helpful in designing con-
structions and their analysis. For that reason, we adopt the
notion of mutual information in this work as our correlation
measure. Instantiating the correlation measure with min-
entropy is left to future work.

With the above instantiation, the amount of information
disclosed by A regarding sensitive information S, called the
information leakage of A about S, is modelled by

SA = I(S;A) (1)

Moreover, the utility of released information A w.r.t. some
useful information U is measured by

UA = I(U ;A) (2)
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Figure 1: Sample Bayesian networks

Information leakage ranges between H(S) and 0, while util-
ity ranges between H(U) and 0.

3.3 Modular Development of Transformations
Typically, the transformation t is engineered in a modu-

lar manner. That is, t is the composition of a number of
primitive transformations, that is, t = tn ○ . . .○ t2 ○ t1 so that:

A0 = A and Ai = ti(Ai−1) for 1 ≤ i ≤ n

The profile to be released to the SNS extension is therefore

t(A) = An = tn(. . . t2(t1(A)))

In the following, we characterize the conditions under which
the composition above has predictable effects.

3.3.1 What Could Go Wrong
Modular development presumes that each component trans-

formation further reduces the correlation between the pub-
lished profile and the sensitive information: i.e., I(S;Ai) ≤
I(S;Ai−1). If the behaviour of a component transformation
ti depends on the original profile (A0), or it looks up some
publicly available data sources that correlate with S, we can
no longer guarantee the above assumption.

To illustrate the above, consider a profile A0, which is
transformed first into A1 and then into A2. Let the Bayesian
network in Fig. 1a show the dependencies among the random
variables. Clearly, A1 has no more mutual information with
S than A0 does, and A2 has no more mutual information
with S than A0 and A1 do. So in each of the two rounds
of transformation, the amount of information that could be
inferred for S has been reduced.

Now consider the situation in Fig. 1b, in which A2 de-
pends not only on A1 but also A0. This may be because
transformation t1, after reading A0, leaves some state in-
formation behind that t2 consumes. In that case, A2 de-
pends also on A0. Now, both I(S;A1) and I(S;A2) are
no larger than I(S;A0), but we can no longer claim that
I(S;A2) ≤ I(S;A1). In other words, although transforming
A0 to A2 in two rounds does not reveal more information
about S than prior to the two transformations, the second
transformation may reverse some of the privacy enhancing
effect of the first transformation: i.e., t2 leaks some infor-
mation to A2 that is not contained in A1.

A similar anomaly occurs in the situation of Fig. 1c. Sup-
pose t2 is a probabilistic function. The source of randomness
is captured by a random variable R. Suppose R is biased,
and the bias correlates with A0. Now we can no longer guar-
antee I(S;A2) ≤ I(S;A1). Note that if R was not connected
to A0, then such a guarantee would hold.

Rule: Universal Inference Rule
1. A : either the original user profile (A0), or a

partially sanitized version of the original user
profile (Ai)

2. t ∶ DA → DA : a sanitizing transformation (ei-
ther deterministic or probabilistic)

3. S : a deterministic function of the original user
profile (A0), modelling the sensitive informa-
tion to be protected

4. U : a deterministic function of the original user
profile (A0), modelling information to be con-
sumed by the SNS extension

Premises:
1) S á t(A) ∣ A.
2) U á t(A) ∣ A.

Conclusions:
1) 0 ≤ St(A) ≤ SA.
2) 0 ≤ Ut(A) ≤ UA.

Table 1: Universal Inference Rule

3.3.2 Safe Composition
We articulate the conditions under which sanitizing trans-

formations are composable in the form of an inference rule
in Table 1. The inference rule specifies a set of premises
and a set of conclusions. The conclusions are guaranteed
to hold if the premises are established. The rule captures
the privacy enhancing and utility preserving effects of some
component transformation t (i.e., one of the ti in the previ-
ous discussion), with input A being either the original user
profile (A0) or a partially sanitized version of the original
user profile (Ai). The sensitive information S and the util-
ity U may or may not be deterministic functions of input A,
depending on whether A is the original user profile (A0).

Premises. The two premises assert the conditional inde-
pendence of t(A) respectively with S and U given the input
A. In other words, the information of S and U that is con-
tained in t(A) originates solely from A. This essentially
rules out the anomalies in §3.3.1.

Conclusions. The conclusions of the inference rule express
the effects of transformation t on (1) controlling the inference
of sensitive information (privacy enhancement) and (2) re-
ducing the usefulness of the published profile (utility degra-
dation).

1. Privacy enhancement. The key of conclusion 1 is an
upper bound for St(A), that is I(S; t(A)) ≤ I(S;A).
This shows that the correlation between the sensitive
information and the user profile after the transforma-
tion is no stronger than that before the transformation.

2. Utility degradation. Similarly, the upper bound of con-
clusion 2 amounts to I(U ; t(A)) ≤ I(U ;A). This means
transformation reduced the utility of the profile. The
best case scenario is when I(U ;A) = I(U ; t(A)) (i.e.,
perfect preservation of utility), while the worst case
scenario is when I(U ; t(A)) = 0 (i.e., utility is com-
pletely destroyed).

Composition. Suppose t = tn○. . . t2○t1, and each ti satisfies
the premises of the inference rule. Then we know each round
of transformation makes progress in reducing the correlation
of the user profile with the sensitive information. That is,
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no leakage of information as discussed in §3.3.1 would inject
sensitive information back into the user profile.

Soundness. The soundness of the inference rule follows
immediately from the Data Processing Inequality (Propo-
sition 1). Since t(A) and S are conditionally independent
given A, I(S; t(A)) ≤ I(S;A) holds, which in turn implies
conclusion 1. Similarly, the second premise leads to the
second conclusion (regarding utility). Note that if we re-
move (S á t(A) ∣ A) from the premises, the conclusion
H(S ∣ A) ≤ H(S ∣ t(A)) would still be guaranteed in the
special case of H(S ∣ A) = 0. The similar holds for utility.

