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ABSTRACT
We propose ring authentication in unconditionally secure
setting. In a ring authentication system a sender can choose
a set of users and construct an authenticated message for a
receiver such that the receiver can verify authenticity of the
message with respect to the user group chosen by the real
sender. The sender will be unconditionally secure even if the
receiver has corrupted up to c users and has access to up to `
past messages in the system. This functionality is similar to
the one provided by ring signature systems with the differ-
ence that protection is against an adversary with unlimited
power. (This also implies that the verification is not public
and is by group members.) In ring signatures an adversary
with unlimited computational power can always forge signed
messages attributing them to groups of his choice. In our
proposed systems the success chance of the adversary can
be reduced to the required security of the system. We de-
fine model, propose a generic construction whose security
is reduced to the security of its building blocks, and give
concrete examples of this construction. The construction
can also be used in computational setting resulting in ring
authentication systems without public key cryptography.

Categories and Subject Descriptors
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General Terms
Security
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1. INTRODUCTION
Consider the following scenario. Alice and Bob are mem-

bers of a group of users. Group members are connected via
authenticated channels. Each user has a shared key with
every other user that allows him to authenticate the com-
munication between them. Messages sent in the system have
a header that includes the sender and receiver’s identities,
allowing the receiver to know if a message is aimed at him
and verify authenticity of the message using the shared key
with the named sender. Alice is a privacy conscious user who
requires her communication not to be directly attributable
to her. She wants Bob to be convinced about the integrity
of the message, but only know that the message is coming
from a group of potential senders (that includes Alice) and
not be able to point to Alice as the sender of the message.

A similar scenario was considered by Rivest, Shamir and
Tauman [24] in computational setting and assuming each
user has a (certified) public key. They proposed a ring signa-
ture that allows a user u to choose a set X of users, each with
a public key, and construct a signed message that is publicly
verifiable using the set of public keys of members of X hence
implying that the signer is a member of X. Ring signatures
provide the highest level of anonymity (unconditional and
un-revocable anonymity) for senders. However authentica-
tion guarantee is computational and an unbounded adver-
sary can always forge signed messages that are attributable
to any user group of his choice and in particular to groups
that he is not a member of.

Our aim is to provide a functionality similar to ring sig-
nature in unconditionally secure setting. That is the aim
is to provide anonymity and authenticity of communication
against an adversary without requiring any computational
assumption. It has been shown that the two most com-
monly used hard problems in cryptography, factorization
and discrete logarithm, have efficient solution if quantum
computers are built [28, 29] and so developing systems that
remain secure without requiring any hardness assumptions
is an attractive research direction.

Similar to ring signatures we allow users to ‘hide’ them-
selves in groups chosen by themselves and use group keys
to construct authenticated messages that are verifiable by
the receiver. Our proposed solution is generic and provides
unconditional or computational security depending on the
types of primitives used.

1.1 Related Work
Chaum [4] proposed an elegant protocol that provides

sender anonymity in an unconditional setting. To our knowl-
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edge this is the only protocol providing unconditional sender
anonymity without requiring computational assumptions.
Dinning Cryptographer (DC) nets allow one member of a
user group to send a message that every other group mem-
ber can decrypt, without origin of the message to be known.
The protocol however incurs high communication overhead:
for a message of length n in a group of size N , nN bits must
be sent. Also other issues such as the need for synchro-
nization and collaboration of all group members must be
addressed. In DC nets it is assumed that all group members
are honest and there is no protection against tampering with
messages: in fact if an adversary controls one of the users,
he can easily add an arbitrary string to the message broad-
casted by that user, hence modifying the decoded message
without being detectable.

Anonymity sets, introduced by Chaum, give the set of
potential senders for a message and are used to describe
uncertainty about the sender of a message. Serjantov and
Danezis [27] argued that membership of anonymity set can
be probabilistic with members having higher or lower prob-
ability of being a sender, and used entropy of anonymity
set as a measure for the level of anonymity provided by a
system. Probabilities used in this evaluation could be ob-
tained through objective methods of analyzing the system
and the communicated messages, and subjective methods of
estimating probabilities. In the absence of a reliable proba-
bility distribution on the anonymity set, the size of this set
has been used to indicate the level of anonymity provided
by the system.

In computational setting a number of models for pro-
viding anonymous authenticated communication have been
proposed. Ring signatures were originally proposed to allow
an insider, for example a parliamentarian, to ‘leak’ a secret
[24] without the threat of retribution and allowing the re-
ceiver to be sure that the message is in fact from one of the
parliamentarians. The schemes have found other applica-
tions that use ad hoc group formation property and in all
cases ensuring authenticity with respect to a set of public
keys, instead of a single one. An attractive property of the
scheme, at least in its original form, is that it does not re-
quire any special set-up and can use an existing public key
infrastructure. It also allows the user to choose arbitrarily
the size of the anonymity set.

In group signature [5] a group member can sign a message
such that it is verifiable using a group public key, hence guar-
anteeing that the message is generated by one of the group
members. In this system users need to join the group and
obtain membership certificates before being able to sign a
message. Group signatures usually1 provide revocability:
that is the group manager can reveal the identity of the
signer of a signed message. This provides a mechanism for
ensuring accountability and that the system is not misused.
This is an important property of group signatures and has
been refined [1, 15] to include finer level of privacy control by
separating group manager and the tracer. Group signatures
have been used in real life applications including implemen-
tation of trusted computing platform [3]. Anonymity set in
group signatures is always the whole group and cannot be
controlled by the signer.

