
A Process-Oriented Methodology for Assessing and Improving
Software Trustworthiness

Edwurd Amoroso, A TR T Bell Laboratories
Cut-01 Taylor, National Security Agency

John Watson, Martin Marietta
Jonathan Weiss, AT&T Network Systems

Abstract

A high-level, technical summary of the Trusted Software
Methodology (TSM) is provided in this paper. The trust principles
and trust classes that comprise the TSM are presented and several
engineering investigations and case studies surrounding the TSM
are outlined. Appendices are included that highlight important
areas of the TSM.

1 Introduction

An R&D effort has been on-going since 1989 to define the notion
of software trustworthiness and to provide a means for assessing
and improving the trustworthiness of both new and existing
software. This effort has involved several different government
and commercial organizations at various times including the
Ballistic Missile Defense Organization (BMDO), the National
Security Agency (NSA), GE Aerospace (now Martin Marietta), and
AT&T Bell Laboratories. The result of the effort is an assessment
and improvement approach that has been referred to as the Trusted
Sojiiore Methodology (TSVi).

The initial investigations in this effort were focused
primarily on the needs of the Global Protection Against Limited
Strike (GPALS) system. However, as the TSM began to
cmergc’ ,2, a number of additional groups chose to adopt its
approach. For example, the Joint Lntegmted Avionics Working
Group (JIAWG), an organization that advises a variety of avionics
development and maintenance efforts, currently recommends use of
the TSM on programs such as the Advanced Tactical Fighter
(ATF).

In addition, a training course on the foundations of the
TSM and its application to practical soilware development and
maintenance elTorts has been developed at Martin Marietta. The
course has been offered during the past several years to hundreds of
programmers, engineers, and managers within govcmment and
commercial software communities. This has served not only to
disseminate the TSM. but also to obtain valuable feedback from
practitioners.

While it is difficult to identify the primary factor
contributing to the success of the TSM, it is certainly possible to
list several candidate factors. For instance, unlike most existing
sottwarc process standards such as the International Standards
Organization (ISO) 900 1 requiremcnts3 or the Software

CCS ‘94- 11194 Fairfax Va., USA
O-89791 -7324/94/0011

Engineering Institute (SEI) Capability Maturity Model (CMM)4,
the TSM includes explicit attention to security problems that may
emerge during software development (see Appendix 3). This
results in a more holistic protection strategy since it addresses not
only inadvertent errors, but also delibcratc malicious insertions.

In addition, the requirements of the TSM are organized
into a collection of hierarchical classes that vary in their respective
degrees of trustworthiness. While one might expect that all
software development organizations would desire the highest
degree of trustworthiness, practical concerns related to available
funds and resources olten preclude this goal. The TSM
accormnodates this situation by offering a range of different
approaches to optimizing trustworthiness given existing cost
constraints.

Another factor that has contributed to the success of the
TSM is that the basic questions addressed in the design and
development of the TSM requirements deal with issues that are of
the utmost concern to managers of practical software development
efforts. These issues are addressed by the foliowing:
. How can the sottware development process optimize

trustworthiness with respect to cost constraints?
. How can trustworthiness be maintained during the entire

software lifccycle process?
. How is a target dcgrcc of trustworthiness determined for new

software development processes’?
. How is compliance with sofiwarc process requirements

evaluated and monitored?
Particular attention was placed on addressing these

practical concerns in the TSM since it was reasoned that the degree
to which satisFactory answers existed for these questions would
have an enormous effect on the degree to which the TSM was
actually applied in practice.

2 Definition of Software
Trustworthiness

Nearly six months of extensive debate and discussions during 1989
were required before an acceptable definition of software
trustworthiness could be identified. The reason for this difficulty
was that many existing organizations used the term
“trustworthiness” in different ways. For example, the National
Computer Security Center (NCSC) had been promoting a standard
for secure systems in its Trusted Computer System Evaluation
Criteria (TCSEC)5, also known as the Orange Book. As a result,
many programmers, engineers, and managers had become
accustomed to the notion of trustworthiness as dealing solely with
security.

39

On the other hand, several research efi‘orts had begun to
emerge in the late 1980’s and early 1990’s, such as that of Pamas
and other&, that used the term “trustworthiness” in a ditferent
mumer. Their focus, instead, was on the degree to which software
engineering techniques such as enhanced testing, reviews, and
inspections could be used to reduce the likelihood of errors in the
development and maintenance lifecycle. Security was rarely, if
ever, mentioned in these works.

The decision was made for the TSM to define the term in
a mamler that would take both security and software engineering
into account. That is, the notion of trustworthiness would be
focused on the avoidance of malicious insertions during
development, as well as the prevention or mitigation of innocent
errors. This broad scope required that the definition be generalized
to the following: The tntshvorthiness oJsofrware is dejhedas the

degree qf conJihrce thut e.rists hat it meets asetofreylrirements.

This definition exhibited several characteristics that have
since affected many of the technical and management decisions
made with respect to the TSM. These characteristics include the
following:
. Since the delinition is expressed as a “degree ofconlidencc.”

trustworthiness is dependent upon management and technical
decisions made hy individuals or groups of individuals
evaluating the sottware.

. Since the definition is sxpresscd with respect to “a set of
requirements,” trustworthiness is dependent upon the selecfen
set of requirements. This may be the total set of functional
requirements. it may be a critical subset of functional
requirements, or it may bc some set of requirements that
include nonftmctional assurance requirements.

