
PROSPECT

Peripheral Proxying Supported Embedded Code Testing

Markus Kammerstetter
Vienna University of

Technology
mk@iseclab.org

Christian Platzer
Vienna University of

Technology
cplatzer@iseclab.org

Wolfgang Kastner
Vienna University of

Technology
k@auto.tuwien.ac.at

ABSTRACT
Embedded systems are an integral part of almost every elec-
tronic product today. From consumer electronics to indus-
trial components in SCADA systems, their possible fields of
application are manifold. While especially in industrial and
critical infrastructures the security requirements are high,
recent publications have shown that embedded systems do
not cope well with this demand. One of the reasons is that
embedded systems are being less scrutinized as embedded
security analysis is considered to be more time consuming
and challenging in comparison to PC systems. One of the
key challenges on proprietary, resource constrained embed-
ded devices is dynamic code analysis. The devices typically
do not have the capabilities for a full-scale dynamic secu-
rity evaluation. Likewise, the analyst cannot execute the
software implementation inside a virtual machine due to the
missing peripheral hardware that is required by the software
to run. In this paper, we present PROSPECT, a system
that can overcome these shortcomings and enables dynamic
code analysis of embedded binary code inside arbitrary anal-
ysis environments. By transparently forwarding peripheral
hardware accesses from the original host system into a vir-
tual machine, PROSPECT allows security analysts to run
the embedded software implementation without the need to
know which and how embedded peripheral hardware compo-
nents are accessed. We evaluated PROSPECT with respect
to the performance impact and conducted a case study by
doing a full-scale security audit of a widely used commercial
fire alarm system in the building automation domain. Our
results show that PROSPECT is both practical and usable
for real-world application.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids; D.4.7
[Organization and Design]: Real-time systems and em-
bedded systems; C.2.0 [General]: Security and protection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’14, June 4–6, 2014, Kyoto, Japan.
Copyright 2014 ACM 978-1-4503-2800-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2590296.2590301.

Keywords
embedded system, security, device tunneling, dynamic anal-
ysis, fuzz testing

1. INTRODUCTION
Embedded systems are omnipresent in today’s world. From

small digital clocks over home appliances such as washing
machines and multimedia devices to medical appliances or
smart phones, embedded technology provides tremendous
advantages compared to general purpose systems. One key
aspect is the possibility to create tailored hardware devices
to fulfill a very specific task. With exactly the right amount
of memory, processing power and interfaces, embedded de-
vices are cheaper, smaller and faster than their general-
purpose computing counterparts. However, a good amount
of embedded devices are aimed at functionality rather than
security. In fact, recent publications have shown that the se-
curity of embedded devices is especially bad [23, 8, 10, 14].
One reason is, that security audits on embedded devices
are considered to be far more challenging and time consum-
ing than on general purpose PC systems. Considering the
common case in which the security analyst has no access to
the source code of the system under test, there is a broad
gap between state-of-the-art security analysis techniques for
PCs and for embedded systems. Liu et al. [11] and Austin
et al. [1] give an overview of the wide area of vulnerabil-
ity discovery techniques that are available for PC systems.
The techniques range from sophisticated static analysis tech-
niques over dynamic analysis and fuzz testing to advanced
dynamic taint analysis and symbolic or concolic execution
[16, 4]. However, for embedded systems, the situation is
different. Mainly due to custom proprietary hardware, un-
documented peripherals and strict system limitations, the
prevalent vulnerability discovery techniques are still based
on static analysis [9, 3, 22].

At the same time, using the wide range of dynamic analy-
sis or taint analysis and symbolic execution tools is in general
not possible due to the limitations of the embedded system
under test. One solution would be to take the investigated
application from its original context and run it in a virtual
machine that provides the necessary resources and facilities
for a full dynamic evaluation. To emulate the embedded de-
vice, however, the connected peripheral hardware needs to
be available from within the virtual machine as well. The
usual way is to emulate the peripheral hardware. Yet, for
proprietary hardware this is not possible due to the following
reasons. First, the analyst would need comprehensive infor-
mation on how all peripheral hardware devices work in order

329

to emulate the hardware behavior in software. Since periph-
eral hardware is likely to be proprietary, this information is
not available and, subsequently, the analyst can not emulate
the hardware. Second, even if the information is available to
the analyst, adding full support for new peripheral hardware
components to a virtual machine implementation is not an
easy task. It is likely that the implementation would take
the analyst a tremendous amount of time that renders the
whole dynamic security analysis infeasible.

To amend this problem, we take a different approach and
introduce PROSPECT, a proxy capable of tunneling arbi-
trary peripheral hardware accesses from within a virtual ma-
chine to the embedded system under test. The result is
a virtualized execution environment for embedded software
implementations with a completely transparent connection
to the actual peripheral hardware components of the sys-
tem under test. PROSPECT thus enables the analyst to
leverage any powerful dynamic analysis techniques of her
choice to discover vulnerabilities on embedded devices with
minimal effort. We developed and continuously improved
PROSPECT over a duration of more than 10 months dur-
ing which our system evolved. In addition, we conducted
a case study to prove the effectiveness of PROSPECT and
used the system to undertake a full scale security analysis of
a widely used proprietary fire alarm system in the building
automation domain. Summing up, the contributions pre-
sented in this paper are as follows:

• We introduce PROSPECT, a transparent proxy for
tunneling peripheral hardware accesses from within a
virtual analysis environment to the embedded system
under test. Our system can overcome prevalent anal-
ysis limitations by enabling dynamic instrumentation
inside arbitrary analysis environments.

• We provide a MIPS based proof-of-concept implemen-
tation that has continuously evolved over a duration
of more than 10 months.

• We evaluate and discuss our approach with a detailed
analysis of the system’s performance and usability.

• We utilized PROSPECT to conduct a case study by
running a full-scale security audit of a widely used
commercial fire alarm system in the building automa-
tion domain showing that PROSPECT is both practi-
cal and usable for real-world application.