3.4 Trading Off Privacy & Utility
We noted above that a transformation may fail to per-

fectly preserve utility (I(U ; t(A)) < I(U ;A)). The reason
lies in the fact that S and U have opposite roles in the infer-
ence problem. When we transform A, on the one hand we
aim at destroying the correlation between A and S, and on
the other hand, we want to preserve the correlation between
A and U . This suggests that we have to pursue a trade-off
between hiding S and revealing U .

3.4.1 The Inevitable Trade Off
Suppose there is no mutual information between S and U :

i.e., I(S;U) = 0. Theoretically, it is possible to find a trans-
formation t such that I(t(A);U) = I(A;U) and I(t(A);S) =
0. In intuitive terms, if the information in A that is used
for inferring S is completely independent of the information
in A that is used for inferring U , then it may be possible
to construct a transformation to sanitize A such that the
sanitized A contains the same amount of information about
U as it used to have, but all traces of information regarding
S has been eliminated. For example, consider the situation
where I(A;U) =H(U). If we choose t(A) to be equal to U ,
then, because I(S;U) = 0, I(t(A);S) = 0 holds. Moreover,
I(U ;U) = H(U) also holds. In such a case, we can guaran-
tee utility is completely preserved and that t(A) does not
reveal anything about S.

Now assume there is some mutual information between
S and U . In that case, the complete protection of sensitive
information and the perfect preservation of utility cannot be
achieved simultaneously. This is captured by the following:

Proposition 2. Suppose there is some mutual informa-
tion between S and U (i.e., I(S;U) > 0). Suppose further
that U is a deterministic function of A (i.e., H(U ∣ A) = 0).
Then it is not possible to find a transformation t satisfying
both of the following two conditions:

1. t(A) does not leak information about S:
i.e., I(S; t(A)) = 0, and

2. t(A) perfectly preserves information about U :
i.e., I(U ; t(A)) = I(U ;A).

A proof of the above result is given in [2, Proposition 4.4.1].
In other words, if S and U share mutual information, and

U is a deterministic function of A, then it is impossible to
find a transformation t such that (a) t(A) does not carry
any information about S, and (b) t(A) contains as much
information about U as A does. That is, either information
leakage or utility degradation is inevitable.

3.4.2 When Compromise is Necessary
In summary, if I(S;U) > 0, one of the following three

conditions must hold: 1) some information leakage (i.e.,

St(A) > 0) but no utility degradation (i.e., Ut(A) = UA),
2) some utility degradation (i.e., Ut(A) < UA) but no in-
formation leakage (i.e., St(A) = 0), or 3) both information
leakage and utility degradation. When either information
leakage or utility degradation is inevitable, we want to en-
sure that if some information of S is leaked, the leaked in-
formation contributes to utility (i.e., the leaked information
concerns knowledge of U). Otherwise, such information does
not need to be released as it only gives away information
about S with no positive effect on utility preservation — we
call this unnecessary information leakage .

Likewise, suppose we accept utility degradation to be in-
evitable, and thus we refrain from releasing certain informa-
tion about U . It is reasonable for us to expect that such
information regarding U must contain information of S as
well. Otherwise, we end up eliminating information of U
without contributing to privacy enhancement — we call this
unnecessary information transformation .

When there is mutual information between U and S, com-
promising between preserving utility and protecting sensi-
tive information is necessary. However, this compromise
must be done for a legitimate reason. We shall avoid un-
necessary information transformation and unnecessary in-
formation leakage.

3.4.3 Unnecessary Information Leakage
Unnecessary information leakage occurs when t(A) con-

tains some information of S that is not contained in U . For-
mally, this means:

H(S ∣ t(A), U) <H(S ∣ U), that is, I(S; t(A) ∣ U) > 0

As a result, in order to avoid unnecessary information leak-
age, (3) must hold:

H(S∣U) =H(S∣t(A), U), that is, I(S; t(A) ∣ U) = 0 (3)

3.4.4 Unnecessary Information Transformation
Unnecessary information transformation occurs when, even

by knowing S and t(A) together, U cannot be inferred with-
out uncertainty. Formally, this means the condition below:

H(U ∣ t(A), S) > 0, that is, I(U ; t(A), S) <H(U)

As a result, in order to avoid unnecessary information trans-
formation, we require that (4) holds:

H(U ∣ t(A), S) = 0, that is, H(U) = I(U ; t(A), S) (4)

Note that this interpretation of unnecessary information
transformation considers utility as the primary factor in de-
termining when transformation is overdone. It is required
that, if utility needs to be sacrificed, it should be because of
protecting sensitive information.

3.5 Measuring Privacy & Utility
According to the previous section, a transformation that

satisfies (3) and (4) guarantees that there is no unnecessary
information leakage and no unnecessary information trans-
formation. But there might be multiple transformations of
A that meet those conditions. This motivates the need for
quantifying the amount of privacy enhancement and util-
ity degradation caused by a transformation. Such measure-
ments enables us to compare transformations.
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3.5.1 Privacy Enhancement Measure
Given a transformation t, we define a measure called the

privacy enhancement of t as follows:

St,A = SA − St(A) (5)

St,A measures how successful t is in transforming A for the
purpose of protecting S. St,A is always no smaller than 0
and no larger than SA. Note that we assume t is a function
that satisfies the premises of our universal inference rule.

Proposition 3. If t does not result in any unnecessary
information leakage, the maximum amount of information
leakage of t(A) about S would be I(S;U).

A proof of the above result is given in [2, Proposition 4.4.2].
Note that if I(S;U) = 0, then St(A) = 0 too, which means
t(A) does not contain any information about S.

3.5.2 Utility Degradation Measure
In order to measure how good a transformation t performs

in terms of preserving the usefulness of data, we define a
measure called utility degradation as follows:

Ut,A = UA −Ut(A) (6)

Proposition 4. If t does not result in any unnecessary
information transformation, the maximum amount of utility
degradation caused by t would be I(S;U).