As will be discussed in the ensuing sections, the
assessment and improvement approaches that are embedded in the
I’SM are driven by the definition oftrustworthincss and its
associated attributes.

3 Software Process Approach

Once the definition of software trustworthiness was agreed upon,
the problem of how to assess trustworthiness had to be addressed.
It became clear that two possible approaches existed: In the first
approach, the emphasis would be placed on techniques for
examining sofiwarc products directly, and in the second approach,
the emphasis would be placed on examination of the processes used
to create these products. Both approaches exhibit merit and
warrant discussion.

The primary benefits of examining software products
directly are related to the fact that much useful information can be
easily obtained using examination techniques that are familiar to
most programmers, engineers, and managers. For instance, static
analysis of code style, complexity, and organization using CASE
tools is a common analytic technique [or direct examination of
sollware. In addition, dynamic analysis of software behavior,
which includes all types of testing and reliability analysis, is
auother familiar technique for direct esamination. Even the use of
formal specification and verification is a fonn ofdircct soltwarc
product examination and analysis.

A problem with the direct approach, l~owcver, is that if
on& attention is restricted to direct product examination, then
certain types of software llaws can be easily overlooked. As an
example, recall Ken Thompson’s description of a simple malicious
attack method for inserting Trojan horse code into a compiler in a

way that is not detectable during code inspections or reviews. 7 If
such a malicious insertion were introduced to a critical soflware
routine, then direct examination would probably not identify and
remove the flaw. In addition, direct examination of software via
inspection, review, or analysis does not ensure that flaws are
avoided in subsequent reproduction, packaging, delivery, or
maintenruice activities. In fact, inspections often do not include any
attention to whether a correlation exists between what is being
reviewed (i.e., source code) and what is being executed (i.e., object
code).

As a result, the decision was made to emphasize solIwarc
process examination. rather than direct product examination. This
emphasis on process caused the TSM to not focus solely on
repeating certain activities in the software development lifecycle,
such as tests and inspections, to assess trustworthiness. Instead,
the TSM complements these activities by focusing on the manner in
which they are pcrfonned during the actual development lifecycle.
Such an approach places the burden of responsibility for
demonstrating trustworthiness on the developers. rather than on the
evaluators.

In addition, a process emphasis allows for the
incorporation of reported previous espcrirncc at the Software
Engineering Institute (SEI) in their process-oriented assessments
into the approach being developed. It also allows for incorporation
of reported experience in other process assessment and
improvement approaches such as ISO 9001 and even NCSC Orange
Rook evaluations.

4 Trust Principles

The decision to follow a process-oriented approach led to an
analysis and investigation into those characteristics of the software
process that are most likely to reduce the potential for malicious or
inadvertent software flaw ins&on. A collection of forty-four tn4.d

principles was derived from familiar, generally-accepted sol‘twarc
engineering and security principles in the available literature (SW
Figure I).

These trust principles capture the best available
technologies for countering imiocent errors: as well as malicious
insertions. They each specify a process attribute that contributes to
enhanced software trustworthiness, Trust principles were selected
based on several primary technical considerations. First, it was
agreed that if any trust principle is ignored in a particular soltwarc
process, then the resulting negative impact should not be not
recoverable by other means. For instance, the damage that results
from not documenting software is not recoverable by other process
activities.

Second, it was agreed that each trust principle should be
supported by documented experience, a sound technical foundation,
and general acceptance across the software engineering and
security communities. For csamplc, a trust principle was included
for basic access control to software resources. Certainly, the
benefits of access control arc well established, are associated with a
sound technical foundation. and are generally accepted in the
sollwarc: colmnunity.

40

It is interesting to note that many students or practitioners
being introduced to the TSM are often surprised that imrovation in
the trust principles was explicitly avoided. However, when the
purpose of the TSM is revisited, it becomes clear to them why
attention to established approaches is the best approach. In spite of
this, the decision to avoid imrovation does not preclude the future
incorporation of present innovations that may ultimately becomc
generally-accepted. However, it did preclude the introduction of
many novel and interesting process suggestions to which the TSM
development team was exposed (e.g., suggestions from students,
research proposals in the literature), but that were deemed too
immature for incorporation into a standard.

Finally, it was agreed that the trust principles should be
logically separate to avoid the introduction of complex interactions
between different principles. For example, if certain principles ‘are
dependent upon the degree to which other principles are met, then
it becomes more difficult to utilize and apply the principles as
independent building blocks. (It should be mentioned that this goal
was not entirely met. Some principles, such as Auditing and
Intrusion Detection, do have a dependence that could not be
reasonably avoided.)

The text in Appendix 1 provides a general description of
all forty-four principles. Each principle statement expresses a
requirement on the software process. To case the presentation, it is
assumed that the underlying baseline process follows a familiar
development life cycle as in the Military Standard for Software
Development.8 More specifically, requirements are imposed on
the management issues that arise during the soltware process, the
software development environment and tools that must bc
examined in the early stages of the process, and the various
activities such as requirements analysis, design, dcvclopment, test,
and verification that arise through the entirc process lifecycle.