2. CHALLENGES IN EMBEDDED
SECURITY ANALYSIS

Assuming that the reader is familiar with the general field
of information security, in this chapter, we briefly outline bi-
nary code analysis and highlight fuzz testing as exemplary,
widely established techniques to discover software vulner-
abilities. We point out, that dynamic analysis is one of
the key requirements for efficient fuzz testing as well as for
manual in-depth analysis approaches usually done as soon
as fuzz testing discovers a potential security vulnerability.
After presenting dynamic analysis techniques for PC sys-
tems, we continue by providing a general overview of how
typical medium to large scale embedded systems are made
up and why the presented dynamic analysis approaches are

frequently not applicable to embedded systems. Besides,
the chapter shows why the approach PROSPECT takes is
promising as it can overcome the described challenges and
enable dynamic analysis in general, regardless of the analysis
limitations on the system under test.

2.1 Binary Code Analysis
Vendors are typically profit-driven and try to push their

newest software products to market as soon as possible. De-
pending on their efforts to avoid software vulnerabilities, a
released software implementation may contain numerous se-
curity flaws such as stack smashing or use-after-free vulner-
abilities [17]. At that point, an arms race between attackers
and the vendor begins. Attackers try to exploit the vul-
nerabilities for their own ill-gotten gain such as industrial
espionage, spreading malware or setting up botnets [20, 7]
while vendors try to patch newly discovered bugs.

For proprietary software implementations, the source code
is usually not available. Thus, in order to discover vulnera-
bilities in these implementations, security analysts need to
rely on techniques that can be applied to binary code. In a
recent survey [11], Liu et al. describe a number of common
techniques to discover software vulnerabilities. While ana-
lysts can resort to static analysis that does not require the
execution of the program under test, static analysis suffers
from a number of drawbacks hindering penetration tests.
For instance, object orientated code makes frequent use of
function pointers that are hard to resolve, if the program is
not being executed. With dynamic analysis, the program is
being executed and the analyst can trace and instrument the
current execution path of the program under test. However,
unless advanced techniques such as multipath exploration
[13] are employed, the analyst needs to generate different
program inputs to analyze different execution paths.

2.2 Fuzz Testing: A Common Technique to
discover Software Vulnerabilities

Generating different program inputs to reach different ex-
ecution paths is also one of the key ideas of fuzz testing, a
widely established technique to discover software vulnera-
bilities [11, 5, 2]. With fuzz testing, input data to the pro-
gram are generated automatically either at random or by
mutating previously obtained program input. At the same
time, the analyst can employ dynamic analysis to monitor
the program execution and detect program anomalies such
as crashes, illicit memory accesses or endless loops causing
high CPU utilization. If an anomaly is detected, the gen-
erated input data are likely to have caused the abnormal
behavior. This is a starting point for a more thorough man-
ual program analysis, usually also within a dynamic analysis
environment.

Practical results [11, 17, 5, 2] have shown that fuzzing is
both a viable and established technique to discover software
vulnerabilities. However, since fuzzers can be highly ap-
plication specific, it might be necessary to implement new
fuzzing tools for each penetration test. Also, we would like
to stress that although fuzz testing is widely used, it is not
the only technique to discovery software vulnerabilities effi-
ciently. One key observation at this point is that dynamic
instrumentation is required for both efficient fuzz testing and
the manual analysis that is usually done after the fuzzer dis-
covers a potential security vulnerability.

330

2.3 Dynamic Code Analysis on PC Systems
In general, a PC system can be divided into hardware,

an operating system (including kernel and drivers) and soft-
ware applications. The analyst has the freedom to dynam-
ically instrument any of these layers. The easiest way to
instrument a program is to debug it with a state-of-the-art-
debugger such as gdb or Ida Pro. The drawback here is that
the program can easily detect that it is being instrumented
and behave differently. For instance, the program might just
exit instead of performing its usual functionality. On the
next level, the analyst can instrument the operating system
to analyze the program’s behavior. For instance, CWSand-
box [24] uses this approach by hooking the operating system
libraries. This allows the analyst to trace the behavior of the
application, but at the same time hinders typical techniques
for debugging (e.g. single stepping through code). On the
lowest level, the analyst can instrument the hardware us-
ing Virtual Machine Introspection (VMI) [6], which makes
it hard for the investigated software to detect that it is being
analyzed. Although the target of the analysis is the appli-
cation itself, the downside of this approach is the need to
analyze the surrounding operating system as well. There-
fore, the necessary effort is higher than applying a regular
debugging technique.

2.4 A typical Embedded System
Embedded systems can be divided into small, medium and

large scale embedded systems [19, 14]. Depending on their
size, their system configuration can differ tremendously.
Small scale embedded systems such as electronic toys, dig-
ital clocks or pocket calculators are built around strongly
resource constrained microcontrollers. Typically, there is no
operating system and the firmware of these systems com-
prises a single program that is contained in an on-chip Flash
memory. In contrast, medium and large scale embedded
systems such as smart phones, wireless routers or field level
components of SCADA systems are based on more power-
ful controllers. Typically, they run a customized operating
system (e.g. Linux) and the product-specific implementa-
tion of an embedded product often comprises custom kernel
code, drivers and several applications. At the heart of these
systems commonly lies a powerful System-On-Chip (SoC)
controller that includes a CPU, ROM, SRAM and a number
of internal peripherals and I/O controllers.

CPU

ROM SRAM

I/O ControllerI/O ControllerI/O Controller

DRAM

Flash

SoC Memory Peripherals

Figure 1: A Typical Medium to Large Scale Embed-
ded System

A typical separation of components is shown in Figure 1.
Upon power-up, the CPU in the SoC controller will execute
the first-stage bootloader code contained in internal ROM
and perform low-level initializations. After that, the SoC
can access external memories (such as Flash and SDRAM)
to boot into a second-stage bootloader and, consequently,

into the operating system (OS) kernel. At that point, the
OS can load a number of additional drivers to support exter-
nal peripherals and then start the product specific processes.
While the general operation of embedded systems is simi-
lar to PC systems, it is the external peripherals that make
embedded systems so special. External peripherals are typ-
ically customly designed by the system manufacturers rang-
ing from product specific sensors and actuators to custom
communication interfaces. Taking modern smart phones as
an example, such external peripherals could be charging con-
trols, wireless radios, GPS receivers, magnetic or accelera-
tions sensors, driving circuits for the vibrating alert, speech
compression DSPs and many more. These external peripher-
als are what actually transforms an off-the-shelf SoC system
into a valuable everyday product.