A proof of the above result is given in [2, Proposition 4.4.3].
In summary, the last two sections showed if t causes no

unnecessary information transformation and no unnecessary
information leakage, the amount of information t(A) dis-
closes about S and the amount of usefulness we lose for U
by transforming A to t(A) will both be bounded by I(S;U).

3.6 Revisiting the Universal Inference Rule
In §3.3.2, we formulated a universal inference rule. By

introducing the measures of privacy enhancement and utility
degradation, we can now restate the universal inference rule
by replacing the conclusions in Table 1 with the followings:

0 ≤ St,A ≤ SA 0 ≤ Ut,A ≤ UA

The soundness of this restated inference rule follows from
the propositions proven in the previous sections. The sig-
nificance of this restatement of the universal inference rule
is that privacy enhancement is additive. That is, if t =
tn ○ . . . ○ t2 ○ t1, A0 = A, and Ai = ti(Ai−1) for 1 ≤ i ≤ n,
then St,A = Σn

i=1Sti,Ai−1 . Additivity follows from (5). Simi-
larly, utility degradation is also additive (follows from (6)):
Ut,A = Σn

i=1Uti,Ai−1 .
Based on what we discussed regarding transformation with

no unnecessary information leakage and no unnecessary in-
formation transformation, we state an optimal universal in-
ference rule in Table 2. The proof of soundness for this rule
follows immediately from the propositions we provided in
earlier sections. Note that if I(S;U) equals 0, then St(A)

and Ut,A both equal 0 which is the best case scenario.

4. A DATA MODEL FOR USER PROFILES
To demonstrate how a transformation (view) is created,

we need to define an algebraic structure for modelling and
manipulating user profiles for the purpose of sanitization.
An algebraic structure has a carrier set containing objects.

Rule: Optimal Universal Inference Rule
Premises:

1) S á t(A) ∣ A.
2) U á t(A) ∣ A.
3) (3) holds: no unnecessary info. leakage.
4) (4) holds: no unnecessary info. transformation.

Conclusions:
1) 0 ≤ St(A) ≤ I(S;U).
2) 0 ≤ Ut,A ≤ I(S;U).

Table 2: Optimal Universal Inference Rule

A signature with its function symbols is required for con-
structing objects in the carrier set. An algebraic structure
also has a set of predicate symbols, or operators, defined on
the carrier set. To model user profiles, a data model is re-
quired. Although our framework is not generally limited to
any specific data model, we prefer a data model that on the
one hand, suits our needs, and on the other hand, simplifies
the follow-up discussions. We tend to ignore concerns re-
garding the implementation of our data model, which is an
abstract model proposed solely for the purpose of defining
our framework. In practice, the data model could be defined
in a different way. Overall, our framework does not impose
any constraint on the data model.

4.1 User Profiles as Trees

4.1.1 Rationale
User profiles are semi-structured data. In this work we

represent user profiles as trees. We justify this choice of our
data model in the following.

Making explicit the hierarchical structure of user data.
The information that a user has in her profile naturally forms
a hierarchy. For example, there is a hierarchical relation be-
tween a photo album and its photos.

Protection significance. The hierarchical structure of pro-
files typically leads to hierarchical relationships between the
accessibility of various data components. For instance, a
user might specify that photos uploaded to a photo album
inherit the accessibility of the album. Hence, the hierarchi-
cal structure of data actually carries protection significance.

Well-established technologies for processing trees. Tree
structures are popular for information storage/transportation.
For example, XML is a widely used data transport format.
The World Wide Web Consortium (W3C) has established
standards for a rich set of technologies that interoperate with
XML. XML Path Language (XPath) [14] is recommended by
W3C to be used for navigating XML documents. Extensi-
ble Stylesheet Language Transformations (XSLT) [8] is used
for specifying transformations of XML documents. Mature
implementations are available for these standards.

4.1.2 Trees as Terms in a Free Algebra
We represent user profiles as terms from a free algebra

generated by a domain-dependent signature of function sym-
bols. In particular, a signature Σ is a set of function symbols.
Each symbol f ∈ Σ has an arity arity(f). A symbol c for
which arity(c) = 0 is called a constant symbol. The legit-
imate terms in the free algebra are the following: 1) every
constant symbol c is a term, and 2) if t1, . . . , tk are terms,
and f is a function symbol with arity k, then f(t1, . . . , tk)
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profile(basic_info(mike, male, mike@y.com),

entry(1/2/2013, hello,

entry(3/4/2013, happy_bd, nil)))

Table 3: A sample user profile

is a term. There are no other terms in the free algebra.
Hereafter we use “terms” and “trees” interchangeably.

We illustrate how a user profile is modelled as a term.
Suppose a profile contains two categories of information:
(a) basic information, and (b) a wall. Basic information
consists of the user’s name, gender, and email address. The
wall consists of a number of entries, each of which has a
timestamp (indicating the time when the entry was posted),
and a message (indicating the text message of the entry).
Such a profile can be represented by terms with the follow-
ing context-free grammar:

Profile ∶∶= profile(Basic_info, Wall_entry)

Basic_info ∶∶= basic_info(Name, Gender, Email)

Wall_entry ∶∶= entry(Timestamp, Message, Wall_entry)

| nil

The root of the profile is identified by the function sym-
bol profile, which has an arity of 2. Nonterminals Name,
Gender , Email , Timestamp and Message expand to con-
stant symbols of the corresponding types. Table 3 illustrates
a sample user profile of a male user, Mike, with email address
mike@y.com who has two entries on his wall. Occasionally,
one may want to define custom data types for representing
certain components of the user profile. For example, the en-
tries on the wall should be unordered (i.e., a multiset) rather
than ordered (i.e., a sequence). To achieve this effect, one
can augment the term algebra by an appropriately chosen
equational theory . For instance, the following equation
may be asserted as an axiom to render entries “commute”
with one another, thereby eliminating the significance of or-
dering among wall entries.

entry(TS1, M1, entry(TS2, M2, W))

= entry(TS2, M2, entry(TS1, M1, W)) (7)

It is assumed that an appropriate equational theory is
specified for the term algebra to capture properties of var-
ious custom data types. For example, a commutative and
associative binary function symbol can be used for represent-
ing multisets, and a commutative, associative and idempo-
tent binary function symbol can be used for representing
sets. When that is the case, for two given profiles a1, a2 ∈ A
where a1 = a2 and a transformation t, t(a1) = t(a2) holds.
This means the transformation t is aware of the semantics
of data types as induced by the equational theory.

