
POSTER – Sechduler: A Security-Aware Kernel Scheduler

Parisa Haghani
Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
haghani1@illinois.edu

Saman Zonouz
Electrical and Computer Engineering

University of Miami
s.zonouz@miami.edu

ABSTRACT
Trustworthy operation of safety-critical infrastructures necessitates
efficient solutions that satisfy both realtimeness and security re-
quirements simultaneously. We present Sechduler, a formally ver-
ifiable security-aware operating system scheduler that dynamically
makes sure that system computational resources are allocated to
individual waiting tasks in an optimal order such that, if feasible,
neither realtime nor security requirements of the system are vio-
lated. Additionally, if not both of the requirements can be satisfied
simultaneously, Sechduler makes use of easy-to-define linear tem-
poral logic-based policies as well as automatically generated Büchi
automaton-based monitors, compiled as loadable kernel modules,
to enforce which requirements should get the priority. Our ex-
perimental results show that Sechduler can adaptively enforce the
system-wide logic-based temporal policies within the kernel and
with minimal performance overhead of 3% on average to guarantee
high level of combined security and realtimeness simultaneously.
Categories and Subject Descriptors: D.4.6 [Operating Systems]:
Security and Protection
Keywords: Real-time security; formal temporal verification; intru-
sion detection and prevention; operating system security.

Sechduler
Maintenance of the safety-critical infrastructures, e.g., nuclear power
plants and avionics systems, is extremely crucial because a fail-
ure to meet a single requirement may lead to a catastrophic conse-
quence such as an explosion or an accident leading to loss of life. In
particular, the realtime scheduling of tasks in those infrastructures
such that individual timing requirements are met reliably is often
a challenging endeavor. Furthermore, to guarantee core function-
alities, those systems need to be secure and intrusion resilient as
they operate in possibly adversarial environments. Currently many
commercial and open-source security solutions are available that
can monitor different security aspects of the systems. Clearly, the
most comprehensive security level will be achieved by running a
set of those security sensors in parallel; however, this would re-
sult in computationally intensive security analyses and hence over-
consumption of the system’s limited resources. Therefore, the sys-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CCS’13, November 4–8, 2013, Berlin, Germany.
ACM 978-1-4503-2477-9/13/11.
http://dx.doi.org/10.1145/2508859.2512527.

tem’s core realtime functionality requirements could be violated
as the system’s critical tasks are deprived of the resources. This
signifies the fact that to ensure timely accomplishment of the core
system functionalities, the deployed security solutions need to be
resource aware and satisfy the system-wide realtime requirements,
i.e., realtime security. The same rationale justifies an urgent need
for solutions to guarantee the secure realtimeness property pro-
vided by realtime solutions, e.g., realtime schedulers, that are aware
of the system security requirements according to the high-level or-
ganizational objectives.

Previous efforts in designing realtime and security solutions have
fallen short in several major aspects. There have been many theo-
retical as well as heuristic scheduling algorithms such as the Linux
kernel 3.X Completely-Fair Scheduler [4], RTLinux [6] attempt to
allocate the system CPU(s) to individual waiting tasks such that the
likelihood of task starvations and deadline misses are minimized.
Although the abovementioned solutions can be employed to en-
sure timely accomplishments of safety-critical and realtime appli-
cations, none of them take into account the existence possibility
of malicious activities, e.g., an adversarial unfinished task wait-
ing for execution. Security and privacy researchers have proposed
numerous host-based intrusion prevention and detection solutions,
e.g., Samhain [7], as well as forensics and root-cause analysis al-
gorithms and tools, such as Backtracker [3], and FloGuard [8], in
order to detect and terminate ongoing malicious misbehaviors with
minimum amount of performance overhead on the target system.
Even though the abovementioned security solutions attempt to min-
imize the overhead as a best effort to terminate attacks before it gets
too late, e.g., confidential data is sent out to network, there is cur-
rently no generic and theoretically sound solution that considers
the system’s overall realtime requirements and guarantees timely
reaction against the ongoing intrusions.