2.5 Challenges of Dynamic Code Analysis on
Embedded Systems

In contrast to PC systems, employing dynamic analysis
techniques on embedded systems can be more challenging.
Typically, embedded devices are resource constrained, ac-
cess to the file system is limited and the kernel’s functional-
ity and tools available on the device are just a minimal set of
functions necessary for the product to operate properly [14].
The main reason for these constraints is that including ad-
ditional functionality on the embedded systems would result
in increased embedded resource requirements and ultimately
in higher manufacturing costs. From this perspective, the
presented analysis approaches for PC systems are hard to
apply to their embedded counterparts:

1. Using a debugger to instrument the program is only
feasible if the OS kernel includes debugging support
(e.g. through ptrace() in the case of Linux). Running
a state-of-the-art debugger on the system might not be
possible due to resource constraints (e.g. in terms of
memory consumption) or due to missing support (e.g
on legacy systems or on systems where ptrace() sup-
port was not compiled into the kernel to save memory
space).

2. Instrumenting the operating system would require ker-
nel modifications or loading custom kernel modules.
Embedded systems often run customized minimal ker-
nel configurations to keep resource consumption and
boot-up delays low. As a result, instrumenting the
operating system might not be feasible.

3. Instrumenting the hardware would require not only
virtualization of the system architecture, but also of
all the necessary peripheral devices. However, as pe-
ripheral devices and their drivers are often proprietary,
the information required to emulate them might not be
publicly available. Besides, writing emulation code for
all peripheral hardware devices would cause a tremen-
dous overhead, considering that the analyst’s goal is
dynamic code analysis of only a small set of programs.

These challenges show that while on PC systems there is
a wide range of established and well working vulnerability
discovery techniques, the situation is different on embedded
systems. In theory, all of those techniques could be applied
to embedded systems as well. However, practically, embed-
ded systems frequently lack support for these techniques and

331

thus make it much harder to discover software vulnera-
bilities. We believe that this is also the reason, why static
analysis techniques are still so prevalent for those systems.

3. PERIPHERAL DEVICE FORWARDING

Figure 2: A typical Greybox System Example

Figure 2 shows a typical greybox embedded system exam-
ple from a security analyst’s point of view. The analyst’s
goal is to test one or more userspace applications on the
embedded system for security vulnerabilities. This could,
for instance, be a network daemon that is exposed to ex-
ternal attackers over a network connection. Yet, due to the
challenges portrayed in Section 2, the analyst is unable to
perform dynamic code analysis on the target system.

That is, the system lacks system resources, analysis tools
are not available or can not be run and the userspace appli-
cation, the analyst is interested in, can not be executed in
a virtual environment as the peripheral hardware is missing
there. However, one key observation is that userspace appli-
cations commonly communicate through character devices
with potentially proprietary drivers and, consequently, with
the peripheral hardware. Also, the communication inter-
faces to exchange data with the driver, and therefore with
the kernel, are limited and can be considered standardized.

This is where PROSPECT comes into play. The basic
idea of the system is to create virtual character devices in-
side another physical or virtual analysis environment. PRO-
SPECT must intercept system calls used for communication
with the character device from within the operating system
kernel, forward them to the appropriate device on the em-
bedded system and execute them there. Any responses need
to be fed back to the analysis environment so that the inter-
cepted system calls can return the data from the embedded
remote system. Block devices, on the other hand, are gen-
erally used to access storage media which are emulated by
the analysis virtual machine (i.e. qemu) anyways. To the
analyst, PROSPECT constitutes a transparent forwarding
solution for character device communication and thus al-
lows her to conduct dynamic analysis techniques that were
previously infeasible. Even software running on legacy sys-
tems lacking support for state-of-the-art analysis tools can
be analyzed this way. As a result, PROSPECT allows to
overcome typical challenges an embedded security analyst
typically needs to face today.

3.1 Character Device Access
In order to forward peripheral hardware accesses, we need

to know which system calls are generally used to interact
with character devices. Targeting Linux systems, we gath-
ered information on the supported file_operations of all

included character device drivers in three different Linux
kernel versions (Linux-2.4.20, Linux-2.6.38.1 and Linux-3.4.4)
by analyzing the source code of all available drivers (514 files
in total). We chose these specific kernel versions to get an
idea which system calls are used to access character devices
on legacy systems (i.e. Linux-2.4 and Linux-2.6) as well as
on current kernel versions (i.e. Linux-3.4). Table 1 shows
how many of the character device driver source code files
actually define file_operations. It can be seen that the
number of files decreases with newer kernels. We believe
that this is due to increased abstraction in the Linux kernel
requiring driver authors to write less supporting code.

Linux-2.4.20 Linux-2.6.38.1 Linux-3.4.4
files fops fops % files fops fops % files fops fops %
264 77 29.17 143 62 43.36 107 54 50.47

Table 1: Analyzed Device Drivers on different Linux
Kernel Versions

Table 2 shows which file_operations (i.e. which system
calls) are used to interact with character device drivers in
the different Linux kernel versions in relation to the number
character device source code files. For instance, on Linux-
2.4.20, there are 77 files that define file_operations and,
out of these, 83.12% define a custom handler for the open

system call. Some of the system calls in older kernel versions
have been superseded by newer ones. For instance, the ioctl
call in Linux-2.4.20 has been replaced by unlocked_ioctl

and compat_ioctl for performance reasons in newer kernel
versions.