For govcmment and commercial soltware projects that
are using the TSM, a more complete description of the trust
principles has been made available through the Ballistic Missile
Defense Organization (BMDO). These descriptions, a sample of
which is presented in Appendix 2, include a more detailed set of
compliance requirements that reduce the subjectivity in evaluating

whether a given principle is complied with

5 Trust Classes

Given the purpose of the trust principles, one might expect
trustworthy software to be that sottware which is developed in
accordance with all of the principle requirements. In fact, a great
deal of consideration was given to this as a potential measurement
approach. However, this binary view of trustworthiness is
incompatible with the following observations:
. The definition of trustworthiness as a measure of confidence

suggests that degrees of trustworthiness (based on degrees of
confidence) are more appropriate than a strict binary
definition.

. One would expect compliance with the majority of trust
principles to result in more trustworthy software than
compliance with only a few principles. This suggests degrees
of trustworthiness.

. Finally, practical resource and schedule constraints for new
software developments limit the degree to which certain trust
principles (e.g., those associated with formal methods) can be
applied in practice A binary definition of trustworthiness
would cause such efforts to be catcgorizcd as nontrustworthy.

As a result, a measurement scale was developed that
included different degrees of trustworthiness ranging from the
lowest rating TO (unknown number of trust principles met) to the
highest rating T5 (all trust principles met). Interim degrees of
trustworthiness were organized into a totally ordered collection of
fr~rf clusscs. Each trust class thus represented an equivalence
class of software development efforts (planned, on-going, or
previous) that are designed to produce software of “equivalent”
trustworthiness. The following criteria were used to combine the
trust principles into trust classes:

jrlrreuts. An explicit threat model that included
inadvertent and malicious threats was used as the basis for
mapping trust classes to threats. The lower trust classes were
designed to counter the most common and easily mitigated threats

Methodology/ Safeguards and

Tool Enhancements Countermeasures

Figure 1. Rationale for the Trust Principles

41

such as v&on control errors, unauthorized login attempts, and
simple object protection. The higher trust classes were designed to
counter the more difficult threats such as flawed code insertions by
malicious developers and viral attacks on operating system and
application code.

Irnpac~. The trust classes were designed to ensure that no
class implies a smaller investment cost (e.g., short term impact on
the development process activity cost) than some lower class. The
reason for this is that if such a case ever existed in a set of criteria
classes, then no reasonable manager would select the lower and
more costly class.

Srafe of the Pructics. The trust classes wcrc designed so
that the current state of the practice was located in the “middle” of
the trust class scale. Ibis allowed for state-of-the-art process
approaches and outdated, ineffective process approaches to reside
on the same scale (albeit on opposite ends).

Logical Combination. In certain cases, determining
which trust principles belonged in which trust classes required
SOIIK subjectivity. The effects of this subjectivity were reduced by
maximizing the degree to which feedback from practitioners was
incorporated into the trust class organization. An extensive, on-
going modilication request program has been initiated to allow for
suggestions on reorganization (or any other aspect of the TSM)
from the sotlwarc community.

The diagram in Appendix 4 describes the full set of six
ordered trust classes which are denoted from TO (lowest trust class)
to T5 (highest trust class).

6 Selecting A Trust Class

If the trust classes are to bc used to enhance the trustworthiness of
software that has yet to be developed, then during the planning
stages of the associated development effort, a suitable target trust
class must be selected. This is not an easy task, because it requires
that one consider all of the following factors:

Thurs. II’ certain serious software development threats
are identified for a pnrticular software process. then a higher trust
class may rcprcsent the best available mitigation approach, even in
the prescncc of a limited budget. Malicious integrity threats during
development. in particular, are best mitigated by selecting a higher
trust class (as opposed to other mitigation approached not related to
the TSM).

Cost. ‘Ihe only reason the highest trust class is not
selected for every software development ell‘ort is that an up-front
investment is required in most cases to meet the higher class
requirements. For instance, higher classes require that security
enhancements be made to the software development environment
(e.g., auditing and intrusion detection ofdevelopmcnt activity). As
a result, a trade-oil-must be made between increased
trustworthiness and required cost investments. The most familiar
scenario reported by users of the ‘I’SM is that insutlicient funds
usually force the selection of a lower trust class than is really
needed.

Criticali&~. A commonly cncountorcd heuristic in
allocating trustworthiness requirements to any sottware component
is that more critical software components should be associated with
higher trustworthiness requirements. A typical definition of critical
component is a component whose removal or malfunction would
seriously jeopardize the success of the system mission or purpose.
Unfortunately, since criticality is application specific, general
proccdurcs do not exist for determining criticality. In fact,

engineering consensus is often the best approach. However, to
reduce the subjectivity of total reliance on engineering consensus,
certain factors can be considered in assessing criticality:
. Software that directly contributes to the functionality of a

well-defined system critical path is generally viewed as
critical.

. Sotlware that controls single points of failure is generally
viewed as critical.

. Software associated with unusually stringent requirements in
the areas of security, reliability, availability, or similar
attributes is generally viewed as critical.

An issue that emerges when different trust classes arc
selected for subsystems of larger scale systems is that dependencies
may be introduced behvcen components at ditferent trust classes.
An explicit risk mitigation should be perfonned to ensure that any
potentially suspect dependency (e.g., more trustworthy components
depending upon less trustworthy components for information or
services) will not introduce unacceptable risk.

For example, suppose that a component is developed to
meet the T3 class requirements using existing software library
routines that were not dcvelopcd in accordance \vith certain T3
class rcquircments. While the use of such routines introduces risk
because it does not maintain a uniform process for all components
of the sottware, it would bc impractical to cspect any sottwarc
process manager to avoid soltware reuse for this reason. As a
result, risk mitigation approaches such as the introduction of
sottware architectural mechanisms to restrict infonnation flow
between components with different trustworthiness, could be
employed to deal with this type ofproblem. It is worth mentioning,
in addition, that a software reuse trust principle is also included to
provide guidance on selecting software for reuse.