We present Sechduler, a formally verifiable security-aware op-
erating system scheduler that guarantees simultaneous satisfaction
of the system-wide realtimeness as well as security requirements.
In particular, Sechduler accomplishes its objectives through three
major steps. First, during a one-time offline phase, system secu-
rity policies are defined that determine how the security vs. real-
timeness tradeoffs should be resolved. These policies can be de-
signed following whitelisting (deny by default), blacklisting (allow
by default) or other more generalized paradigms. Second, during
an online phase while the system is operating, Sechduler selects
the appropriate subset of policies, given the current security state
of the system, and generates the corresponding single logic-based
conjunctive policy predicate. Sechduler then converts the policy to
an extended finite state machine-based monitor automatically. Fi-
nally, Sechduler enhances the kernel scheduler with the generated
monitor dynamically for runtime monitoring and verification of the
system computational resource allocations. Consequently, Sechd-

1465



uler modifies the kernel’s resource allocation schedule actively if
it is about to violate any of the predefined system-wide security
policies.

More specifically, Sechduler makes use of an easy to understand
formal language, namely three-valued linear temporal logic that
facilitates formulation of comprehensive temporal system-wide se-
curity policies for the system administrators. Needless to mention,
the designed policies can be reused across systems (analogous to
the SE-Linux access control policies). The employed three-value
logic, i.e., true: policy-compliant, false: policy violation, and
inconclusive: insufficient information, enables Sechduler to use
the designed policies for accurate verification and reconfiguration
of the kernel task scheduling dynamically based on the observed
scheduling trace. , i.e., the past and current (to be) scheduled tasks.
Sechduler considers the trace formally as a finite prefix of the (po-
tentially) infinite task scheduling sequence in the future. For the
kernel to understand and enforce the policies, Sechduler converts
the logic-based policies automatically to an extended finite state
machine, so-called Büchi automaton, working with the three-value
logic. The Büchi automaton monitors the kernel scheduling trace
and determines whether the policy is about to be violated. If so, the
scheduler is reconfigured and the system CPU is allocated to the
next non-policy-violating waiting task with an urgent need for ex-
ecution. It is noteworthy that the automated conversion algorithm
in Sechduler results in an automaton with provably minimum num-
ber of states ensuring that the performance overhead of the runtime
monitoring and verification is minimized. Consequently, using a
realtime and security-aware scheduling algorithm through continu-
ous optimization for timely resource allocations and discrete logic-
based monitoring for security verifications, Sechduler makes sure
to provide both realtimeness and security guarantees simultane-
ously if feasible depending on the available time and resources.

In summary, the contributions of our work are as follows: 1) We
propose an easy-to-understand logical formulation formalism to de-
clare the system security requirements for different system security
states; 2) We introduce a three-value logic-based automated algo-
rithm to construct security formal monitors dynamically for run-
time verification and temporal policy enforcement; 3) We propose
a hybrid operating system task scheduling algorithm using continu-
ous task ranking optimization and discrete logic-based formal ver-
ification techniques; and 4) We validate the Sechduler framework
on a real-world host system through implementation and deploy-
ment of a working prototype of the proposed algorithms. It is also
important to mention what Sechduler does not contribute to. In par-
ticular, Sechduler does not present a new intrusion detection sensor
and automatic logic-based policy generation algorithm. Instead,
Sechduler makes use of those solutions to provide the runtime ver-
ification capability to maintain the system security and realtime re-
quirements and avoid potential violations of the previously defined
temporal policies.

Sechduler Overview. Initially, the security administrators write
system security temporal policies using the easy-to-understand for-
malism in Sechduler. This phase is very similar to writing ac-
cess control policies for firewalls or host-based SE-Linux systems;
however, in Sechduler, administrators concentrate on timing- and
scheduling-related security concerns instead. Briefly, each policy
determines the scheduling constraints that need to be held at a sys-
tem security state by the operating system to guarantee that the
system-wide security is maintained. Although, we assume that the
policy writing is completed as a one-time manual effort, Sechduler
could be extended and make use of the recent (semi-)automated
policy writing algorithms and tools [5].