Syscall 2.4.20 2.6.38.1 3.4.4
aio fsync - 0.00 0.00
aio read - 1.61 1.85
aio write - 1.61 1.85
check flags - 0.00 0.00
compat ioctl - 6.45 7.41
fallocate - 0.00 0.00
fasync 28.57 11.29 12.96
flock - 0.00 0.00
flush 14.29 - -
fsync 0.00 3.23 3.70
get unmapped area 2.60 1.61 1.85
ioctl 84.42 - -
llseek 6.49 32.26 29.63
lock 0.00 0.00 0.00
mmap 18.18 12.90 14.81
open 83.12 74.19 77.78
poll 32.47 20.97 25.93
read 68.83 82.26 85.19
readdir 0.00 0.00 0.00
readv 0.00 - -
release 77.92 62.90 66.67
sendpage 0.00 0.00 0.00
setlease - 0.00 0.00
splice read - 0.00 0.00
splice write - 0.00 0.00
unlocked ioctl - 51.61 50.00
write 62.34 50.00 55.56
writev 0.00 - -

Table 2: Usage of Linux file_operations in Charac-
ter Device Drivers (Percentage) for different Linux
versions

332

In theory, PROSPECT could forward any of the system
calls visible in Table 2. However, for performance reasons,
it is beneficial to handle some of those calls locally. In
fact, PROSPECT could execute system calls such as flush,
sync, fasync or aio_fsync locally, if device access on the
remote device is kept synchronized. Due to the delay im-
posed by the connection to the remote system, however,
this would have a negligible effect. On the other side, sys-
tem calls such as splice_read, that have been introduced
for performance reasons, can use their regular counterparts
(i.e. read) without breaking their basic functionality. With
PROSPECT, we thus focus on basic character device opera-
tions that are broadly used by the majority of the character
device drivers we analyzed. Specifically, PROSPECT can
handle the file_operations listed in Table 3. The first col-
umn shows the name of the system call. For each system call,
we specify if the system call is supported by PROSPECT,
which system call is used to implement it and whether the
call is handled locally or forwarded to the remote system.

Syscall supported implemented local/
through remote

aio fsync yes fsync local
aio read yes read remote
aio write yes write remote
check flags no - -
compat ioctl yes ioctl remote
fallocate no - -
fasync yes fsync local
flock no - -
flush yes fsync local
fsync yes fsync local
get unmapped area no - -
ioctl yes ioctl -
llseek yes llseek remote
lock no - -
mmap no - -
open yes open remote
poll yes poll remote
read yes read remote
readdir no - -
readv no - -
release yes release remote
sendpage no - -
setlease no - -
splice read yes read remote
splice write yes write remote
unlocked ioctl yes ioctl remote
write yes write remote
writev no - -

Table 3: Basic file_operations supported by PRO-
SPECT

With the exception of mmap, all operations that are fre-
quently used for character device communication are sup-
ported. This is due to the fact that FUSE (Filesystem in
Userspace) does not support direct mmap calls for character
devices at the moment (see Section 7).

However, special consideration was necessary for the ioctl
system call, as its exact behavior can frequently not be in-
ferred prior to the actual execution.

3.2 IOCTL Mechanism and its Shortcomings
The IOCTL (I/O control) mechanism allows more flexi-

bility in the communication with underlying device files. In

general, there are two types of IOCTLs: Well-formed and
unrestrictive IOCTLs. The difference is that well-formed
IOCTLs have information about the type of the call en-
coded in the request number, whereas unrestricted IOCTLs
do not provide this kind of information.

#de f i n e IOC(dir , type , nr , s i z e) \
((d i r << IOC DIRSHIFT) | (type << IOC TYPESHIFT) | \
(nr << IOC NRSHIFT) | (s i z e << IOC SIZESHIFT))

Listing 1: Encoding for well-formed IOCTLs

Listing 1 shows how information such as the direction
(e.g. read, write or none/execute), the request number or
the amount of data (size) are encoded in the ioctl request
parameter. By decoding this parameter prior to the actual
ioctl call, it is possible to determine the direction of the
data transfer and whether the provided parameter is a con-
stant or a pointer to memory. In this case, PROSPECT
could forward the request to the target system.

However, for unrestricted IOCTLs and prior to the ac-
tual ioctl execution, PROSPECT would have no way to
determine the direction of the data, how much data should
be transferred and whether a provided parameter is sup-
posed to be a pointer or not. Since unrestricted IOCTLs are
commonly used for device driver communication, we had to
address this issue in the design of PROSPECT. We solved
the challenge by introducing a concept we denote Dynamic
Memory Tunneling which is described in Section 4.3.

4. IMPLEMENTATION

Figure 3: Peripheral Character Device Forwarding

As sketched in Sections 2.2 and 2.5, we assume that the
analyst would like to dynamically instrument a binary on an
embedded system that heavily accesses peripheral devices.
While infeasible without PROSPECT, the application can
now be executed inside an arbitrary analysis environment.
Figure 3 provides a schematic overview of PROSPECT. On
the left side, the application that should be analyzed is be-
ing executed within an arbitrary state-of-the-art debugger.
However, instead of directly accessing the peripheral hard-
ware through a character device, the application actually
interacts with the virtual character devices that were gener-
ated through PROSPECT. At this point, PROSPECT in-
tercepts the system calls defined in file_operations and
forwards them to the userspace PROSPECT client. The
client decides whether the system call should be executed
locally or on the remote system. If remote execution is re-
quired, it communicates with the lightweight PROSPECT

333

/dev/chardev [virtual]

PROSPECT
Server

PROSPECT
Client Instance

Process Process
Process

Thread Thread

/dev/chardev [real]

VM Target

PROSPECT
Driver

Figure 4: Concurrent Device Access

server on the target system. The server has very low sys-
tem requirements and can thus be executed on a wide range
of embedded systems. Once the system call has been exe-
cuted on the target system, any results are fed back into the
software application under analysis.

In order to generate virtual character devices and inter-
cept system calls, parts of PROSPECT need to run in kernel
context. While we could have realized all parts of PRO-
SPECT in kernel space, we decided that the major part
of our implementation should be in user space. In com-
parison to a full kernel space implementation, a user space
centric implementation has the advantage of increased sys-
tem stability, security and, most of all, more flexibility. We
implemented PROSPECT from scratch and our overall im-
plementation consists of roughly 7, 500 lines of C code. In
summary, PROSPECT comprises:

• A lightweight kernel driver utilizing the FUSE [15] ker-
nel framework.

• A userspace driver combined with the PROSPECT
client

• A lightweight server component running on the target
system.

The PROSPECT lightweight server needs to be executed
on the target system. Assuming that the security analyst
typically has full physical access to the embedded device
under test, we believe that this is a viable option. For in-
stance, the analyst could use the bootloader console to get
root level access to the operating system and then simply
copy the PROSPECT statically linked binary to the device
by using an attached storage medium or a networked remote
machine as source.