4.2 An Algebra of Trees

4.2.1 Positions and Branches
In order to define algebraic operators for transforming a

tree (e.g., by adding or removing nodes), we need to be able
to reference different parts of the tree. To that end, we
assign a unique address, called a position , to every node in
the tree. Formally, a position is a (possibly empty) sequence

of positive integers: i.e., a position is a member of N∗, where
N = {1,2, . . .}. The position of the root of the tree is the
empty sequence ε. Suppose a node f(a1, . . . , ak) has position
p, then its children a1, . . . , ak have positions p ⋅ 1, . . . , p ⋅ k
respectively. For example in Table 3, the position of the
function symbol hello is 2 ⋅ 2. We inductively define the

set Pos ∶ A → 2N∗ of legitimate positions for every tree a ∈
A such that (a) if a is a leaf (i.e., constant symbol), then
Pos(a) = {ε}, and (b) if a is of the form f(a1, . . . , ak), where
k ≥ 1, then Pos(a) = {ε} ∪⋃k

i=1{i ⋅ p ∣ p ∈ Pos(ai)}.
For instance, for the tree a shown in Table 3, Pos(a) =

{ε, 1, 2, 1 ⋅ 1, 1 ⋅ 2, 1 ⋅ 3, 2 ⋅ 1, 2 ⋅ 2, 2 ⋅ 3, 2 ⋅ 3 ⋅ 1, 2 ⋅ 3 ⋅ 2, 2 ⋅ 3 ⋅ 3}.
We write p1 ≤ p2 whenever p1 is a prefix of p2: i.e., there

exists q ∈ N∗ such that p2 = p1 ⋅ q. We write p1 < p2 if p1 ≤ p2
but p1 ≠ p2. If neither p1 ≤ p2 nor p2 ≤ p1, then p1 and
p2 are said to be incomparable. A position p ∈ Pos(a) is
an internal position if there exists p′ ∈ Pos(a) for which
p < p′. Otherwise, p is a leaf position of a.

The tree rooted at a given position of a tree is called a
branch of the latter tree. (What we call a “branch” is typ-
ically called a “subtree” in the literature. We reserve the
term “subtree” for another purpose — see below.) Operator
↓∶ A×N∗ → A is defined such that for a given tree a and ev-
ery position p ∈ Pos(a), a ↓ p extracts the branch rooted at
position p in a. More specifically, a ↓ ε = a, and, for 1 ≤ i ≤ k,
f(a1, . . . , ak) ↓ (i ⋅ p) = ai ↓ p.

4.2.2 Subtrees and Reduction
Transforming a profile typically starts with identifying

parts of the profile that need changing. The rest of the
profile will be released as is. Sometimes, only the invariant
parts are released, while for other transformations, a modi-
fied version of the variant parts are released along with the
invariant parts. For example, consider the following profile:

profile(basic_info(...), entry(...)) (8)

Suppose the variant part of the profile above is the basic
information, and the rest is invariant. We identify the in-
variant parts of the profile by the following tree:

profile(ε, entry(...)) (9)

Here, the special constant symbol ε behaves like a place-
holder: ε indicates that a branch used to occupy that posi-
tion, but has been temporarily removed. That placeholder
can be filled by a different branch (e.g., obtained by sanitiz-
ing the basic information). The profile in (9) is said to be a
reduced version of the profile in (8). Given a tree a and a
position p ∈ Pos(a), p is said to be an empty position of a
if a ↓ p = ε, or a filled position otherwise.

We define a binary relation (⊑) over trees inA to indicate if
a tree is the reduced version of another. Given a1, a2 ∈ A, we
write a1 ⊑ a2 iff either (a) a1 = ε, or (b) a1 = f(a11, a12, . . . , a1k)
and a2 = f(a21, a22, . . . , a2k) and a11 ⊑ a21, a12 ⊑ a22, . . . , a1k ⊑ a2k.

Intuitively, a1 ⊑ a2 when a1 can be obtained from a2 by
substituting ε for zero or more branches in a2. We say that
a1 is a subtree of a2.

By definition, ⊑ is a partial order: i.e., reflexive, transitive
and antisymmetric. (Note that, as a special case, a1 = a2
implies a1 ⊑ a2.) We write a1 < a2 iff a1 ⊑ a2 but a1 ≠ a2.
Since trees are finite, there is no infinite descending chains
of the form a = a1 = a2 = . . ..
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4.2.3 Tree transformation
In the following, we define operators for specifying trans-

formations of tree-structured profiles.

Definition 5 (Fragment: N∗ ⇀ A). A fragment σ is
a finite subset of N∗×A that satisfies two further properties.
First, σ is a function. (Thus we write σ(p) for the tree
associated with position p, and dom(σ) for the domain of σ.)
Second, the positions in dom(σ) are pairwise incomparable.

The set of all possible fragments is denoted by V. A frag-
ment σ is compatible to a tree a if for every p ∈ dom(σ),
p ∈ Pos(a) and a ↓ p = ε.

Given a fragment σ and a position p, the projection σ∣p is
defined to be the fragment {(q, a) ∣ (p ⋅ q, a) ∈ σ}. Note that
as special cases p can be either ε or a sequence of length one.