Another related model is ad hoc anonymous identification
scheme [10] which allows a user to form an ad hoc group and

1There are cases that anonymity is unrecoverable [23].

then prove its membership of the group in an anonymous
way. Using Fiat-Shamir transform [12], the scheme can be
converted to a constant-size ring signature scheme provably
secure in the Random Oracle Model.

1.2 Our Work
We propose a sender anonymous system without requiring

any computational assumption. We assume users use an au-
thentication code (A-code) with pre-distributed shared keys
to authenticate messages sent between them. A two party
A-code is a symmetric key primitive that uses a tagging al-
gorithms Tg(k, ·) to construct a cryptographic checksum for
messages, allowing a verifier with a shared key to verify au-
thenticity of the message. To authenticate a message m a
tag t = Tg(k, m) is calculated and appended to m to form
m.t, where ‘.’ denotes concatenation. For a received pair
m.x the receiver checks if Tg(k, m) = x and if true accepts
m as authentic.

In the group setting, any pair of users A and B share a key
kAB . If A wants to send an authentic message m to B, she
first uses the A-code and the shared key kAB to construct
a tag t = Tg(kAB , m) and then adds [A, B] as the header
to obtain [A.B].m.t, which is sent to B. Bob can use the
header information to determine the ‘claimed sender’ and
the key kAB that must be used for verification. Bob will
accept m as authentic if the verification succeeds under the
key kAB .

To provide sender anonymity we enable users to construct
authenticated messages that can be guaranteed to have come
from a member of a group. The group can be chosen by the
sender in an ad hoc way allowing him to ‘hide’ himself among
a group of his choice. The sender does not need any inter-
action with others and can construct the message using his
key information and the public information of the system.
The message will be verifiable by any other member of the
user group that had authenticated channel with others.

This property is similar to ring signatures with the differ-
ence that the message is only verifiable by the receiver that
the sender chooses and all members of the ad hoc group.
This is to be expected in unconditional setting as it is known
[25] that one way functions are necessary and sufficient for
digital signatures (public verifiability).

In an unconditionally secure ring authentication system
(USRA system) a user can choose members of an ad hoc
group (anonymity set) and then construct an authenticated
message that is verifiable by the receiver of his choice. The
adversary can corrupt up to c users obtaining their secret
keys. The security goal of the system is to provide protec-
tion against spoofing attacks by the adversary who after ob-
serving multiple authenticated messages, would like to con-
struct a message that is acceptable by a receiver (possibly
different from those of the intercepted messages). This prop-
erty is analogous to the security property of unforgeability
in ring signatures. The system must also guarantee that no
information other than membership of the anonymity set is
leaked about the sender.

We evaluate the security of the system by the success
chance of the adversary with access to the key information
of a group of users C in constructing an authenticated mes-
sage that is acceptable by a receiver j and is originated by
an anonymity set X that together with j is disjoint from
C, that is C ∩ (X ∪ j) = ∅. A secure USRA ensures that
a successful forgery by C will include a colluder in C with
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a very high probability. This definition is in line with ring
signature schemes where an adversary that has the secret
key information of a member x of a ring X can always forge
a message attributable to X.

We allow the adversary to have access to ` past communi-
cations in the system. In a system that provides security for
` messages, users can send up to ` ring authenticated mes-
sages. A stronger attacker with access to authentication and
verification oracle has been proposed for A-codes [26]. Al-
though, similar to earlier work in authentication [30, 9], we
focus on an adversary with access to past communication,
our approach and constructions can be extended to support
security against this stronger attacker.

Efficiency of the system is measured in terms of the key
requirement of users and the extra information that must
be appended to a message (header and tag). The user key
information is pre-distributed and grows with the level of
anonymity required. The information sent over the channel
consists of the to-be-authenticated message together with
the header information that is proportional to the size of
the anonymity set, and the cryptographic checksum that is
related to the security level of the system.

We give a generic construction for USRA that uses two
building blocks: a non-interactive dynamic conference key
distribution protocol (referred as conference key distribution
protocol hereinafter, or CKD for short) and an authentica-
tion code (A-code for short).

In an (ω, c)-CKD protocol users receive some initial secret
information from a trusted authority. After this initial phase
a user can select a group Ω of ω users that includes himself,
and calculate a key that can also be calculated by all mem-
bers of the group Ω. This allows members of Ω to form a
secure conference without the need to interact with others.
The system guarantees that an adversary that has corrupted
c users and has access to their key information cannot learn
anything about the secret key of the conference where none
of the colluders is a member of.

In our generic construction a user chooses an anonymity
set X that the user is a member of and uses an (ω, c)-CKD
protocol to generate a key that is shared among members of
X, and the receiver. The calculated conference key is used
to select a key for an A-code and to authenticate messages.
That the conference key can be generated by any member
of X makes the user indistinguishable from members of the
anonymity set.

The key can also be calculated by the receiver allowing
him to verify authenticity of the message. This also means
that the authentication is deniable.

We define security of ring authentication systems and give
necessary conditions to reduce security of the ring authenti-
cation system to the security of the underlying CKD proto-
col and A-code. In particular a perfectly secure conference
key system and a perfectly secure authentication code result
in a perfectly secure ring authentication.

We consider two constructions of ring authentication sys-
tems using two concrete constructions for CKD protocols.
The first CKD protocol is a polynomial based construction
introduced in from [2] with a slight extension. Blundo et al
[2] gave a bound on the key size of perfectly secure CKD
protocol and proved their construction satisfies the bound
with equality (optimal). The keys generated in this CKD
protocol are elements of a finite field and can be used to
generate keys in a number of authentication systems. Note

that it is always possible to define a mapping from the key
space of the CKD to an arbitrary A-code but this may result
in a loss of security or efficiency. In case that the key sets
of the CKD and the A-code are of the same size, a one-to-
one mapping can be used. The second construction uses a
special combinatorial structure called generalized cover free
families [34]. A generalized (ω, c) cover free family ((ω, c)-
CFF) is a set system (X ,B) where X is a set of points and B
is a collection of blocks, each a subset of X . The generalized
cover free property guarantees that union of up to c blocks
in B cannot cover intersection of ω blocks. Generalised CFF
can be used to construct CKD protocol. In this case the
conference key is a subset of elements of X. We show how
this set can be mapped into the key set of an A-code to
construct a ring authentication system.