Since our lightweight kernel driver utilizes the FUSE ker-
nel framework, PROSPECT has the advantage that it is
applicable to a wide range of operating systems, including
Linux, FreeBSD, NetBSD, OpenSolaris, Android and OS X.

4.1 Concurrent Device Accesses
On typical embedded systems, a character device might

be accessed by multiple threads or processes concurrently.
Likewise, a single process or thread might interact with mul-
tiple devices at the same time. PROSPECT can handle
these scenarios by using a client/server architecture (Figure

3) with multiple synchronization mechanisms. On the tar-
get system, there is a single PROSPECT server that can
handle multiple incoming connections. Each client repre-
sents a character device that is forwarded to the target
system, whereas each client can handle concurrent devices
accesses by multiple threads and/or processes (Figure 4).
PROSPECT relies on POSIX thread synchronization mech-
anisms (i.e. mutexes) to sustain the order of all accesses
throughout the system.

4.2 File Descriptor Tracking
PROSPECT needs to keep track of file descriptors. Essen-

tially, there are three cases we need to consider: (1) single
processes, (2) child processes (i.e. created with fork()) and
(3) threads. As file descriptors work on a per-process basis,
they are only unique within the context of a process. When-
ever a new process is spawned, new file descriptors returned
by open() typically start at 3 (as 0,1 and 2 are already
used for stdin, stdout and stderr, respectively). Considering
two different processes, both processes may receive the same
file descriptor (i.e. 3), but it may correspond to completely
different files with different properties (e.g. file offsets or
permissions). If a process uses fork() to spawn a child pro-
cess, it will inherit all open file descriptors from its parent,
but any new file descriptors it receives at a later point will
be unique to the child process. In contrast, threads behave
much like a single process, as all file descriptors they receive
are shared between them. As a result, both the PROSPECT
client as well as the server would need to be aware of the type
of process or thread in order to emulate normal operating
system behavior.

PROSPECT tackles this challenge by taking a different
approach. Instead of emulating the behavior of a real sys-
tem, it uses globally unique file descriptors on the server
side and supplies them in a synchronized way to all clients.
More specifically, we implemented the PROSPECT server
as a single process but with multiple threads to handle dif-
ferent connections. For that reason, all file descriptors it
receives from the target’s OS kernel are unique within the
server and, ultimately, within all PROSPECT clients and all
processes and/or threads accessing virtual character devices
as well.

4.3 Dynamic Memory Tunneling
In Section 3.2, we explained how the IOCTL mechanism

is used for more flexible device driver communication. How-
ever, unlike well-formed IOCTLs, their unrestricted coun-
terparts do not provide any data exchange information (i.e.
information on direction and the amount of data that should
be exchanged with the driver). As unrestricted IOCTLs are
frequently used, we considered different approaches to ad-
dress this challenge in PROSPECT.

Both, the userspace application(s) accessing a character
device as well as the character device driver are aware of the
parameters for unrestricted IOCTLs. A userspace applica-
tion may not use all unrestricted IOCTLs the driver sup-
ports. However, the driver implementation always includes
all supported unrestricted IOCTLs as well as the informa-
tion on how data can be exchanged with them. Even better,
device driver code is typically structured in a known way
so that it can be loaded by the operating system. For that
reason, we could extract the kernel image and device drivers
from the target system and employ static (or even dynamic)

334

code analysis techniques on the binaries to extract a data ex-
change rule-set for all available unrestricted IOCTLs. The
drawback of this approach is that PROSPECT would need
to be aware of operating system specifics (such as architec-
ture, kernel version, kernel configuration, etc.). Thus, it
would be hard to use PROSPECT on a wide range of dif-
ferent systems without major modifications. On the other
side, extracting a rule-set from the userspace application,
the analyst wants to work with, might be a challenge on its
own (i.e. due to code size, program obfuscation or required
manual code analysis).

Another approach we considered is that instead of extract-
ing a rule set, PROSPECT could dynamically observe any
unrestricted IOCTLs during program execution and learn
from them. However, this is not always feasible, as the anal-
ysis would need to take place on the target system that does
not necessarily support dynamic analysis in the first place.
In fact, one of the goals of PROSPECT is to enable dynamic
analysis on embedded systems, that might not support it for
the reasons mentioned in Section 2.5.

Since any analysis required to gain information on unre-
stricted IOCTL parameters should not depend on the capa-
bilities of the target system, we implemented dynamic mem-
ory tunneling. The key idea of dynamic memory tunneling
is to always transfer a memory buffer to the target system
if the IOCTL parameter is a possible pointer to a memory
location. Accordingly, for each unrestricted IOCTL call, we
need to answer the following questions:

• Is the parameter a valid pointer?

• How much data should be transferred to/from the tar-
get?

To determine whether the IOCTL parameter is a valid
pointer, we use a heuristic. For each unrestricted IOCTL
call, our system retrieves the PID (process ID) of the pro-
gram that currently accesses the character device. For that
PID it retrieves all mapped memory regions from the OS
kernel (i.e. through /proc/PID/maps) and filters out any re-
gions that are not suitable for a buffer (i.e. memory regions
that are not read- and writable at the same time). If the
parameter value is in one of the remaining memory regions,
PROSPECT assumes that the parameter is a pointer and a
data transfer with the target is initiated.

The question remains how much memory should be trans-
ferred to and from the target system. During our experi-
ments we observed that the amount of data exchanged with
unrestricted IOCTLs was below the page size (typically 4096
bytes on Linux) in all cases. To allow exceptions with larger
buffer sizes, we experimentally limited the maximum size
to 3∗PAGESIZE = 12KiB. However, PROSPECT can be
easily reconfigured with increased limits. Besides the con-
figured limit, the amount of memory that is actually trans-
ferred, can be limited through the mapped memory region
boundaries as well.

During execution, for any unrestricted IOCTL call with a
valid pointer as parameter, PROSPECT takes the following
steps:

1. Given the pointer address ADDR and the PID of the
calling process, use the kernel driver to read up to
3∗PAGESIZE bytes from the mapped memory region
of the corresponding userspace process.

2. Transfer the buffer to the PROSPECT server on the
target system and execute the unrestricted IOCTL call
on a local copy of the transferred buffer.