Definition 6 (Append Operator ⊕ ∶ A × V → A).
Let a ∈ A, and σ ∈ V be a compatible fragment. Then a ⊕ σ
is the tree defined inductively as follows: (a) ε ⊕ σ = σ(ε),
and (b) f(a1, . . . , ak)⊕ σ = f(a1 ⊕ (σ∣1), . . . , ak ⊕ (σ∣k)).

Intuitively, a ⊕ σ is the tree obtained from a by the fol-
lowing substitutions: for every position p in the domain of
σ, the tree σ(p) is inserted in position p of a. Note that for
every a ∈ A, and every fragment σ ∈ V that is compatible to
a, a ⊑ a⊕ σ holds.

Definition 7 (∖ ∶ A ×A→ V). Suppose a1, a2 ∈ A and
a2 ⊑ a1. Let P = {p ∈ Pos(a1) ∩ Pos(a2) ∣ a1 ↓ p ≠ a2 ↓ p}.
We write a1 ∖a2 to denote the fragment {(p, a1 ↓ p) ∣ p ∈ P}.

In the above definition, P is the set of positions that are
filled in a1 but empty in a2. The fragment a1 ∖ a2 is essen-
tially the “delta” between a1 and a2. By definition, for every
a1, a2 ∈ A, if a2 ⊑ a1, then a1 = a2 ⊕ (a1 ∖ a2). Note that
a1 ∖ a2 is defined only if a1 ⊑ a2.

5. TRANSFORMATION FUNCTIONS
In §3, we studied the privacy enhancing and utility pre-

serving effects of abstract transformations. Now armed with
the algebraic tools of §4.2, the goal of this section is to apply
the assessment framework of §3 to study concrete sanitizing
operations for semi-structured data. To do so, we define a
pattern for transformation functions.

Conceptually, given a tree, a transformation typically makes
local changes in some branches of the tree while the rest of
the tree remains intact. This means, there needs to be a
way to identify the branches that are to be manipulated as
well as the parts that will not change. For that purpose, we
define reduction as follows:

Definition 8 (Reduction Function). A determinis-
tic function r ∶ A→ A is a reduction iff ∀a ∈ A . r(a) ⊑ a.

Intuitively, r(a) is a subtree of a that will remain un-
changed, while the fragment a∖r(a) captures parts of a that
will undergo further sanitization. Accordingly, we have:

∀p ∈ dom(a ∖ r(a)) . r(a) ↓ p = ε
∀p ∈ Pos(r(a)) ∖ dom(a ∖ r(a)) . r(a) ↓ p = a ↓ p

Since r(a) ⊑ a, we also know that a = r(a)⊕ (a ∖ r(a)).
After identifying the fragment that is to be transformed,

we need to first sanitize the fragment and then graft it back
to the reduced tree. This implies the need for a fragment

transformation function , which transforms a given frag-
ment to another fragment. Formally, a fragment transforma-
tion tf ∶ V → V is a function such that dom(tf(σ)) = dom(σ)
for all σ ∈ V. We now define a template for tree transforma-
tions using our algebra of trees.

Definition 9 (Transformation Function). t ∶ A→
A is a transformation function iff there exists a reduction
r and a fragment transformation function tf such that for
every a ∈ A, t(a) = r(a)⊕ tf(a ∖ r(a)).

Fragment a ∖ r(a) is transformed by tf and then grafted
back onto r(a), the unchanged subtree of a. Now given A
as a profile, both r(A) and A ∖ r(A) are random variables.

The above definition could cover variety of transforma-
tions because it imposes no constraint on t or tf . In the
following sections, we will provide concrete transformations
based on the above definition.

Core of Correlation. Correlation between the sensitive
information and the accessible information usually could be
attributed to some parts of the accessible information such
that if we remove those parts, there will be no correlation
between the sensitive and accessible information. We call
such parts to be the core of correlation between the two
pieces of information. More precisely, given that there is
some correlation between S and A (i.e., SA > 0), a fragment
A∖r(A) of A is called the core of correlation between S and
A if the following holds:

Sr(A) = I(S; r(A)) = 0 (10)

This notion of a core provides guidance on the engineer-
ing of sanitizing transformations. To break the correlation
between a profile A and sensitive information S, one can
identify the core of correlation by specifying an appropriate
reduction function r. Once the core of correlation A ∖ r(A)
is identified, one needs to only focus on transforming the
core (via a fragment transformation) since the rest (r(A))
does not contain any information about S. Transformation
t(A) = r(A)⊕tf(A∖r(A)) is called a core transformation
iff A ∖ r(A) is the core of correlation between A and S.

Privacy-Enhancing Transformation. Identifying the core
of correlation between S and A, and then engineering a core
transformation is a significant step towards an effective pro-
tection of S. Nevertheless, there is no guarantee that a core
transformation t is definitely privacy enhancing because how
the core A ∖ r(A) is transformed is of importance too.

A transformation t is privacy-enhancing w.r.t S and A
iff St,A > 0 (i.e., I(S;A) > I(S; t(A))).

Proposition 5. Given profile A, sensitive information
S, and reduction r, transformation t(A) = r(A) ⊕ tf(A ∖
r(A)) is privacy-enhancing if I(S;A ∖ r(A) ∣ t(A)) > 0.

Intuitively, if we can identify a reduction r such that the
fragment A∖r(A) has some mutual information with S that
is not contained in t(A) (i.e., I(S;A∖r(A) ∣ t(A)) > 0), then
t(A) will have strictly less correlation with S. The reason
we emphasize that such mutual information must not be
contained in t(A) is that otherwise t(A) would still carry
the information of S that is contained in the transformed
fragment. As a result, there would be no guarantee that
I(S; t(A)) < I(S;A). A proof of the above result is given in
[2, Proposition 4.6.3].

Implementation of concrete transformations. Having a
pattern for transformation functions, defined in Definition 9,
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we can now show by examples how semi-structured ana-
logues of classical transformations, previously employed for
sanitizing structured data, can be instantiated.