7 Trustworthiness Evaluation

A practical concern that emerges when trust classes are used as
process requirements for software development is whether a given
developer has complied with (or should be expected to comply
with) the rcquiremcnts for the selected trust class. For csamplc,
tnlst classes often include subjective rcquiremcnts such as the USC
of “qualified” individuals for certain activities or the provision of
“suitable” docrunentation in certain areas. Dctennination of which
individuals are properly qualified, which documents arc suitable,
and similar types of subjective considerations led to the
development of a trustworthiness evahra~ion role as part of the
TSM.

The purpose of evaluation in the context of the TSM is to
collect and document evidence related to the compliance or
noncompliance of a software development contractor with the
requirements of a selected trust class. In this sense,
trustworthiness evaluation is rcminisccnt of the Orange l3ook
evaluation cl‘forts at the National Computer Security Center
(NCSC) in which evidence is supplied by a development
organization to determine compliance with the flmctional and
assurance requirements in the Orange Book. This similarity
between the TSM and Orange Book evaluation approaches allowed
for the creation of evaluation goals for TSM that address wcll-
known advantages and disadvantages of the Orange Book
evaluation approach. Specifically. the tnistworthincss evaluation
goals for the TSM are as follows:

42

. To minimize the effect of trustworthiness evaluation on
existing software development cost including resource, staff,
and scheduling concerns.

. To reduce the incidence of arbitrary decisions related to
process requirements compliance.

. To maximize the value added by trustworthiness evaluation in
the areas of quality, security, and lifecycle cost.

These goals were accomplished via an evaluation process
that starts with an extensive review and assessment of the Software
Development Plan (SDP) by an explicit evaluator. Ideally, this
SDP assessment and review should bc complctcd before the
sollware development activities described in the SDP can even
begin. This SDP assessment and review is followed by a close
monitoring of software development activities by the evaluator.
Key characteristics of the evaluation approach in support of the
goals listed above include the following:
. Early Decision-Making. By emphasizing up-front evaluation

of the SDP, many of the key decisions related to development
and assessment can be worked out before dcvclopment
proceeds. This reduces “on-the-fly” evaluation issues that
arise during later stages of development that can greatly
increase development costs.

. Assessment Based on Evidence. To minimize the subjectivity
of evaluation, trust principle compliance or noncompliance is
established based exclusively on available evidence. For
GPALS projects, a comprehensive evaluator’s guide has been
developed that provides examples of suitable compliance and
noncompliance evidcncc for each trust principle.

. Independent Evaluation. The TSM incorporates the
recommendation that trust evaluation be perfonned as part of
existing Quality Assurance (QA) or Independent Verification
and Validation (IV&V)activities to reduce cost. However,
nothing precludes a member of the development team or
customer from perfonning the evaluation.

8 Case Studies

The TSM has been applied in a variety of software development
efforts. In this section, WC briefly summarize two such efforts, one
performed at AT&T Bell Laboratories during the summer of 199 1,
and the other pcrfonned at GE Aerospace during most of 199 1.
Other assessments with respect to the TSM have been performed
with varying goals (see, for example, the assessment of the UNlX
System V/MLS dcvelopment2). The primary goal of the two case
study efforts described below was to demonstrate feasible
application of the trust principles in practical software development
settings, as well as to improve the trustworthiness of the resultant
sot~warc.

8.1 Case Study: STAT
Development

The AT&T Bell Laboratories case study involved the prototype
development of a tool called STAT, which was designed to allow
sottware development managers to perform “what-if” scenarios
with models of their software development process. An on-line
questionnaire is used to build a model and the tool allows managers
to assess which trust principles are met in their model and how

they might adjust the model toward a target trust class in the most
cost-effective manner.

It was decided that the STAT development would provide
an opportunity to examine some of the trust principles that were in
higher trust classes and, as such, were less likely to be present in
typical development approaches. These trust principles specifically
included (but were not limited to) the following:
. Fonnal Methods Approach (Rigorous, mathematical

representations of requirements and design spccilications were
used).

. Auditing (A secure UNIX environment provided on-line
auditing).

. Identification and Authentication (Machine-generated
passwords aid multilevel secure password storage were
employed).

. Intrusion Detection (Audit records were processed using an
intrusion detection system).

. Mediation (Mandatory and discretionary access control
mechanisms were provided by the environment).

. Least Privilege (Privileges to make software changes were
allocated based on need).

. Multi-Person Control (Individuals could not initiate sofiware
repository changes alone).

. Shared Knowledge (Every module was thoroughly understood
by multiple individual- subjective consideration).

The development involved three full-time programmers
for a period of approsimately four months. The 7K NCSL
(noncommented source lines) of code was written in Ada using the
Verdix Ada Dcvclopment System (VADS) on an AT&T 3B2-500
running the UNIX System V/MLS secure operating system. Formal
specifications were wTittcn in the Ina Jo specification language.
The following results and observations wcrc obtained from the case
study development:
. Meeting the security-oriented principles was facilitated by

perfonning the development on a secure UNIX System V/MIS
platform that provided all of the required functionality. Since
this was an existing development platform being used for
normal government and commercial software development, no
additional training or procurcmcnt was necessary for the case
study.