For both constructions we prove that with appropriate
choices, security of the resulting ring authentication systems
are guaranteed by the security of the underlying primitives.

1.2.1 Extensions
We discuss two extensions for our work. Firstly, we would

like to remove restriction on the size of anonymity groups
and colluding sets. That is, give full flexibility to users to
choose the anonymity set and ensure that a colluding group
of unrestricted size will not be able to identify the sender.
We will achieve these properties using a CKD protocol pro-
posed in [8]. The cost of this extreme level of security and
user control is that the key size of users, although proven
optimal, will be exponential in the size of the group.

We also consider computational model. Users are as-
sumed to be connected through symmetric authenticated
channels using MACs and the aim is to provide user con-
trolled anonymity. To this end, in the generic construction
the A-code is replaced by a computationally secure mes-
sage authentication code. In particular we may use the
computationally secure MAC that is obtained from Weg-
man and Carter [35] construction by replacing the random
number generator with a pseudo-random number genera-
tor. We justify security of the construction and leave formal
analysis and proof for future work. As mentioned earlier in
our construction the receiver is not cryptographically distin-
guishable from the sender group and so the system provides
deniable authentication. That is the authenticated message
could have been generated by the receiver. In computa-
tional setting this will provide a similar functionality to the
deniable ring authentication of Noar [22].

The paper is organized as follows. In Section 2 we re-
view some primitives including unconditionally secure A-
code, unconditionally secure noninteractive conference key
distribution protocol and a combinatorial structure, cover-
free family, that are used in the rest of the paper. In Section
3 we provide the model and definitions of USRA system. We
then give our generic construction and prove its security in
Section 4, followed by two concrete constructions in Section
5. In Section 5.3 we discuss extensions and future work.
Finally we conclude in Section 6.

2. PRELIMINARIES

2.1 Authentication Code
Unconditionally secure message authentication systems

are realized by authentication codes (A-codes).
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For simplicity, we focus on A-codes without secrecy in sys-
tematic form although our results can be easily applied to
A-codes with secrecy.

A systematic A-code without secrecy is a symmetric key
authentication system that can be represented by a four-
tuple (M, E , T , T g) where M,E and T are sets of messages,
encoding rules, and tags, respectively. Tg is a tagging al-
gorithm Tg : E ×M → T . To construct an authenticated
message for m using the encoding rule e ∈ E , the tagging
algorithm is used to generate a tag t = Tg(e, m) that will
be appended to the message and forms m.t where ‘.’ denote
concatenation. To verify a tagged message m.x under the
rule e, the verifier examines whether x = Tg(e, m), and if
true accepts m as authentic. The tagging algorithm can be
represented by an |E| × |M| matrix A, whose rows are in-
dexed by encoding rules in E and columns by messages in
M to be authenticated. The entry A(e, m) is the Tg(e, m)
which is an element t of the tag set T .

An A-code provides security against an adversary who
does not have access to the secret key and has observed past
authenticated messages and attempts to construct a forgery
that will be hopefully acceptable by the verifier. In tradi-
tional spoofing of order ` attack the forgery is constructed
after the adversary has observed ` authenticated messages
m1.t1, m2.t2, · · · , m`.t`, all generated using the same key.
Impersonation and substitution are spoofing of order zero
and one respectively. Let P A-code

` denote the highest suc-
cess probability of an adversary in an spoofing of order `
attack. That is P A-code

` =

max
e

max
strategies

pA-code[m.t valid for e|m.t, m1.t1, · · · , m`.t`]

where the second maximum is over all the strategies of the
adversary in choosing m.t 6= mi.ti for all i ∈ [`].

It is proved that for A-codes without secrecy P A-code
` ≥

1/|T |. Codes with perfect protection of order ` satisfy this
bound with equality. An A-code is said to provide ε-security
of order ` if P A-code

l ≤ ε, 0 ≤ l ≤ `. A stronger attack model
for A-codes has been proposed in [26] where the adversary
has access to authentication and verification oracles. In this
paper we focus on the traditional attack model but our re-
sults can be extended to the stronger attack model.

A widely used construction for A-codes is (M, E , T , T g) =
(Fq,Fq × Fq,Fq, T g) where for e = (a, b) ∈ F2

q we have
Tg(e, m) = a × m + b and all operations are in the finite
field Fq. The construction provides perfect protection for
spoofing of order up to one but is completely insecure for
authentication of more than one messages. Wegman and
Carter [35] showed a very efficient construction for authen-
ticating multiple messages. The construction uses almost
universal hash families and a one-time-pad. A ε-ASU(n; a, b)
ε-almost-strongly-universal hash family is a family of n func-
tions from an a-set A to an b-set B satisfying the following
two properties: (i) for any x ∈ A and y ∈ B, there are ex-
actly n/b functions f such that f(x) = y; and (ii) for any
two distinct elements x1 and x2 in A and two arbitrary, not
necessarily distinct, elements of B, there are at most εn/b
functions f such that f(x1) = y1 and f(x2) = y2.