Example 1 (Suppression, and Generalization).
Suppression and generalization have been widely used in the
literature as simple techniques for sanitizing data tables. The
former partially removes parts of the information, whereas
the latter replace parts of the information with less specific
information. Let tl ∶ A ⇀ A, which we call a determinis-
tic local transformation function, be a partial function
mapping trees to trees. Assume a deterministic fragment
transformation function tf that is induced by tl as follows:

tf(σ)(p) = {
tl(σ(p)) if σ(p) ∈ dom(tl)
σ(p) otherwise

Intuitively, tf alters a fragment σ by going through each po-
sition p in the domain of σ; if tf finds a value σ(p) within
the domain of tl, then tf transforms that value to tl(σ(p));
otherwise the value is left as is for position p. Now if in
the above definition of tf , we choose tl to map every tree to
ε, then transformation function t, resulted by Definition 9,
will be a suppression. However, if tl maps trees in its do-
main to their generalized form, the resulting transformation
t will be a generalization. This latter local transformation
function tl is usually called a value generalization hierarchy.

Example 2 (Permutation). In the literature, a prob-
abilistic sanitizing technique known as swapping switch val-
ues in data tables. For example, given a data table, the value
of an attribute in a row is substituted with the value of the
same attribute from another row. Therefore, only the posi-
tions where values are located change. Such transformations
are called permutation in this work. In the context of semi-
structured profiles, permutation means randomly switching
the places of two or more branches in a tree. To define
permutation, we just need to define the appropriate prob-
abilistic fragment transformation. The transformed profile
will be constructed by grafting the permuted fragment back
to the reduced profile. Given a random variable R (serving
as a source of randomness), tR,f ∶ V → V is a probabilis-
tic fragment transformation if for every σ ∈ V, tR,f(σ) =
σ ○ πR, where πR ∶ dom(σ) → dom(σ) is a bijection gener-
ated from the random source R. In other words, tR,f(σ) =
{(π−1R (p), a) ∣ (p, a) ∈ σ}. Recalling Definition 9, where
t(a) = r(a)⊕ tf(a∖ r(a)), probabilistic transformation t is a
permutation function iff tf is a fragment permutation.

Example 3 (Noise Introduction). In the context of
semi-structured data, there are two types of noise introduc-
tion. One is to replace branches in a tree-shaped profile with
randomly noisified branches. Since, this would be very sim-
ilar to generalization, we will not elaborate more on that.
Another technique is to inject noise into the tree in the form
of new branches. For instance, in the birthday example, we
could confuse the adversary by adding birthday greetings on
random days to the user’s wall. In this work, this type of
noise introduction is called noise addition. Let R be a
source of randomness that allows us to randomly select a re-
duced profile a′ = rR(a), where a is the original profile, and
rR is a probabilistic reduction function with random variable
R (σ = a ∖ a′ is the extracted fragment). Next, we sam-
ple from another random variable N to obtain a number of

noisy branches. Now we need a fragment transformation
called fragment expansion, denoted by ⋅� ⋅ ∶ V × V → V,
that uses the noisy branches to mutate the σ, before the
latter is grafted back onto the reduced profile a′. Suppose
σ = {(p1, a1), . . . , (pn, an)} and σ⋆ = {(p⋆1, a⋆1), . . . , (p⋆n, a⋆n)}
are fragments from V with equally-sized domains, such that
p⋆i ∈ Pos(a⋆i ) and a⋆i ↓ p⋆i = ε for 1 ≤ i ≤ n. Then σ⋆�σ, called
the expansion of σ with σ⋆, is the fragment {(p1, a⋆1 ⊕
{(p⋆1, a1)}), . . . , (pn, a⋆n⊕{(p⋆n, an)})}. A fragment transfor-
mation tN,f ∶ V → V is a fragment expansion iff tN,f(σ)
returns σ⋆ � σ, where σ⋆ is generated probabilistically using
random variable N as a source of randomness. Now given
random variables R and N , the probabilistic function tR,N

is a noise addition if there exists probabilistic reduction
function rR and fragment expansion tN,f such that, for ev-
ery a ∈ A, tR,N(a) = a′⊕tN,f(a∖a′), where a′ = rR(a). Note
that this definition follows the pattern of Definition 9.

Note that the sources of randomness in permutation and
noise addition must be selected carefully to not violate the
conditional independence required in the universal inference
rules (Table 1). This was thoroughly discussed in §3.3.2.

Discussion. In this section, we defined a transforma-
tion function to be 1) identifying a fragment of a user pro-
file, 2) transforming the fragment, and 3) grafting back the
transformed fragment onto the rest of the profile. We also
showed that practical sanitizing techniques (e.g., noise addi-
tion) could be realized using this definition. Now given that
our privacy enhancement and utility degradation measures
are additive as illustrated in §3.6, we can design multiple
transformation functions based on Definition 9. If every
one of such transformations meet the requirements of the
proposed universal inference rule in Table 1, we could com-
pletely predict the behaviour of the composition of those
transformation functions, and calculate the overall privacy
enhancement and utility degradation. Moreover, we further
employed the proposed constructs of §3, and showed that
identifying the core of correlation could potentially result in
an effective transformation. The accurate notion of privacy
enhancing transformation was also proposed to describe the
condition that, if met, guarantees privacy enhancement. On
top of that, once a transformation is designed, our measures
of unnecessary information leakage and transformation, pro-
posed in §3.4.3 and §3.4.4, will help to make sure if the
transformation has been properly designed. If so, as proved
in §3.5, the maximum amount of information leakage and
utility degradation will be bounded by I(S;U).

6. EVALUATION
In this section, we evaluate two aspects of our framework.

First, §6.1 presents a case study illustrating the usefulness of
our framework for evaluating inference control mechanisms.
Second, §6.2 uses our framework to characterize the proper-
ties of the four examples of sanitizing transformations.