3. Once ioctl() returns, compare the transferred buffer
with the potentially modified local copy of the buffer
to determine how many bytes were changed in the local
copy.

4. In addition to the ioctl() return and errno values,
send back the content of the local copy buffer to the
corresponding client. The size of the transfer is limited
through the last byte in the buffer that has actually
changed (see Step 3).

5. Given the pointer address ADDR and the PID of the
calling process, use the kernel driver to overwrite the
corresponding memory region of the userspace process
(i.e. starting at ADDR) with the content of the re-
sponse buffer.

6. Return the ioctl() return and errno values to the
calling process.

Through dynamic memory tunneling, PROSPECT can
forward unrestricted IOCTLs with arbitrary read, write and
execute operations.

5. EVALUATION
To provide a well-founded discussion of our system, we

evaluated PROSPECT in two ways. First, we collected sys-
tem call timing information to determine the performance
impact PROSPECT causes in comparison with the native
system. Second, we conducted a case study over more than
6 months by running a full-scale security audit of a widely
used commercial fire alarm system in the building automa-
tion domain.

5.1 Evaluation of Performance Impact
On a 324 MHz embedded Linux MIPS system with 16MiB

RAM, we used the strace tool to collect timing information
for the system calls that are used for basic character device
access (see Table 3 in Section 3.1 for details). Table 4 shows
the userspace system calls we monitored.

Operation Function
close() Close device
ioctl() I/O Control mechanism
lseek() Seek to a given position
_newselect() System call used for poll()

open() Open device
read() Read data from device
write() Write data to device

Table 4: System Calls used for Character Device
Access

To collect timing information, we ran a userspace applica-
tion that makes heavy use of all of the system calls in Table
4. In order to determine how much longer the forwarded
system calls take, we ran the application with PROSPECT
in our analysis environment (qemu-system-mips) as well as
natively on the embedded MIPS system. For both execu-
tions we used strace to create system call logs with timing

335

Figure 5: Proprietary Fire Alarm System

information. For our measurements we collected timing in-
formation for 196, 075 system calls on the analysis environ-
ment and for 166, 972 system calls on the embedded MIPS
system. To compare the execution time of the system calls,
we created custom analysis scripts to keep track of the file
descriptors. This way, we were able to consider only timing
information for calls made on character devices that are for-
warded when PROSPECT is used. The results are visible
in Table 5 in Section 6.1.

5.2 Case Study: Security Audit of a Propri-
etary Fire Alarm System

Under a legally binding non-disclosure agreement, we were
able to employ PROSPECT to conduct a full-scale security
audit of a widely used fire alarm system over a time frame
of more than 6 months. A schematic overview of the overall
fire alarm system is visible in Figure 5. On the lower side
of the picture there is the fire alarm system that has a field
level bus with a number of sensors (such as smoke detec-
tors) and actuators (such as alarm lights or sirens) attached
to it. Typically, there is one fire alarm system in a building
and the sensors/actuators are situated in the rooms or on
the outside of each building. Each fire alarm system is con-
nected over a network connection (i.e. via TCP/IP) to one
central building management server that is responsible for
all fire alarm systems in multiple buildings. Thus, the server
can manage the fire alarm systems and necessary steps can
be taken in case there is a fire alarm. From the security
perspective, the TCP/IP connection between the fire alarm
systems and the building management server is interesting.
After all, if an attacker could get access to the fire alarm
systems over the building network or even the Internet, it
might be possible to trigger false alarms or to disable fire
alarms which would lead to a dangerous situation for the
persons in the building.

On a technical level, the fire alarm system we analyzed is
a customized embedded Linux system with custom drivers,
custom peripheral hardware components and several propri-
etary userspace programs that make up the overall fire alarm

system implementation. The userspace programs make heavy
use of multi-threading (pthreads) and the fork mechanism.
In the running state, there is a total of 29 multi-threaded
fire-alarm system specific processes, spawning multiple threads
depending on the handled networking communication. In
total, there are 5 different hardware peripherals that are ac-
cessed concurrently by the different processes and threads.
As soon as the whole system is up and running, any network
communication is processed. The system resources are very
limited and the fire alarm implementation consumes nearly
all available resources.

Due to the resource constraints, it is not possible to run
a debugger on the system. Thus, dynamic analysis on the
device is not possible either and the code that handles the
network communication cannot be analyzed in another en-
vironment, as the device specific peripheral hardware would
be missing there. As a result, the software application(s)
would not start up in the first place. In this case, the an-
alyst would be limited to static analysis and/or very basic
security testing techniques.

To conduct a security audit of the fire alarm system im-
plementation that handles the network communication, we
employed PROSPECT to run the fire alarm system soft-
ware implementation inside a virtual analysis environment.
In this case, we utilized qemu, an open source virtualization
environment that also supports the MIPS architecture. The
center of Figure 6 shows the multi threaded userspace appli-
cation with all connected installations for a complete anal-
ysis. It concurrently interacts with 5 different peripheral
devices which are handled by multiple PROSPECT client
instances, each handling exactly one character device. For
automated fuzz testing of the network protocol implementa-
tion, we set up three different machines. On the left, there
is the Fire Alarm Control VM that runs the manufacturer’s
software to communicate with the fire alarm system over
a network connection. We used this machine to generate
network traffic and capture it (Packet Capture) to obtain
packets that can be used as input data for our fuzzer. Ac-
cordingly, the fuzzer can generate randomized traffic that
looks very similar to the original communication protocol by
taking packets from the captured network traffic, random-
izing a single byte at a random position within the packet
each test run and replaying the communication towards the
userspace application under test. This allows us to use a
single fuzzer implementation for a broad range of propri-
etary network protocols without the need to know protocol
specifics or the requirement to develop a new fuzzer for each
protocol. The downside of this approach is the limitation
of the test cases to the captured network communication: If
feasible protocol states are not captured during the capture
phase, our fuzzer will not be able to test them. At the same
time, we used a debug server to run the userspace applica-
tions we want to analyze. Through the Debugger VM (with
a state-of-the-art debugger), the fuzzer can thus monitor the
state of the software application and whether the test pack-
ets it sent, caused an exception such as a memory access
violation. In this case, the fuzzer stores the network packets
that led to the exception for later (manual) analysis.