During the system’s operational mode, we assume that appro-
priate host-based intrusion detection systems are deployed and are

Figure 1: The Büchi Automaton for the Predicate

G ((receive_request ∧ ¬send_response ∧ F send_response) →
(sensitive_file_access → (¬send_response U (security_check ∧
¬send_response))) U send_response)

Figure 3: A Sample Temporal Security Policy

monitoring important aspects of the target system, such as the filesys-
tem integrity using, for instance, periodic hash function-based scans
[7]. In case a malicious activity is identified, Sechduler receives
the triggered intrusion detection system alerts that cooperatively
report the system’s current security state. Sechduler goes through
its policy repository dynamically and selects the relevant (possibly
empty) subset of policy rules that correspond to the system’s cur-
rent state. Sechduler then constructs a single system-wide temporal
logic-based predicate using the collected policy rules, and converts
the predicate into a Büchi automaton-based monitor automatically.
The automaton is compiled as a loadable kernel module and in-
serted into the running operating system kernel. The modified ker-
nel scheduler notices the inserted module, and from then on verifies
its individual task scheduling decisions using the loaded monitor.
Additionally, if needed, it enforces the policies by reconfiguring
the system’s resource allocations, i.e., scheduling decisions, adap-
tively.

Preliminary Results
We deployed Sechduler in a testbed environment and evaluated var-
ious aspects of its operation. Figure 1 shows the B(ϕ) automaton
in a never claim format in Promela [2].

As Sechduler verifies whether each scheduled tasks should be
given CPU access, we collected statistics of the kernel-level sched-
uled tasks during a normal host computer usage session. Figure
2(b) shows the number of scheduled tasks for each second dur-
ing the session. In particular, the session included a Web browser
launch followed by an Office document editor application spawn.
As demonstrated, the number of scheduled tasks can go up to 18K
per second during an normal computer usage session. We measured
the time requirements for the policy-to-automata conversion for
the typical linear temporal logic-based system specification poli-
cies [1]. Figure 2(c) shows the results for individual temporal se-
curity policies. As shown in the figure, Sechduler completed the
conversion for individual temporal requirements in approximately
0.58 seconds on average. This suggests that Sechduler can scale
well for real-world settings where many requirements may be in-
volved in the final logic-based predicate.

Case Study: Sensitive File Modification. We show how Sech-
duler protects a target host system once the system is hit by a sen-
sitive file modification attack. Samhain was deployed as the attack
consequence detection system. Specifically, we modified its config-
uration, i.e., /etc/samhain/samhainrc, to monitor the files and
directories in which we are interested, and configured it to report
events with at least crit severity level. Initially, we created its
initial database, i.e., /var/state/samhain/samhain_file, us-
ing samhain -t init, and its database was updated, using -t
update. During the operational mode of the system, Samhain
was configured to check the marked sensitive files and directories

1466



0 

5 

10 

15 

20 

25 

30 

35 

40 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 

To
ta

l N
u

m
b

er
 o

f 
A

u
to

m
at

o
n

 S
ta

te
s 

Typical Temporal Security Specification Patterns 

(a) Automata for Frequently Used Specifica-
tions

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

20000 

0 50 100 150 200 250 

#S
ch

ed
u

le
d

 K
er

n
e

l T
as

ks
 

Time (seconds) 

(b) Kernel-level Scheduled Tasks Statistics

0	  

100	  

200	  

300	  

400	  

500	  

600	  

700	  

800	  

1	   6	   11	   16	   21	   26	   31	   36	   41	   46	   51	  

Au
to
m
at
on

	  G
en

er
a,

on
	  (m

se
c)
	  

Typical	  Temporal	  Security	  Specifica,on	  Pa9erns	  

(c) Automaton Generation Time Require-
ment

0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	  

#S
ch
ed

ul
ed

	  F
ire

fo
x	  
Ta
sk
s	  

Time	  (seconds)	  

(d) Scheduling Statistics of the Trojan Fire-
fox

0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

0	   10	   20	   30	   40	   50	   60	   70	   80	   90	  

#S
ch
ed

ul
ed

	  F
ire

fo
x	  
Ta
sk
s	  

Time	  (seconds)	  

(e) Statistics on a Sechduler-Enabled Kernel

0	  

1000	  

2000	  

3000	  

4000	  

5000	  

6000	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

#P
ro
ce
ss
ed

	  R
eq

ue
st
s/
se
c	  

#Concurrent	  Server	  Threads	  

(f) Overall Sechduler Performance Overhead

Figure 2: Sechduler Evaluation Results

against its database and fire an alert upon identifying a modifica-
tion or access (depending on the policy defined in the configuration
file).