In Wegman-Carter construction, to authenticate a sequence
of at most ` messages a key e is used to determine a func-
tion he from an ε-ASU hash family together with ` random
tags b1 · · · b` (a sequence of ` one-time tags). Each mes-
sage has a counter i attached to it. The tag for the lth

message is Tg(e, m, l) = fe(m) + bl. The construction guar-

antees Pl ≤ ε, l = 1, · · · `. Wegman-Carter construction has
been used to construct computationally secure MACs such
as UMAC [17].

2.2 Conference Key Distribution
Non-interactive dynamic conference key distribution schemes

providing unconditional security were introduced by Blundo
et al [2] and further studied by Desmedt et al [8]. They can
briefly described as follows.

There is a set of users U = {u1 · · ·uN}. The aim of the
system is to enable members of a conference of c users to
individually calculate a secure key that cannot be computed
by those who are not in the conference. The system consists
of the following phases.

1. Initialization A trusted initializer (TI) distributes an
initial secret sx ∈ IK (for some initial key domain IK)
to each user ux. Then TI stays offline and does not
participate in the protocol.

2. Conference Key Generation When a user ui wants to
hold a conference X of users that includes himself,
he uses his initial secret and the public values of the
system and other users to non-interactively calculate
a key kX using a key calculation function.

Let g denote the function that is used to compute the key.
Then g satisfies g(sx, X) = g(sy, X)(= kX ∈ K) for all x, y ∈
X and so the conference key can also be computed by all
other members of X.

Let ω and c be non-negative integers with ω + c ≤ N ,
the total number of users. A non-interactive c-secure ω-
conference key distribution protocol, denoted by (ω, c)-CKD,
is a two-phase protocol (U , IK,K, g) as described above such
that,

1. Each member of a group of ω users can individually
and non-interactively compute a common key.
That is, for all X ∈ [N ] = {1, 2, · · · , N} of size ω and
for each user ux with x ∈ X, a unique kX ∈ K exists
such that pConf [kX |sx] = 1. The superscript Conf
stands for the CKD scheme.

2. Any group of c users have no information on any key
they should not know.
That is, for all X, Y ⊂ [N ] with |X| = ω, |Y | = c and
X ∩ Y = ∅, it holds that pConf [kX |sY ] = pConf [kX ],
where pConf [kX ] denotes the a priori probability of
the conference key being kX for a given X.

Since each user ux deterministically computes the con-
ference key kX from the information sx received from the
server, the probability distribution on sX = (si1 , si2 , · · · , siω )
naturally induces a probability distribution on kX . Property
2 says that random variables of kX and of sY are statistically
independent, thus the information held by UY reveals no in-
formation on the conference key for UX unless X ∩ Y 6= ∅.

Obviously a (ω, c)-CKD protocol is also a (ω, c′)-CKD pro-
tocol for every c′ ≤ c.

Theorem 2.1. (Lemma 3.1 [2]) Let X, X1, · · · , Xl, C ⊂
[n] such that |C| = c, C∩X = ∅, C∩Xi 6= ∅ and |X| = |Xi| =
ω for i = 1, 2, · · · , l. Then in any (ω, c)-CKD protocol, it
holds that

H(SX |SX1 , · · · , SXl) = H(SX).
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An (ω, c)-CKD protocol is said to be perfectly secure if
pConf [kX |sY ; kX1 , · · · , kXr ] = pConf [kX ] holds for all X, Xi, Y
and r with |X| = |Xi| = ω, |Y | = c and X ∩ Y = ∅.

2.3 Cover-free Family
Cover-free families (CFFs) are extensively studied set sys-

tems which were first introduced in 1964 by Kautz and Sin-
gleton [14] in the context of superimposed binary codes.
CFFs have been used to solve some new problems in cryp-
tography and communications, including blacklisting [18],
broadcast encryption [13], broadcast anti-jamming [7], source
authentication in a network setting [21, 11], and group key
pre-distribution [31, 32, 33]. A cover-free family is first of
all a set system.

A set system is a pair (X ;B) with X being a set of points
and B being a set of subsets of X . Elements of X are called
points and elements of B are called blocks. A set system
(X ;B) can be represented as an |B| × |X | matrix I called
as incidence matrix, where I(b, x) = 1 if block Bb includes
point x and zero otherwise.

We recall the general definition of CFF given in [34] below.

Definition 2.1. Let ω, c, d be positive integers. A set
system (X ;B) is called a (ω, c, d)-cover-free family, denoted
by (ω, c, d)-CFF), provided that, for any ω blocks B1, · · · , Bω

∈ B and any other c blocks B′
1, · · · , B′

c in B, one has

ω⋂
i=1

Bi \
c⋃

j=1

B′
j ≥ d. (1)

Obviously any (ω, c, d)-cover free family is also a (ω, c′, d′)-
CFF for any c′ < c and d′ < d.

3. DEFINITIONS OF RING AUTHENTICA-
TION

Let N be a natural number and the set of users be U =
{u1 · · ·uN}. In a sender-anonymous authentication system,
a sender ui can send an authenticated message m.t to a re-
ceiver uj such that the receiver can verify authenticity of
the message while neither the receiver nor any other ob-
server can trace the message to a single sender. The sender-
anonymity set or simply anonymity set of the sender for the
message is the set (size at least 2) of potential senders of the
message. That is from the receiver’s view point any member
of the set could have sent the message.

A sender-anonymous authentication can be trivially con-
structed as below.

Trivial System T1: An A-code (M,K, T , T g) is used for
constructing authenticated messages. A trusted initializer
randomly selects a key k ∈ K and securely gives the key to
all users in U . To authenticate a message m, a user ui

computes the authentication tag as t = Tg(k, m) using the
tagging algorithm Tg of the A-code. The message sent to
uj is uj .m.t. If uj receives an authenticated message of this
form, he can verify it using his key information and will be
convinced that it is from one of the group members.