336

Figure 6: Security Analysis Environment

6. RESULTS AND DISCUSSION

6.1 Performance Impact
Table 5 shows the average performance impact of our sys-

tem (Section 5.1). The values are arithmetic means over all
recorded system calls. More specifically, the average number
of read() accesses is the average of all read accesses from
166, 972 native and 196, 075 forwarded system calls, respec-
tively. It clearly shows that for system calls that can be for-
warded without further consideration (i.e. lseek(), read(),
write() and _newselect()), the slowdown is practically in-
significant as the main use of PROSPECT is program de-
bugging (i.e. single stepping) and dynamic code analysis.
Our results show that with PROSPECT the _newselect()

call was slightly faster than on the native system. This is
due to the nature of the system call. It blocks as long as
either the given timeout is reached or one of the monitored
file descriptors is ready. As this is closely related to the
behavior of peripheral hardware (e.g. sleep modes), small
variances in the recorded values are unavoidable.

In contrast, the ioctl() and open() calls cause a signif-
icant slowdown. The ioctl() slowdown is caused by the
dynamic memory tunneling mechanism described in Section
4.3 whereas the open() slowdown is due to the connection
establishment between the PROSPECT client and server.
On the virtual analysis environment, we were unable to cap-
ture close() calls on virtual character devices which is why
we can not provide a performance comparison. However, as
close() also works on an existing PROSPECT connection
and no special considerations are necessary for the call, we
believe that the performance impact is comparable to the
lseek(), read(), write() and _newselect() calls. Fur-
thermore, Table 5 also lists the frequency of each specific
system call. It shows that the most frequently used calls are
also the fastest. For instance, write(), read(), seek() and
_newselect() account for 95,71% of all forwarded system
calls. The distribution between system calls for native and
forwarded execution slightly varied between analysis runs
due to the internal state of the peripheral hardware.

6.2 Proprietary Fire Alarm System Security
Audit

During our fire alarm security analysis (Section 5.2), we
conducted extensive fuzz testing with the setup shown in
Figure 6. During analysis, PROSPECT successfully for-

warded more than 500, 000 system calls per analysis run
to the target system without issues. Likewise, we were able
to manually debug and single-step through the fire alarm
application code. Our fuzz tests revealed a previously un-
known zero-day vulnerability that was reported to the man-
ufacturer. Our case study shows that even under demanding
real-life requirements (29 multi-threaded processes that con-
currently access 5 different hardware peripherals), our sys-
tem performed well and enabled us to conduct both dynamic
analysis and extensive fuzz testing to discover vulnerabili-
ties.

7. LIMITATIONS AND FUTURE WORK
Due to the nature of PROSPECT, it has a number of

limitations that need to be considered. At the moment,
our system uses TCP/IP over a network connection between
the virtual analysis system and the embedded target system.
However, if the userspace application under analysis changes
the network configuration, this would also bring down the
PROSPECT connection. Similarly, if the target system has
no network interface, PROSPECT can not be used. We
plan to add support for different communication interfaces
(such as serial links) to PROSPECT so that it is usable in
these cases as well. Another limitation is that PROSPECT
requires pthreads on the target system and only runs on
Linux right now. Another limitation is the missing mmap

support for character devices due to the missing support in
FUSE. Since mmap calls can be forwarded just the same (i.e.
by using a similar approach as described in Section 4.3), we
plan to implement full mmap support in future versions.

As PROSPECT requires only very little supported func-
tionality on the target system and FUSE has been ported
to a number of operating systems (Section 3), our system
could be easily ported to different architectures and operat-
ing systems as well. At least for some implementations, the
considerable slowdown caused by PROSPECT might lead
to issues. However, this situation also occurs when single-
stepping through programs and solutions, such as altering
the information returned by timing related system calls, ex-
ist. Also, our system does not provide any security features
at the moment.

Another consideration was briefly discussed in Section 3.
When accessing devices on UNIX systems, their access rights
are determined by the device’s permissions. The client im-
plementation needs to create virtual character devices and

337

Syscall Native [%] Native [ms] Fwd. [%] Fwd. [ms] Diff. [ms] Slowdown [x]
write() 21.27 6.07 22.79 25.39 19.32 3.18
lseek() 28.14 0.12 18.88 2.31 2.2 18.65
ioctl() 1.6 0.89 4.27 117.15 116.26 130.37
_newselect() 14.8 43.27 17.14 40.85 -2.41 -0.06
read() 34.16 1.03 36.9 3.29 2.26 2.19
close() 0.01 0.1 0.0 N/A N/A N/A
poll() 0.0 N/A 0.0 N/A N/A N/A
open() 0.02 0.9 0.02 684.62 683.72 757.37

Table 5: PROSPECT Slowdown

therefore requires root privileges. In contrast, the PRO-
SPECT server can be run as any user on the target system.
It is however recommended to run it as root, simply to en-
sure that all devices are accessible. Through PROSPECT,
the investigated process inherits the device access permis-
sions from the server. As a result, it could be possible for
an investigated process to access devices even though that
would not be possible under normal circumstances. This
property is not necessarily a limitation per se, as it consti-
tutes an additional possibility to influence system behavior
during analysis.

With regard to the high slowdown for unrestricted ioctl()

calls, our implementation still provides room for improve-
ment. For instance in future implementations, instead of
querying the /proc file system, we could implement a more
efficient mechanism to minimize execution time.

8. RELATED WORK
When dealing with security analysis on embedded sys-

tems, most research approaches use static analysis to achieve
their goal. For instance, Khare et al. presented some of the
key problems that need to be faced when using static anal-
ysis techniques on a large embedded code base [9]. In their
work they focus on the static analysis of source code to im-
prove the overall security of embedded systems.

In contrast, Ramakrishnan and Gopal do not require ac-
cess to source code as their static program analysis tech-
niques run on embedded binaries [22]. However, they do
not focus on embedded security or vulnerability discovery.

In [18], Zili Shao et al. introduce a mixed hardware/-
software system to check for and protect embedded systems
from buffer overflow attacks. Their system works during
program execution, but is more focused on vulnerability pro-
tection than on vulnerability discovery.