6.1 User Profile Transformation – Example

6.1.1 Components
User profiles. In our example social network, a user has 2

friends c and d. Attribute B in the user’s profile shows the
name of the user’s partner, who is either friend c or friend
d, i.e., DB = {c, d}. There is also a photo album in the
user’s profile with two photos: 1) a wedding photo, and 2) a

837



P (S∣B) S
B c d
c 1 0
d 0 1

Table 4: Conditional distribution of S given B.

P (T ∣B) T
B cwdn cndw cndn cwdw
c 0.6 0.1 0.1 0.2
d 0.1 0.6 0.1 0.2

Table 5: Conditional distribution of T given B.

nature photo. Every friend of the user is tagged in either the
wedding or the nature photo. T represents the user’s photo
album such that DT = {cwdn, cndw, cndn, cw, dw} where, for
example, cwdn means friend c is tagged in the wedding photo
and friend d is tagged in the nature photo. Therefore, the
user profile A is simply modelled using the joint distribution
of the two variables B and T , i.e, A = B,T .

Sensitive information. The sensitive information S that
is to be inferred by an adversary from the user profile is the
name of the user’s partner. In other words, S and B are
equal in our example (and hence DS =DB).

Sample third-party extension. Consider a third-party ex-
tension that finds the total number of friends who are tagged
in a user’s photo album. This would be the utility U , that
the extension provides for its users.

Correlation between information. In our example, S, which
is to be protected, is a deterministic function of A because A
contains B which is basically equal to S. Similarly, U is also
a deterministic function of T , and as a result, A. It is clear
that B must not be included in the sanitized version of A,
otherwise S could be inferred with complete certainty. The
trickier correlation is the one between S and T . If a friend
is tagged in a user’s wedding photo, he/she is likely to be
the user’s partner. As a result, T could partially reveal S.
Note that T is required by the extension for computing U .

Tables 4 and 5 describe the correlation between the ran-
dom variables in our sample profile. Note that A = B,T and
H(S ∣ B,T ) =H(S ∣ B) = 0.

6.1.2 Transformation
We propose two transformations for hiding S while pre-

serving U .
Suppression. In our sample social network, the most con-

fident way to infer S from a profile A is to use B because
H(S ∣ B) = 0. As a result, H(S ∣ A) is 0, showing the
necessity of transforming A to protect S. Since there is no
correlation between U and B, we could easily remove B from
A to break the correlation between A and S. To do so, we
employ a suppression t1 such that A ∖ t1(A) always points
to B, which identifies the user’s partner. This means t1(A)
does not contain B. As a result, t1(A) would be equal to T .
The universal inference rule guarantees that t1(A) contains
no more information about S than A does. To show that t1
is really effective in protecting S, we compute St1,A. Let’s
assume P (S = 1) = P (S = 2) = 0.5.

SA =H(S) −H(S ∣ A) =H(S) −H(S ∣ B,T ) = 1

St1(A) = I(S; t1(A)) = I(S;T ) = 0.283 (11)

St1,A = 1 − 0.283 = 0.717

P (T ′ ∣ T ) T ′

T cwdn cndw cndn cwdw
cwdn 0.5 0.5 0 0
cndw 0.5 0.5 0 0
cndn 0 0 1 0
cwdw 0 0 0 1

Table 6: Conditional distribution of T ′ given T
.

P (S ∣ T ) S
T c d

cwdn 0.86 0.14
cndw 0.14 0.86
cndn 0.5 0.5
cwdw 0.5 0.5

Table 7: Conditional distribution of S given T .

P (S ∣ T ′) S
T ′ c d
cwdn 0.5 0.5
cndw 0.5 0.5
cndn 0.5 0.5
cwdw 0.5 0.5

Table 8: Conditional distribution of S given T ′.

P (S ∣ T ), which is needed in the above calculations, is
given in Table 7. Since the evaluated value of St1,A is close to
its maximum value (which is 1 in this example), the privacy
enhancement caused by the suppression t1 is significant. We
skip computing the utility degradation as t1 does not make
any change in T , implying that Ut1,A = 0.

Permutation. Although St1,A = 0.717 shows a consider-
able amount of privacy enhancement, there is still a chance
that S could be inferred from t1(A) due to the correlation
between S and T . To address this issue, we employ a per-
mutation t2 to randomly permute the photo tags such that
the adversary cannot be certain if, for example, friend c was
originally tagged in the wedding photo or the nature photo.
Given that the input to t2 is the output of the suppression
t1(A) which was equal to T , assume T ′ is the output of
t2(t1(A)). Distribution P (T ′ ∣ T ) in Table 6 shows how the
permutation t2 works. If a friend is tagged in a photo, af-
ter permutation, with probability 0.5, he/she will be tagged
in the other photo, and with probability 0.5 he/she will be
tagged in the same photo as before. The privacy enhance-
ment caused by the permutation t2 is assessed as follows:

St1(A) = 0.283 according to (11)

St2(t1(A)) =H(S) −H(S ∣ t2(t1(A))) = 1 −H(S ∣ T ′) = 0

St2,t1(A) = 0.283 − 0 = 0.283

Table 8 shows P (S ∣ T ′) that is needed in the above cal-
culation.

Since our measure of privacy enhancement is additive, the
total privacy enhancement caused by t = t2 ○ t1 over A is
computed as follows:

St,A = St1,A + St2,t1(A) = 0.717 + 0.283 = 1

As a result, t completely hides S because it caused the
maximum amount of privacy enhancement, i.e., St,A = I(S;A)
= 1. In designing the second transformation, we were careful-
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enough not to change the total number of tags. Hence, Ut,A

would be 0 showing that t causes no utility degradation.