In the above system if the adversary corrupts a single
user the security is completely lost and the adversary can
successfully forge.

Receiving a message enables the receiver to use his secret
and system information to compute a set which we refer to

as recovered anonymity set Anon(uj , m.t). We assume that
members of Anon(uj , m.t) have equal chance of being the
sender. Let Uj denote the set of users U excluding uj . Then
in T1 it is easy to see that for all uj and all valid message-tag
pair m.t, we have Anon(uj , m.t) = Uj and the set is fixed
and cannot be controlled by the sender.

A second trivial system described below allows to have dif-
ferent anonymity set for each message and different receiver.
However this set, can be computed as Anon(uj , m.t) = {ux :
kx,j ∈ E(m.t), x 6= j} where E(m.t) denotes the encoding
rules validating m.t, is deduced by both the message and
the receiver and therefore is not controllable by the sender.

Trivial System T2: Assume any pair of users ui, uj have
a shared key ki,j. Using their shared key ui can send an au-
thenticated messages to uj . More precisely, to send a mes-
sage m to uj, the sender ui calculates the tag t = Tg(ki,j , m)
which is appended to m. To verify a received message m.t,
uj uses all keys kj,x that he shares with ux ∈ Uj and ac-
cepts the message as authentic if Tg(kj,x, m) = t for some
ux ∈ Uj.

We would like to allow senders to determine their anonymity
set UX ; here X ⊂ [N ] specifies the indices of users in UX .
This is called designed anonymity set where ‘designed’ in-
formally means that the authenticated messages can only
be generated (or verified) by users in UX ∪ uj . T1 and T2
are examples where users cannot control their anonymity
set. When the anonymity set can be chosen by the sender,
we require the sender to append [X.j] to m.t as a header.
So the authenticated message sent over the channel will be
[X.j].m.t. For an honest sender, a secure sender anonymous
system must guarantee that UX ⊆ Anon(uj , m.t), where the
extra users in Anon(u,m.t) may be introduced by receiver’s
inability in calculating the correct anonymity set.

Throughout this paper, we will use anonymity set to mean
both the recovered anonymity set and the designed anonymity
set, expecting that the correct interpretation can be seen
from the context. We will use Ω as [X.j] for clear presen-
tation, and do not distinguish it from X ∪ j, expecting the
meaning to be known from the context.

As noted before, in T1 Anon(uj , m.t) = Uj and so a re-
ceived message is attributable to any group member. Thus
T1 achieves the maximal anonymity. This however results in
complete loss of accountability and allowing any group mem-
ber to easily (no extra) construct messages with no trace to
himself.

To provide unconditional anonymity and flexibility for
users to choose the anonymity set and provide and authen-
tication guarantee against adversaries who have corrupted
a group of users, we introduce unconditionally secure ring
authentication system (USRA system, for short).

Definition 3.1. A (r, c, N)-USRA system (M, T ,K) is
a sender-anonymous authentication system consisting of the
following three algorithms (RAI, RTg, RVf):

1. Initialization RAI(r, c, N): The system is initialized by
a Trusted Initializer (TI) with parameters r, c, N At
the end of running RAI, for each x ∈ [N ] a secret sx ∈
K is securely delivered to user ux .

2. Ring Authentication Tag RTg(si, Ω, m): Takes as in-
put, a secret key si for the sender ui, a designed anonymity
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set (or equivalent information) X, a receiver identity
j, and the message m ∈ M to be authenticated. RTg
then calculates and outputs a tag t ∈ T . The authen-
ticated message to be sent to the receiver is Ω.m.t.

3. Ring Authentication Verification RVf(sj , Ω.m.t): On
receiving a tagged message Ω.m.t the receiver uj uses
RVf(sj , Ω.m.t) for verification and accepts m as au-
thentic if RVf outputs 1 and rejects m otherwise.

In the following we give definitions of the system parameters
and describe the significance.

Correctness: For an (r, c, N)-USRA it is required that
for all ui, uj , Ω and m.t the algorithm RVf(sj , Ω.m.t) al-
ways outputs 1 on messages Ω.m.t that are correctly con-
structed as t = RTg(si, Ω, m). More specifically, for all
i, j ∈ [N ], X ∈ [N ]r with i ∈ X and for all m ∈ M, it
holds that RVf (sj , Ω.m.RTg(si, Ω, m)) = 1. (Recall that
Ω = X.j and i ∈ X .)

Anonymity: In general the level of anonymity that a sys-
tem provides is related to the size of anonymity set. How-
ever using set size assumes that the probability distribu-
tion on Anon(uj , m.t) is uniform. More refined measure of
anonymity levels can be defined based on the difference be-
tween entropy of the a priori distribution on the user set and
the distribution calculated after a message is received. We
use the size of the designed anonymity set UX as the measure
of anonymity and require UX ⊆ Anon(uj , m.t). A similar
property holds for ring signatures where the anonymity set
is read from the message.

Definition 3.2. A USRA system is called a strong (r, c, N)
- USRA system if it is also a (r′, c, N)-USRA system for all
r′ ≤ r.

A strong USRA allows users to choose anonymity sets of
size up to r, without affecting his security.

Definition 3.3. An N users USRA system is called per-
fect if it is also a (r, c, N)-USRA system for all r, c ∈ [N ]
such that r + c ≤ N − 1.

In a perfect system a sender can choose any size for his
anonymity set and no colluding group, with no limitation
on the size, can have a successful forgery.