To simulate an attack, we implemented a trojan Firefox that mod-
ified sensitive user files that had been marked to be monitored by
Samhain. Figure 2(d) shows the malware’s scheduling activity statis-
tics within a non-Sechduler aware kernel. Consequently, Samhain
fired the alert, and Sechduler performed three tasks. It 1) called the
setsec system call and lowers the Firefox’s security level variable
within the kernel; 2) spawned a comprehensive ClamAV virus scan
on the Firefox’s executable; and 3) compiled the triggered alert’s
corresponding policy module and loaded it on the kernel dynami-
cally.

Enforcing the loaded policy, Sechduler manipulated the task se-
lection procedure within the kernel scheduler to ensure that (from
its point of view) the potentially malicious Firefox process did not
get CPU access and waited for the ClamAV’s green light. However,
in our experiments, ClamAV triggered an alert denoting that the ex-
ecutable contains malicious content. Consequently, the suspended
Firefox process was terminated by Sechduler and its executable
was removed. Figure 2(e) a different run of the trojan Firefox on a
Sechduler-enabled Linux kernel. As shown on the graph, Sechduler
denies its requests for execution since the 69-th seconds and finally
terminates the process. We implemented the process termination as
a single countermeasure action; however, more complicated actions
can be defined by policies and implemented.

It is important that Sechduler performs the runtime system secu-
rity verification efficiently such that the system’s overall throughout
is not affected significantly. We measured the Sechduler’s overall
performace overhead on our testbed system’s overall throughput. In
particular, we employed the ab Apache Webserver benchmarking
toolset to measure the system throughout. To make the webpage
processing more CPU-intensive, we designed a very simple HTML
webpage. For our server system, we define the overall performance
measure as the number of requests that can be processed per sec-
ond. Figure 2(f) shows how the system’s throughput is affected by
the runtime verification of individual task scheduling decisions. We
believe that the overall performance overhead of the Sechduler so-
lution can be further reduced by optimizing our code. For instance,

several data structures that are searched frequently, with O(n) com-
plexity, can be redesigned for logarithmic search, and overal system
performance improvement.

Acknowledgments
The authors would like to thank the Office of Naval Research (Grant
N000141210462) for their support.

1. REFERENCES
[1] DWYER, M. B., AVRUNIN, G. S., AND CORBETT, J. C.

Patterns in property specifications for finite-state verification.
In Proceedings of the 21st international conference on
Software engineering (New York, NY, USA, 1999), ICSE ’99,
ACM, pp. 411–420.

[2] JIANG, K., AND JONSSON, B. Using spin to model check
concurrent algorithms, using a translation from c to promela.
In Proc. 2nd Swedish Workshop on Multi-Core Computing
(2009), Department of Information Technology, Uppsala
University, pp. 67–69.

[3] KING, S. T., AND CHEN, P. M. Backtracking intrusions. In
Proceedings of the Nineteenth ACM symposium on Operating
systems principles (2003), vol. 37, pp. 223–236.

[4] PABLA, C. S. Completely fair scheduler. Linux J. 2009, 184
(Aug. 2009).

[5] ROUTRAY, R., ZHANG, R., EYERS, D., WILLCOCKS, D.,
PIETZUCH, P., AND SARKAR, P. Policy generation
framework for large-scale storage infrastructures. In IEEE
Symposium on Policies for Distributed Systems and Networks
(2010), pp. 65–72.

[6] SATO, H., AND YAKOH, T. A real-time communication
mechanism for rtlinux. In Annual Confjerence of the IEEE
Industrial Electronics Society (2000), vol. 4, pp. 2437 –2442
vol.4.

[7] WOTRING, B., POTTER, B., RANUM, M., AND
WICHMANN, R. Host Integrity Monitoring Using Osiris and
Samhain. Syngress Publishing, 2005.

[8] ZONOUZ, S. A., JOSHI, K. R., AND SANDERS, W. H.
Floguard: cost-aware systemwide intrusion defense via online
forensics and on-demand ids deployment. In International
conference on Computer safety, reliability, and security
(2011), pp. 338–354.

1467