. The use of formal methods did not greatly impact the
development schedule and did not require inordinate amounts
of training. One member of the development team had been
introduced to formal methods in graduate school and the
others were shown the syntax and semantics of Ina Jo. The
fonnal requirements and design specifications were created
manually and used as design and documentation aids.
Automated theorem proving was not performed. One
unexpcctcd bcncfit of the rcquircmcnts specification was that
the test plan seemed to l‘ollow naturally from the formal
specilication.

. Those requirements associated with the traditional notion of
separation of duty (least privilege, shared knowledge, and
multi-person control) were also easily met. The team found
that the shared knowledge principle, in particular, was of great
use. The methods in support of this principle came in handy
during reviews and when certain individuals were not
available to answer questions.

43

8.2 Case Study: AIM
Development

The GE Aerospace cast study involved a development etfort in
accordance with the Military Standard for Software Development
(i.c., DOD-STD-2167A). The primary goal of this development was
to demonstrate the feasibility of the T3 trust class requirements in a
practical development cflort. The application selected for
developmcnl was the redevelopment of an Advanced Intcractivc
Monitor (AIM) for an ASCII terminal that had been dcvclopcd
earlier at Texas Instruments. Development statistics were made
available on this earlier development so that comparisons could be
made.

The 1 OK NCSL of code was developed in Ada using the
Verdix Ada Development System (VADS) on a Sun 300 platform
running SunOS. lhc development team consisted of a full-time
manager, live ftill-time programmers, one part-time tester, one
part-time configuration manager, and one part-time administrator.
In addition, AT&T 13~11 Laboratories provided a part-time evaluator
who monitored development with respect to the trust principles.
The following results and observations wcrc obtained with respect
to the AIM case study development:

‘lhc T3 class did not introduce severe investment costs
although it did result in more time (approximately double) in
requirements analysis than would have been planned in the
absence of the trust principles. I Iowever, this was balanced by
a much shorter time for coding and testing. In fact, during the
subsystem testing, only two minor errors were found (which is
far lcss than any of the testers had expected or had observed in
previous, similar eflorts).
In gcncral, the development team espressed their belief that
they had performed cvcrything required at T3 on previous
separate projects, but that they had never done them all
together on the same project b&ore.
Comparisons with the original Texas Instruments statistics
wcrc lcss revealing than had been originally cspcctcd. It
turned out that the Tesos Instmmcnk development had been
stretched out over a period of three years by a team of
programmers \vho did not spend full-time on the development.
Thus, difkrcnces in schedule and resources were less
meaningful than had been hoped.
Evaluation activities were performed at AT&T Rcll
Laboratories and only minor violations occurred (e.g., certain
password protections violated a compli~ice requirement in
one trust principle) and all compliance evidence was
documented.

Cost/Benefit Analysis

The most frequent issue that arises during any discussion of the
‘I’SM is the estimated impact the process requirements will have on
one’s existing or proposed development approach. Making accurate
estimates of such impact is complicated by the fact that ditkrcnt
developers have ditrerent baseline approaches and no single unit of
cost and benefit can bc easily established to determine net impact.
For example, additional resources spent during requircmcnts
analysis may bc viewed as a net increase in drvelopmcnt cost.
I Iowcvrr, if this results in reduced test time and increased code
quality, then these benefits must bc taken into account as well.

ln spite of these diffkultics, WC performed an extensive
cost and benefit analysis that included both qualitative and
quantitative activities. The qualitative activities included
comprehensive literature searches to identify reported instances of
cost or benelit experience with any of the trust principles. For
esample, the benefits ofdesign and code reviews are well-known.
All such infonnation, including the esperienccs of the programmers
involved in the case studies, was collected into a cost and bcneiit
database for analysis.

The quantitative activities included management of
statistics on the cast study efforts. In the GE Aerospace cast study
experiment, programmers were asked to keep track of their specific
activities did progress during development. This information was
collected and compared with cost model predictions of costs for a
nontrustworthy software development etl‘ort. Since no cost models
included direct references to trust principles or classes, we had to
estimate the impacts of the trust principles and classes in the input
domk of the cost model. This allowed us to compare results for
development &forts with and without the trust principles.

Based on the qualitative and quantitative analysis, the
following general results were identified:
. As one increases the trustworthiness of a development effort,

one generally front-loads the dcvelopmcnt process toward
rcquiremcnts analysis and design and shortens subsequent
coding, assurance, and maintenance activities.

. Identifying specific percentages that would apply to all
development projects would only bc as accurate as the
development projects are similar. For the GE Aerospace cast
study esperimcnt, it was estimated (using the Checkpoint
model and statistics from the case study) that compliance with
the 1‘3 class would reduce subsequent maintenance over
nontrustworthy approaches by as much as 40 percent.

. Estimating cost is much easier than estimaling the
corresponding benefit of a particular trust principle or class.

. Lifecycle benciits from the trust principles and classes
increase with the size and complexity of a project.

10 Concluding Remarks

Experience with the Trusted Software Methodology confirms 11~
benefits of a process oriented approach to trustworthy software.
Perhaps the strongest evidence of this lies in the adoption of the
TSM by organizations that have not been required or pressured to
do so. Instead, thcsc organizations have determined that the
process-oricntcd guidance o&red in the TSM will help them lo
crcale trustworthy soltware in a cost etkclive manner.