Security In an authentication system the main goal of
an adversary is to construct a fraudulent message that is
acceptable by a receiver. We allow the adversary to corrupt
up to c users. We also refer to this as c insiders forming
a colluding set C. The aim of the adversary (or colluding
group) is to forge a message that is acceptable by a group
member. A forgery is considered successful if it is accepted
by a receiver and it is from an anonymity set that does not
intersect C.

In spoofing of order ` attack in a USRA system the ad-
versary observes ` past authenticated messages, Ω1.m1.t1,
Ω2.m2.t2, · · · , Ω2.m`.t` in the system (remember Ωl = Xl.jl).
In general messages have different anonymity sets or re-
ceivers and hence the tags are constructed using different
keys2. The adversary constructs a fraudulent message Ω.m.t

2Otherwise, as pointed out in Section 1.2, mapping function
(i.e., f later) may result in a loss of certain security if it is
many-to-one.

and succeeds if Ω.m.t is accepted by uj , and attributed to
anonymity set UX .

The best success probability of such order ` adversary
who has corrupted a set C of users and knows their key
information in spoofing of order ` is denoted by P RA

` , where
the superscript RA stands for unconditionally secure ring
authentication. Then P RA

` =

max
all strategies

pRA[RVf(sj , Ω.m.t) = 1|sC , Ω1.m1.t1, · · · , Ω`.m`.t`]

where the set sC is the key set of the colluders that is acces-
sible to the adversary and the maximum is over strategies of
the adversary in choosing Ω and m.t 6= ml.tl for all l ∈ [`].
Note that the definition includes the case that the messages
have the same anonymity set and receiver (i.e., Ω) and hence
are constructed under the same key.

Definition 3.4. A (r, c, N)-USRA system is said to have
ε-security of order `, if the success probability P RA

` as de-
scribed above is at most ε.

4. A GENERIC CONSTRUCTION
In this section, we give a generic construction GRA for

ring authentication system with unconditional security against
up to c colluders. The sender can choose an anonymity set
of size up to r. The construction uses an A-code with pro-
tection against spoofing of order ` attacks and a (ω, c)-CKD
protocol for N users, with ω = r+1 and ω+c ≤ N , as build-
ing blocks. We prove the GRA is a secure (r, c, N)-USRA
system where security is as defined in Section 3.

Definition 4.1. We say an A-code (M, E , T , T g) and an
CKD protocol (U , IK,K, g) are compatible if an injection
mapping f can be defined from the set K to the set E.

The GRA system.
Let the A-code (M, E , T , T g) and (ω, c)-CKD protocol

(U , IK,K, g) be compatible. Then GRA=(M, T , IK) con-
stitutes a ring authentication system for user group U and
the algorithms (GRI, GTg, GVf) are constructed as follows.

1. GRI(ω − 1, c, N) = the initialization of (ω, c)-CKD).
That is, GRI(ω − 1, c, N) runs the Initialization algo-
rithm of (ω, c)-CKD protocol. At the end of this phase
a user u receives a secret s ∈ IK.

2. GTg(si, Ω, m) = Tg(f ◦ g(si, Ω), m).
This algorithm is invoked by the sender ui to generate
a tag for m and to construct an authenticated message.
If ui wants to send a message to uj he will perform the
following steps.

(a) Chooses an anonymity set UX of size r = ω − 1
such that i ∈ X but j /∈ X.

(b) Sets Ω = X ∪ j and generates a conference key
kΩ = g(si, Ω), where g is the key calculation func-
tion of the CKD protocol and si is the secret dis-
tributed to him by TI in the system initialization
phase.

(c) Computes an A-code rule eΩ = f(kΩ) using the
public mapping f . The tag is calculated as t =
Tg(eΩ, m) using the tagging function Tg of the
A-code.
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(d) The final authenticated message is Ω.m.t (mean-
ing [X.j].m.t).

3. GVf(sj , Ω.m.t) = 1 if t = Tg(f ◦ g(sj , Ω), m).
The verification algorithm invokes the tag function of
the underlying A-code using a key that the receiver cal-
culates based on the prefix information of the received
message. If uj receives Ω.m.t, he does the following.

(a) Reads the message header Ω and rejects if j /∈ Ω.

(b) Computes the conference key kΩ = g(sj , Ω) and
the encoding rule eX = f(kΩ).

(c) Accepts m as authentic if t = Tg(eΩ, m) and re-
jects otherwise.

Correctness of the GRA system follows immediately from
the correctness of the A-code and the conference key distri-
bution protocol. The required computation is the combina-
tion of that required by the A-code and the CKD protocol.
An authenticated message is always prefixed by Ω that has
length r · log n. Sender-anonymity is unconditionally pro-
vided at level r since anyone in UX is able to construct
the authenticated message. The following theorem guaran-
tees the security of the GRA system under spoofing attacks
given the underlying primitives are both secure in respective
terms.

Theorem 4.1. In the generic construction above, if (i)
the A-code has ε-security against spoofing attack of order `,
and (ii) the (ω, c)-CKD protocol has perfect security, then
the GRA system is ε-secure against spoofing attack of order
`, assuming the adversary is allowed to corrupt up to c users.

Proof. (sketch) We only prove the theorem for ` = 1.
The proof can be extended to the general case with ` > 1.
We relate the best success probability of the adversary in
GRA system to the success probability of an attacker in the
underlying A-code, using the perfect security of the CKD.