In [21], Sumpf and Brakensiek introduced device driver
isolation within virtualized embedded platforms. The ap-
proach presented here can be considered the most closely re-
lated system compared to PROSPECT. The authors created
device drivers with a generalized interface to provide homo-
geneous access for virtual machines. In contrast to PRO-
SPECT, however, the implementation of the driver must be
known. Furthermore their system is limited to L4 microker-
nels and not suitable for unknown peripheral devices.

9. CONCLUSION
PROSPECT turned out to be a valuable tool that en-

abled us to conduct a full-scale dynamic security analysis
of a widely used fire alarm system. Without PROSPECT,
dynamic analysis would have been infeasible due to the lim-

itations of the fire alarm embedded system. We believe that
PROSPECT’s approach has a high practical impact. It al-
lows to overcome the limitations of static analysis that are
common for embedded vulnerability discovery. The general
concept is applicable to a wide range of embedded systems,
including smart phones or field level SCADA components.

10. ACKNOWLEDGEMENTS
The research leading to these results has received fund-

ing from the Austrian Research Promotion Agency (FFG)
under grants 836276 (SG2), 834005 (Fire-IP) and the Eu-
ropean Union Seventh Framework Programme under grant
agreement n. 257007 (SysSec). We would like to thank
the anonymous reviewers for their helpful feedback and im-
provement suggestions. We would like to thank Trustworks
[12] for providing valuable insights and tools that made this
research possible.

11. REFERENCES
[1] A. Austin and L. Williams. One technique is not

enough: A comparison of vulnerability discovery
techniques. In Empirical Software Engineering and
Measurement (ESEM), 2011 International Symposium
on, pages 97–106, 2011.

[2] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier.
Finding software vulnerabilities by smart fuzzing. In
Software Testing, Verification and Validation (ICST),
2011 IEEE Fourth International Conference on, pages
427–430, 2011.

[3] D. Brylow, N. Damgaard, and J. Palsberg. Static
checking of interrupt-driven software. In Proceedings
of the 23rd International Conference on Software
Engineering, ICSE ’01, pages 47–56, Washington, DC,
USA, 2001. IEEE Computer Society.

[4] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley.
Unleashing mayhem on binary code. In Security and
Privacy (SP), 2012 IEEE Symposium on, pages
380–394, 2012.

[5] W. Drewry and T. Ormandy. Flayer: Exposing
application internals, 2007.

[6] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In In Proc. Network and Distributed
Systems Security Symposium, pages 191–206, 2003.

[7] S. Karnouskos. Stuxnet worm impact on industrial
cyber-physical system security. In IECON 2011 - 37th
Annual Conference on IEEE Industrial Electronics
Society, pages 4490–4494, 2011.

338

[8] M. Kermani, M. Zhang, A. Raghunathan, and N. Jha.
Emerging frontiers in embedded security. In VLSI
Design and 2013 12th International Conference on
Embedded Systems (VLSID), 2013 26th International
Conference on, pages 203–208, 2013.

[9] S. Khare, S. Saraswat, and S. Kumar. Static program
analysis of large embedded code base: an experience.
In Proceedings of the 4th India Software Engineering
Conference, ISEC ’11, pages 99–102, New York, NY,
USA, 2011. ACM.

[10] P. Koopman. Embedded system security. Computer,
37(7):95–97, July 2004.

[11] B. Liu, L. Shi, Z. Cai, and M. Li. Software
vulnerability discovery techniques: A survey. In
Multimedia Information Networking and Security
(MINES), 2012 Fourth International Conference on,
pages 152–156, 2012.

[12] Trustworks KG. http://www.trustworks.at (retrieved
2013-04-17), 2013.

[13] A. Moser, C. Kruegel, and E. Kirda. Exploring
multiple execution paths for malware analysis. In
Proceedings of the 2007 IEEE Symposium on Security
and Privacy, SP ’07, pages 231–245, Washington, DC,
USA, 2007. IEEE Computer Society.

[14] S. Parameswaran and T. Wolf. Embedded systems
security-an overview. Design Automation for
Embedded Systems, 12(3):173–183, 2008.

[15] F. Project. Filesystem in userspace.
http://fuse.sourceforge.net/ (retrieved 2013-04-17),
2013.

[16] E. Schwartz, T. Avgerinos, and D. Brumley. All you
ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been
afraid to ask). In Security and Privacy (SP), 2010
IEEE Symposium on, pages 317–331, 2010.

[17] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. Addresssanitizer: a fast address sanity
checker. In Proceedings of the 2012 USENIX
conference on Annual Technical Conference, USENIX
ATC’12, pages 28–28, Berkeley, CA, USA, 2012.
USENIX Association.

[18] Z. Shao, C. Xue, Q. Zhuge, M. Qiu, B. Xiao, and
E. H.-M. Sha. Security protection and checking for
embedded system integration against buffer overflow
attacks via hardware/software. IEEE Transactions on
Computers, 55(4):443–453, 2006.

[19] K. V. Shibu. Introduction To Embedded Systems.
McGraw-Hill Education, 2009.

[20] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. Kemmerer, C. Kruegel, and
G. Vigna. Your botnet is my botnet: analysis of a
botnet takeover. In Proceedings of the 16th ACM
conference on Computer and communications security,
CCS ’09, pages 635–647, New York, NY, USA, 2009.
ACM.

[21] S. Sumpf and J. Brakensiek. Device driver isolation
within virtualized embedded platforms. In Consumer
Communications and Networking Conference, 2009.
CCNC 2009. 6th IEEE, pages 1–5, 2009.

[22] R. Venkitaraman and G. Gupta. Static program
analysis of embedded executable assembly code. In
Proceedings of the 2004 international conference on
Compilers, architecture, and synthesis for embedded
systems, CASES ’04, pages 157–166, New York, NY,
USA, 2004. ACM.

[23] J. Viega and H. Thompson. The state of
embedded-device security (spoiler alert: It’s bad).
Security Privacy, IEEE, 10(5):68–70, 2012.

[24] C. Willems, T. Holz, and F. Freiling. Toward
automated dynamic malware analysis using
cwsandbox. Security Privacy, IEEE, 5(2):32–39, 2007.

339