One of the greatest challenges that must bc addressed in
current TSM-related research and development is that other
existing process models and standards such as the CMM and IS0
9001 must be integrated with the trust principles and trust classes
in a way that allows software development managers to nuke

reasonable decisions that have positive impacts on their
development approaches.

Acknowledgments

Significant technical contributions to this work have been made by
the following individuals: Cheri Dowcll, Dan Goddard, Kichard
Iliff, Sara Hadley, Dave Harris, Howard Israel, Pete Lapiska, Mike
Molloy, Thu Nguyen, Linda Pyfrom, Phil Sikora, Lina So, Terry

44

Starr, Jim Sweeder, and John Wilson. Additional contributions and 3.
reviews have been made by the following: Julian Center, Bill
Everett, George Hoover, Eric Leighninger, and Jomr Perkins. 4.

References 5.

1.

2.

J. Watson and E. Amoroso, “A Trusted Software Development
Methodology,” Proc. 13th Natl. Computer Securi@ Conf, Oct.

6,

1990, pp. 717-727.
E. Amoroso et al., “Toward An Approach to Measuring
Sofiware Trust,” Proc. IEEE Symp. Research in Security and
Privacy, May 1991, pp. 198-218.

7.

8,

International Standards Organization (ISO), IS0 9000, Second
Edition, 1987.
W.Humpluey and W. Sweet, “A Method for Assuring the
Software Engineering Capabilities of Contractors,” CMIYSEI-
9 I -TR-25, 1987.
Department of Defense, National Computer Security Center,
Trusted Computer System Evaluation Criteria, DOD 5200.28
STD, 1985.
D. Pamas et al., “Evaluation of Safety-Critical Software,”
UCA4, Vol. 33, No. 6, June 1990, pp.636-648.
K. Thompson, “Reflections on Trusting Trust,” C/iCA,l, Vol.
27, No. 8, August, 1984, pp.761-763..
Department of Defense, Militate Standard./&- Sofhare
Development, DOD-STD-2 167A.

45

Appendix 1: Trust Principles
For GPALS software development, specific trust principle
statements and associated sets of detailed compliance requirements
have been developed. These statements are shown below, but for
lack of space, the compliance requirements have been omitted (full
trust principle compliance requirements documentation runs to over
one-hundred pages). Each txust principle is intended as a
requirement on the development process that should increase the
trustworthiness of any developed sofiware. Readers interested in
the full set of compliance requirements should contact the authors.

A few of the concepts mentioned in the statements below
may be unfamiliar to some readers. For esamplc, several
references are made to terms such as Computer SofIware
Configuration Items (CSCls), Computer Software Component
(CSC), and Computer Software Ilnit (CSIJ). These terms refer to
standard software components in the DOD-STD-2167A Military
Standard for Software Development. The documents mentioned
(e.g., SDD, IDD) are also standard in DOD-STD-2167A. A concept
mentioned repeatedly below is the “identified sottwarc lifecycle
activity”. This refers to the software development or maintenance
activity relevant to the principle at hand (defined more specifically
in the complinncc requirements documentation).

.4ccess Conrrol: Identified software lifecyclc activity
shall be automatically controlled by the sotlware engineering
environment with rcspcct to an explicitly defined security policy.

Adtnitiistrution: The soltware engineering environment,
sollwarc tools, and the dcvcloped software shall be maintained
according to csplicit administration documentation by qualified
individuals.

Audititlg: A record of identilicd sofiware lifccycle
activity shall bc automatically logged and stored by the software
engineering environment in a protected repository.

Con$gz4ruhon h~futqynetzt: A configuration
managcmcnt system shall bc established and shall include
mechanisms and explicit procedures for configuration
identilication, conliguration accounting, configuration control, and
conliguration auditing. All configuration items shall bc stored in a
protected repository that maintains all soltware versions, software
modilication requests, and sollware changes.

Design Docunien~urioti: ln addition to the Software
Design Document (SDD) and interface Design Document (IDD),
the characteristics of the design activity, critical design altemativcs
considered, and critical design rationales shall be documented.

Desigtl Review: Design peer rcvicws shall be conducted
by a peer review team to ensure the completeness, consistency, and
correctness of the sotlware design.

Design 7bols: Design Computer-Aided Software
Engineering (CASE) tools shall be employed to maintain
design/requirements traceability mappings and to generate design
documentation.

Design Trucruhili~: All aspects of the design shall be
shonn to bc traceable to the requirements and all requirements
shall be shown to be traceable to the design.

Environtnenl and Tool Selection: The software
engineering enviromncnt and all software tools shall be selected
according to an explicit selection policy that considers the trust
rating, maturity, documentation, and source code availability of that
sottwxe.

Environnren~ Integrity: An explicit procedure shall bc
available for identifying changes in the software engineering

environment components and, if required, to restore the integrity
associated with that software.

Fotmul Design SpeciJicution: In addition to any infonnal
design specilication, the design shall also be specified in a formal
specification framework.

Fom~ul Desigtr VeriJicutiotr: A formal verification shall
be perfonned to prove that the formal design specification correctly
meets its requirements.

Fom~ul A4ehods Approach: All formal specification and
verilication activities shall follow an approach which includes the
use of a formal specification and verification toolsct,
documentation, peer reviews, and traceability mappings.

Fomrul Requirettrenls Specijkution: In addition to
informal requirements specifications, functional requirements shall
also bc specified in a formal specification framework.

Fomx71 Soitrce Code L~$r~ficatioti: A fonnal verilication
shall be pcrfonned to prove that a low-level formal specification of
the source code correctly meets its requirements.