The success probability of a GRA adversary with a tagged
message Ω.m.t after observing an authenticated message
Ω1.m1.t1 is denoted by pGRA[m.t is valid for Ω|sC; Ω1.m1.t1].
Let P GRA

1 denote the best success probability of the GRA
adversary after observing one message. This is given by,

P GRA
1 = max

Ω.m.t|Ω1.m1.t1
pGRA[Ω.m.t is valid|sC; Ω1.m1.t1]

= max
Ω1.m1.t1

max
Ω.m.t

pGRA[Ω.m.t is valid|sC; Ω1.m1.t1]

The A-code adversary’s success probability with a tagged
message m.t after observing an authenticated message m1.t1
is given by pA-code[m.t is valid|m1.t1] and its best success
probability is P A-code

1 = maxm.t|m1.t1 [m.t is valid].
Given a GRA adversary who uses Ω.m.t after observing

Ω1.m1.t1, we construct an A-code adversary who is given all
the key information that the GRA adversary has, and uses
m.t as the spoofing message for the A-code after observing
m1.t1.

For any m1.t1, Ω1, Ω and C such that C ∩ (Ω ∪ Ω1) = ∅,
the best success probability of the GRA adversary is given

by

P GRA(sC; Ω1.m1.t1)

= max
Ω.m.t6=Ω1.m1.t1

pGRA[m.t is valid for Ω|sC; Ω1.m1.t1]

= max
Ω.m.t6=Ω1.m1.t1

pGRA[GVf(sj , Ω.m.t) = 1|sC; Ω1.m1.t1]

Now consider two cases. First, let Ω1 = Ω. Then, for the
A-code we have Tg(kΩ, m1) = t1. The A-code adversary
has sC which because of the perfect security of CKD gives
no information about kΩ. Hence,

max
m.t6=m1.t1

pA-code[Tg(eΩ, m) = t|sC; Ω1.m1.t1]

= max
m.t6=m1.t1

pA-code[Tg(eΩ1 , m) = t|Tg(eΩ1 , m1) = t1]

= P A-code
1 (Ω1.m1.t1)

Second let Ω 6= Ω1. Using the same argument,

max
m.t6=m1.t1

pA-code[Tg(eΩ, m) = t|sC; Ω1.m1.t1]

= max
m.t6=m1.t1

pA-code[Tg(eΩ, m) = t]

≤ P A-code
0

Together

P GRA(sC; Ω1.m1.t1) ≤ max{P A-code
0 , P A-code

1 (Ω1.m1.t1)}
and finally

P GRA
1 = max

Ω1.m1.t1
P GRA(sC; Ω1.m1.t1)

≤ max
Ω1.m1.t1

{P A-code
0 , P A-code

1 (Ω1.m1.t1)}

={P A-code
0 , P A-code

1 } ≤ ε.

5. CONCRETE CONSTRUCTIONS
In this section we show two constructions and discuss on

some extensions for ring authentication based on the generic
construction.

5.1 Using Polynomial CKD Protocol
We choose the (ω, c)-CKD protocol to be the polynomial

scheme in [2]. The protocol allows dynamic conferences to
calculate a conference key that is an element of Fq. We use
two independent (random choices) copies of the protocol to
allow users to calculate a pair (a, b) ∈ F2

q that is used as the
key for the authentication system GRA in Section 4. The
protocol works as follows.

During the initialization phase, the trusted initializer (off-
line server) randomly chooses two symmetric polynomials3

F, G of degree c and in ω variables, with coefficients ran-
domly chosen from a finite field Fq. The initial secret of
user ui is evaluations of F, G at x1 = i. That is, si =
(ai(x2 · · ·xω), bi(x2 · · ·xω)), where ai(x2 · · ·xω) = Fi(x2 · · ·xω)
= F (i, x2, · · ·xω) and bi(x2 · · ·xω) = Gi(x2 · · ·xω) = G(i, x2, · · ·xω).
Each polynomial will have

�
c+ω−1

c−1

�
coefficients and so the

total key size of a user is
�

c+ω−1
c−1

�
field elements.

In the conference key generation phase, suppose user ui

wants to obtain a common key kX shared among UX with

3A polynomial F (x1 · · ·xω) is symmetric if F (x1 · · ·xω) =
F (xσ(1) · · ·xσ(ω)) for all permutation σ of ω elements.
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X = {i, i2, · · · , iω} ⊂ [N ]. Then he computes kX as the pair
(aX , bX) = (Fi(i2, · · · , iω), Gi(i2, · · · , iω)).

Correctness and the security of the key pair follows from
the security of the original scheme and noting that the two
copies of the original CKD protocol were independently cho-
sen.

We choose the A-code described in Section 2.1. For this
A-code the set of encoding rules is E = Fq×Fq, the message
space is Fq and tagging function is Tg((a, b), m) = a×m+b.

The code is compatible with the polynomial CKD protocol
(2 copies) where the function f is the identical mapping from
F2

q → F2
q.

Security of the combined scheme follows from Theorem
4.1. The combination results in a 1/q-secure (r, c)-USRA
system with r = ω − 1 where q is the size of Fq.

It is worth to point out that this construction is optimal in
term of the key storage needed by the user. This is because
the base A-code is optimal – the size of encoding rules is as
small as possible, the underlying CKD is also optimal – the
size of information held by users is as small as possible, and
the function f is an identical mapping.

5.2 Using Generalized Cover-free Family
In this subsection, we use a generalized CFF for con-

structing the conference key distribution. This construction
is a natural extension of other works [31, 32] on key pre-
distribution schemes.

For an N users group, we require the (ω, c, d)-CFF (d ≥ 1)
(X ;B) to have at least N blocks, i.e., |B| ≥ N . Each user
is associated with a distinct B. This is possible because
|B| ≥ N . Let ui be associated to Bi with blocks ordered
arbitrarily.

Suppose there is a (M, E , T , T g) A-code with ε-security
against spoofing of order 1 and |E| = |X | (the result can
be generalized to higher order spoofing in a straightforward
way).