6.2 Transformation Analysis
We surveyed four examples (classes) of sanitizing trans-

formations for semi-structured data: suppression, general-
ization, permutation, and noise addition. When would one
class be preferred over another? In the following, we use
our analytical framework to highlight the characteristics of
each class. Transformations can be compared in terms of
(a) their ability to preserve utility, (b) their effectiveness on
protecting privacy, and (c) their efficiency. We will focus on
(a) and (b), as (c) is outside of the scope of this work.

Common to the four transformation classes is a reduction
function r that factorizes the profile a into two parts: one
that is released as is (r(a)), and a fragment a∖r(a) that will
undergo further sanitization via a fragment transformation
tf . The designer of the sanitizing transformation now has to
decide if he is to release only the unchanged part of the pro-
file (suppression), or to release it along with a generalized,
permuted, or noisified version of the fragment a ∖ r(a). To
make the comparison fair, we assume that the four choices
are based on the same reduction r, and that a∖r(a) captures
the core of correlation (§5).

Core suppression – least information leakage. As a∖ r(a)
is the core of correlation, completely removing it by sup-
pression would entirely eliminate any correlation with the
sensitive information S. In the other three transformations,
t(a) = r(a) ⊕ tf(a ∖ r(a)) is released, and thus some corre-
lation with S may remain in t(a). This implies that a core
suppression t would contain the least sensitive information
compared to the other three transformations. Therefore,
core suppression is always the best choice for enhancing pri-
vacy, but the worst choice for preserving utility.

Permutation and aggregate utilities. Imagine we divide a
profile into two parts: (a) values, and (b) structure that cap-
tures the association among values. In our algebraic struc-
ture, constant symbols are the values, and function symbols
with one or more input arguments contribute to the struc-
ture of profile. For instance in Table 3, 1/2/2013 and hello

are two values, and the function symbol entry connect them
to indicate that 1/2/2013 is the timestamp of a wall entry
with the message hello.

Suppression could potentially remove both structure and
values. Generalization only changes values but leaves the
structure unchanged. Noise addition changes both values
and structure. In contrast, permutation is the only trans-
formation that manipulates only the structure of profiles,
and leaves the values as they are. A corollary to this obser-
vation is that, if the utility of a profile resides only on the
values, permutation may be the best choice as far as util-
ity preservation is concerned. This usually happens when
utility U is in the form of some aggregate of values: e.g.,
counting the total number of entries. The output of such
queries remains the same after permutation.

7. RELATED WORK
Privacy in general has always been a concern of security

experts. In particular, lots of efforts have been put to pro-
tect the identity of people in datasets where information
belong to individuals. To evaluate such efforts that are usu-
ally called anonymization, measures have been defined to
assess to what extent the identity of individuals is protected

when a dataset is released. Measures such as k-anonymity
[21], l-diversity [18], t-closeness [15], etc., are the most well-
known metrics. In a more recent work by Askari et al. [6],
an information theoretic framework is proposed to translate
all these anonymization techniques to a unified system.

Although the above anonymization techniques are well-
explored in privacy preserving data mining applications, they
have not been employed in the context of SNSs. Unlike
data mining applications, in SNSs the identity of users are
usually known to other users as well as third-party exten-
sions. In fact, known identities is a part of the culture of
social networks. Third-party developers expect to know
their users’ identity. SNSs utilized permission-based au-
thorization mechanisms to protect their users’ information.
Nonetheless, it has been proved by several works that the
privacy concerns still exist in SNSs. For example, Bilge et
al. [7] discuss two adversarial techniques to establish friend-
ship relations with users and access their information. Sim-
ilarly, Boshmaf et al. [9] showed that their socialbots could
impersonate a human being, and then access users’ informa-
tion by establishing friendship relation with them.

Unlike inference problem in databases, reported many years
ago in works such as [20] and [23], inference attacks in SNSs
is a hot research area. The reason lies behind the wide popu-
larity of social networks. Zheleva and Getoor [25] conducted
an experiment to demonstrate the feasibility of inference at-
tacks in social network data sets. Moreover, Xu et al. [24]
proposed a work very similar to [25] in which social friend-
ship information is used to infer an individual’s gender.

The role of third-party extensions in launching inference
attacks has been completely overlooked in the literature.
Previously published empirical studies [25, 24, 13] assume
the adversary has access to the whole social network data
set. This assumption is simply not realistic in the case
when inference attacks are launched via third-party applica-
tions. Ahmadinejad et al. [4, 5] were the first who evaluated
the threat of inference attacks by third-party extensions to
SNSs. Such efforts can bridge the gap between users’s ex-
pectation from authorization mechanisms in SNSs and what
really happens behind the scene. Although those efforts are
very helpful in warning users to carefully share information
with extensions, there is still a need for protection mech-
anisms particularly designed for controlling inference made
by third-party extensions, which is the focus of this work.

A different perspective in dealing with privacy issues in
social networks is distrusting all involved parties including
the SNS providers. To operationalize this idea, [16, 17, 11]
proposed cryptographic techniques that allow SNS providers
to only access an encrypted form of user data. Authorized
users will have the required keys for decrypting the data.

8. CONCLUSION AND FUTURE WORK
We articulated the need of view-based protection for pre-

venting inference attacks by third-party applications in so-
cial computing platforms, and proposed a theoretical frame-
work for assessing if sanitizing transformations of semi-
structured data meet quantitative privacy and utility goals.
We also identified the conditions under which transforma-
tions are safely composable. We modelled classical sani-
tizing transformations as operations over term algebras of
trees, and demonstrated how their privacy enhancing and
utility preserving effects is evaluated in our framework. Our
work therefore offers a means to formally verify the privacy
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and utility properties of transformations for controlling in-
ference by applications that process semi-structured data.

This work is part of a larger research program to de-
velop inference control mechanisms for programmable en-
vironments. Our current work involves the development of
concrete protection technologies that interoperate with ex-
isting tree manipulation and querying standards (e.g., XML),
as well as query optimization technologies that avoid mate-
rializing views before evaluating the queries. Future work
also include the strengthening of privacy and utility goals.
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