Identificdiotl and Authetrticutiotr: The initiation of aI!
identified software lifecyclc activity shall bc done only be an
individual that has been identilied and authenticated by the
software engineering environment.

Znrtxsiotr Detechon: Audit trail data shall be used to
pcrlbnn periodic and random intrusion dctcction analysis on the
software engineering cnvironmcnt.

Leust Privilege: Privileges to perform identified soltware
lifccycle activity shall be allocated and maintained so that a
privilege is only given to individuals who require that privilege.

Mdb-Person Control: Identified software dcvclopment
activity shall not be complctcd without the active endorsement and
involvement of at lcast two qualilied sottwarc developers.

Plunning: Detailed plans for all software development
activity (including trust principle complianccs) shall be described
in a Software Development Plan (SDP) and the management of the
software development shall follow the approach described in the
SDP.

Protocvping ,4pprouch: All prototyping that is performed
as part of the risk mitigation strategy shall be performed according
to an explicilly defined prototype plan that describes the way in
which the prototype is designed, developed, tested, documented,
and protected.

Prolo@pe Software Reuse: When prototype software is
reused in the developed software, then the prototype software shall
bc sufficiently documented, reviewed, and tested to ensure that the
level of trust is commensurate wilh the dcvcloped software.

Reyuiremen~s hulvsis Doctttnen~ution: In addition to the
Software Rcquiremcnts Spedification (SRS) and Interface
Requirements Specitication (IRS), information useful in
understanding the sottwarc requircmcnts analysis process and a
rationale for all critical requirements analysis decisions shall be
documented.

Reqrrirettretlts hulysis Review: Requirements analysis
peer reviews shall be conducted by a peer review team to CIISUK

the complctcness, consistency, and correctness of the software
requirements.

Reqlhetnetlts ,4tdysis 7bols: Requirements analysis
Computer-Aided Sottwarr Engineering (CASE) tools shall bc
employed that provide for requirements specification, consistency
checking, and documentation generation.

Reqlriremetrts Trucmbili~: All softwarc requircmcnts
shall be shower to bc traceable to an esplicit system requirement or

46

customer source and all system requirements allocated to a
Computer Software Configuration item (CSCI) shall be shown to
bc traceable to a sotlsvare requirement.

Reliability Meusuremerrt: Computer Sottware
Component (CSC) and Computer Sottware Configuration Item
(CSCI) test and lield results shall be used to reduce observed
sonware failure rates to acceptable levels.

Risk Mitigation: All potential risks associated with the
sottware development activity shall be explicitly identified and a
risk mitigation strategy shall be documented and complied with
throughout the software lifecycle.

Security Policy: All software development activity shall
be performed in accordance with an explicitly defined and enforced
security policy with respect to all software developers and software
development resources,

Shured Knowfe&e: Each identifiable component of the
sottware development activity, including all aspects of
requircmcnts, source code. design, tests, proofs, software tools,
methodologies employed and support activity, shall be associated
with at least two individuals who are thoroughly familiar with the
details, implications. and alternatives considered for that
component.

Sojhvare Reuse: All reused software shall be subject to
an explicit selection policy that considers the trust rating, maturity,

. documentation, and source code availability of the software.
Source Code Standarrls: An explicitly defined source

code standard that enforces modular, structured programming shall
be complied with throughout the coding activity.

Sozcrce Code ,4tra&s: All developed code shall be
subjected to code analysis using tools and procedures that measure
complexity and style.

Source Code Review: Source code peer reviews shall be
conducted by a peer rcvicw team to ensure the completeness,
consistency, and correctness of the source code and Computer
Soltwarc Unit (CSU) tests.

Source Code Documentation: The source code and
characteristics of the soltwarc coding activity shall be documented.

Source Code Traceability: All source code shall be
shown to be traceable to the design and Computer Software Unit

(CSIJ) tests. The design shall be shown to be traceable to the
source code.

Test Documentation: In addition to the Software Test
Plan (STP), Sothvare Test Description (STD), and Software Test
Report (STR), the characteristics of the Computer Software
Component (CSC) and Computer Software Configuration Item
(CSCI) test activity shall be documented.

Test Responsibili~: The responsibility for Computer
Software Component (CSC) and Computer Software Configuration
Item (CSCI) testing shall be placed with an independent group or
organization not involved with coding or design of the software
being tested.

Test Review: Test peer reviews shall be conducted by a
peer review team to ensure the completeness, consistency, and
correctness of the tests.

Test Strutegies: All Computer Software Unit (CSU),
Computer Software Component (CSC), and Computer Software
Configuration Item (CSCI) test and integration tasks shall include
provisions for various testing strategies.

Test Tools: The software engineering enviromncnt shall
include a testbed for creating, executing, documenting, and
analyzing the completeness of all tests.

Test Truceability: All Computer Software Component
(CSC) and Computer Software Configuration Item (CSCI) tests
shall be shown to be traceable to the soltware requirements. Roth
the source code and the sottware requirements shall be shown to be
traceable to the CSC and CSCI tests.

Trusted Distribution: All software shall be transferred
from its source to its destination in a way that ensures that the
integrity has not been compromised during the transfer.

Trusted Path: An explicit mechanism shall be included
in the software engineering environment to ensure that identified
software lifecyclc activity cannot be intcrccptcd by unauthorized
means.