In each running of the system, the TI randomly associates
one key from E to each point in X . Without loss of generality
let xl is associated with el for l ∈ [|E|]. User ui receives all
keys whose corresponding points are in Bi.

To construct an authenticated message for a user uj , ui

does the following.

1. Key generation: Selects an anonymity set X ⊂ X that
includes himself, and forms Ω = X ∪ j. He will then
finds {xi1 · · ·xih} = ∩i∈ΩBi. Let kΩ = {ei1 , · · · eih}.
Note that because of the cover free property, no col-
luding set C will be able to cover {xi1 · · ·xih} and so
there is at least one key exl , 1 ≤ l ≤ h that is only
known by members of Ω.

Let E be an Abelian group with group operation ¯.
The encoding rule used for authentication is calculated
as eΩ = ¯el∈[h]il. An example of A-codes that satisfy
this property is the code used in the previous construc-
tion.

2. Tag construction: The tag for a message m is t =
Tg(eΩ, m). The message sent to uj is Ω.m.t.

Correctness of the system follows immediately from the
correctness of the conference key distribution and the cor-
rectness of the A-code

Security of the system following from observing that mem-
bers of each conference will have a key that is not known by

the adversary (colluders). This means that the conference
key as defined above has perfect security and H(EΩ|sC) =
H(EΩ) where EΩ is the random variable associated with
eΩ. Hence the conditions of Theorem 4.1 are satisfied and
we will have the following theorem.

Theorem 5.1. The construction above, referred as CFF-
RA, is a (ω−1, c)-USRA system and is secure against spoof-
ing of order 1, i.e., P CFF−RA

1 ≤ 1/q.

5.3 Extensions

Ring authentication with perfect anonymity.
The generic construction in Section 4 effectively reduces

the construction of a ring authentication system to the con-
struction of a non-interactive dynamic conference key sys-
tem. The two constructions above the key size of users is�

c+ω−1
c−1

�
and so polynomially depends on ω and c. The con-

struction is particularly important because it is proven opti-
mal and ensures that the key sizes of the users is minimum.
An important property of the construction is that the key
size of the users is independent of the size of the group and
only depends on the level of anonymity required by the users
and acceptable colluding size. The construction using gener-
alized CFF, although in general non-optimal, provides per-
fect security with key size of the user independent from the
group size. However there is no general expression for the
users’ key size and this will depend on the actual construc-
tion of CFF.

We may remove the restriction on the sizes of the anonymity
set and the colluding set by allowing users to have larger key
sizes. In the scheme proposed in [8] any conference size is
permitted and there is no limitation on the size of collud-
ing set. Authors prove that for a group of size N , the sizes
of user ux’s secret H(Sx) and of the conference key H(K)
satisfy H(Sx) ≥ (2N−1 − 1)H(K) and propose an optimal
system that satisfies the bound with equality. In this opti-
mal system a user receives a key for every conference that
he can participate and its key size is 2N−1 − 1. Using this
CKD protocol with an A-code guarantees anonymity to an
arbitrary level determined by the user.

Efficient constructions for higher level of spoofing.
In our analysis and constructions we assumed the adver-

sary has access to one past authenticated message. Theorem
4.1 can be extended to higher level of spoofing to prove the
following result.

P RA
` = {P A-code

0 , P A-code
1 , · · ·P A-code

` }
The most efficient construction for A-codes that are secure
against spoofing of order ` is due to Wegman and Carter [35].
To obtain sufficient key bit for authentication the conference
key can be run independently multiple times (similar to the
construction in 5.1).

Stronger attacker.
In this paper we focused on message observing adversaries.

This is the extensively used adversary model in uncondi-
tional setting. Our results however can be generalized to
adversaries with oracle access. However the definition of
security for ring authentication needs to be extended to in-
clude oracle access for the adversary. That will be a future
extension of our work.
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Computational anonymity.
The generic construction provides a template for provid-

ing ring authentication in computational setting. Using a
CKD protocol with a computationally secure MAC (e.g.
HMAC [16]) provides uncertainty about the sender of the
message while allowing receiver to be able to verify authen-
ticity of the message. Modelling and evaluation security in
this setting are interesting open questions.

6. CONCLUDING REMARKS
We proposed ring authentication system as a privacy en-

hancing mechanism for users to hide true sender of a message
in a group, referred to as anonymity set.

Users remain unconditionally secure both from the view
point of authenticity of communication, and anonymity of
sender. Although unconditional sender anonymity is also
provided by a ring signature but the traditional ring signa-
ture become completely insecure from the view point of the
authenticity of communication.

In our model a message has a ‘claimed’ sender group and
is verifiable with respect to that group by a designated re-
ceiver. The receiver group can be expanded using a multi-
receiver authentication system with dynamic sender [6, 19,
20].

We used the size of anonymity set as the level of anonymity
and noted that more refined entropy theoretic measures are
possible. An interesting open problem is finding information
theoretic bound on the key size of users in a USRA system
with perfect security. The construction in Section 5.1 ap-
pears optimal because both the underlying primitives are
optimal. A further proof of this property requires deriving
the information theoretic bound described above.

Extension of ring authentication to computational secu-
rity will be of practical interest. Ring signature schemes
require public key and may exponentiations to sign or verify
a message. Using our approach results in a very efficient
(computationally) authentication system. However the key
size of users grows with the level of anonymity. Assuming a
2048 bit RSA signature, the secret key of a user will be sim-
ilar to the amount of key material in a ring authentication
that allows him to hide himself in a group of 18, using key
size 128 bit for the MAC and collusion size 1.
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