47

Appendix 2: Sample Compliance
Requirements Description

c. (T5) Identified software lifecycle activity shall be extended to
include constrained software development operations (CSDOs)
which shall be associated with a trusted path when they are
invoked.

Since space does not permit inclusion of the compliance
requirements descriptions for all of the trust principles, only one is
included here as a representative sampling of the csact test from
the documentation provided for users of the TSM. All of the trust
principles follow ax organization similar to the one shown below
for Trusted Path (including the set of references depicted).

Trusted Path Principle
.4n e.rylicit mechanism shall be included in the sofnare
engineering environment to ensure identified software hfecycle
activity cannot be intercepted by unauthorized means.
Rationale
Many successful malicious attach on computer and network
systems rely on the use of spoof techniques that imitate some
aspect of the software engineering environment in order to intercept
or block some critical information interchange. Ensuring that all
communication paths between developers and the software
engineering enviromnent are trusted, reduces the potential fbr such
atlacks. For csample, the well-known “login spoor’ technique
aimed at stealing password infonnation is countered by a login
trusted path.
Compliance Rcquircmcnts
Additional Detail

d (T4. T5) A mechanism shall be included that will reliably
assure authorized users of the success or failure of a requested
software lifecycle activity.
Exceptions - (T4,1‘5) Trusted path shall only be bypassed when
the software engineering enviromnent is not in a normal run state.
When this is the case, access shall only bc allowed in a controlled,
physically protected location by an administrator.
Administrafion - (T4, T5) The trusted path mechanism shall be
administered in accordance with the Administration Principle.
Duration - (T4, T5) Trusted path shall be enforced throughout all
softwarc design, development, and maintenance lifecyclc activities.
Environment - (T4, T5) The mechanism shall bc automatic and
shall be integrated into the software engineering environment.
7’arget - (T4, ‘1‘5) The idcntifred software lifecycle activity shall be
determined by the target criteria class. (See Additional Detail
above.)
Quakfications - N/A
Granzrlari~ - (T4, T5) A trusted path mechanism shall be
provided for each software lifecycle activity identified above.
Protections - N/A
Standards - N/A

a. (1‘4, T5) Identified software lifecycle activity shall include the
identilication and authentication sequence in which user identity is
established and then validated. (See the Identification and
Aulhentication Principle.)
b. (T4, T5) Identified software lifccycle activity shall include lhc
cxccution of any commands or utilities which require a user to
enter a password (e.g., remote login activity, changing of the user’s
password, or remote file transfers).

Additional Considerations
1. Fine-tuning a full session trusted path to a set of CSDOs in
Trust Class I’5 may require a customization of the sottwarc
engineering environment.
General References on Trusted Path
I. Department of Defense, Trusted Computer System Evaluation
Criteria, DOD 5200.2%STD, December, 1985.
2. Department of Dcfensc National Computer Security Center,
Glossary of Computer Security Tenns, NCSC-TG-004, October,
1988.

48

Appendix 3: How Does The TSM
Compare With Other Process
Standards?

The recent focus on process in the software community has led to
the application and use of a variety of different software process
standards that enhance different software attributes. The most
well-known such standards include the Software Engineering
Institute (SEI) Capability Maturity Model (CMM) and the
International Standards Organization (ISO) 9001 standard for
software. Since the TSM provides process guidance in a manner
somewhat similar to these standards, it is useful to examine the
relative similarities and differences.

Sindurifies: The TSM, CMM, and IS0 900 I standards
all focus on the enhancement of the software process as a means for
enhancing the resultant software. All include provision for the
assessment and improvement of those activities that comprise a
typical development and maintenance process including reviews,
documentation, and management policy. Thus, enhancements
directed by any of the standards are likely to promote compliance
with the other standards.

Dz$%e,lces: llnlike the TSM, the CMM and IS0 9001
standards do not include provision for dealing with malicious
developers during the software process. Also, unlike the TSM and
CMM, IS0 900 1 does not include degrees of compliance designed
to allow for incremental evolution toward the highest rating.
Finally, unlike the CMM and IS0 9001, the TSM focuses on a
specific development process, rather than the characteristics ofthe
development organizations.

49

Appendix 4: Trust Class Organization
Note that the diagrammatic approach in the figure below is taken directly from the Orange Book. Each row corresponds to a trust principle
compliance requirement and each row corresponds to a trust class.

i TO 1 T2 T3 1 T4 1 T5 1

ESS CONTROL

1\\\1 I I CONFIGURATK)N MANAGEMENT I
ENVIRONMENT INTEGRITY

I I I 1 ADMINISTRATION
ENVIRONMENT AND TOOL SELECTtON

SECURITY PO

SOFlWARE REUSE

\\Y I
1

FUNNING

\W RISK MlTlGATlON I

REQUIREMENTS ANALYSIS REVIEW
REQUIREMENTS ANALYSIS DOCUMENTATION I
FORMAL REOUIREMENTS SPEClFlCATl
RFMJIREMENTS TRACEAS

u\\\ I PROTOTYPE SOFlWARE REUSE I
\\A I 1 DESIGNTOOLS

1 DESIGN REVIE

FORMAL DESIGN SPECIFICT0N

SOURCE CODE STANDARDS

TEST STRATEGIES I

“.-.-., .- -.... - .--.

I TEST REVIEW

NO REQUIREMENTS NEW OR ENHANCED NO ADDITIONAL
FOR THIS CLASS REQUIREMENTS

I
REQUIREMENTS

FOR THIS CLASS FOR THIS CLASS

50

