
POSTER: Robust Dynamic Remote Data Checking for
Public Clouds

Bo Chen, Reza Curtmola
Department of Computer Science
New Jersey Institute of Technology

{bc47,crix}@njit.edu

ABSTRACT
Remote Data Checking (RDC) allows clients to efficiently check
the integrity of data stored at untrusted servers. This allows data
owners to assess the risk of outsourcing data in the public cloud,
making RDC a valuable tool for data auditing. Early RDC schemes
have focused on static data, whereas later schemes such as DPDP
support the full range of dynamic operations on the outsourced data,
including insertions, modifications, and deletions. Robustness is
required for both static and dynamic RDC schemes that rely on
spot checking for efficiency. In this paper, we propose the first RDC
schemes that provide robustness and, at the same time, support dy-
namic updates, while requiring small, constant, client storage.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information Storage;
E.4 [Coding and Information Theory]: Error Control Codes

General Terms
Security, Design, Performance

Keywords
cloud storage, remote data integrity checking, dynamic provable
data possession, robustness, small corruption

1. INTRODUCTION
Remote Data Checking (RDC) is a technique that allows to check

the integrity of data stored at a third party, such as a Cloud Storage
Provider (CSP). Especially when the CSP is not fully trusted, RDC
can be used for data auditing, allowing data owners to assess the
risk of outsourcing data in the cloud. In an RDC protocol, the data
owner (client) initially stores data and metadata with the cloud stor-
age provider (server); at a later time, an auditor (the data owner or
another client) can challenge the server to prove that it can pro-
duce the data that was originally stored by the client; the server
then generates a proof of data possession based on the data and
the metadata. Several RDC schemes have been proposed for static
data, including Provable Data Possession (PDP) [1,2] and Proofs of
Retrievability (PoR) [9,12], both for the single server [2,9,12] and
for the multiple server setting [3, 5, 7, 13]. RDC schemes have also
been proposed for the dynamic setting (DPDP) [8], which supports
updates on the outsourced data (insertions, modifications, appends,
and deletions).

A scheme for auditing remote data should be both lightweight
and robust [1]. Lightweight means that it does not unduly burden

Copyright is held by the author/owner(s).
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
ACM 978-1-4503-1651-4/12/10.

the server; this includes both overhead (i.e., computation and I/O)
at the server and communication between the server and the client.
This goal can be achieved by relying on spot checking, in which
the client randomly samples small portions of the data and checks
their integrity, thus minimizing the I/O at the server. Spot checking
allows the client to detect if a fraction of the data stored at the server
has been corrupted, but it cannot detect corruption of small parts
of the data (e.g., 1 byte). Robust means that the auditing scheme
incorporates mechanisms for mitigating arbitrary amounts of data
corruption.

Robustness is usually achieved by integrating forward
error-correcting codes (FECs) with remote data checking [1,6]. At-
tacks that corrupt small amounts of data do no damage, because the
corrupted data may be recovered by the FEC. Attacks that do unre-
coverable amounts of damage are easily detected using spot check-
ing, because they must corrupt many blocks of data to overcome the
FEC redundancy. Unfortunately, under an adversarial setting, there
is a fundamental tension between the dynamic nature of the updates
supported in the dynamic remote data checking schemes and FEC
codes (which are mostly designed for static data) because securely
updating even a small portion of the file may require retrieving the
entire file.

In this paper, we make the following contributions:

• We identify Reed-Solomon (RS) codes based on Cauchy ma-
trices which provide communication-efficient code updates and
propose methods to efficiently update the code parity under a
benign setting (i.e., when the server is trustworthy). We observe
that append/modify updates have a much lower bandwidth over-
head than insert/delete updates.

• We identify the challenges that need to be overcome when trying
to add robustness to a DPDP scheme in an adversarial setting.
Reed-Solomon codes provide efficient error correction capabili-
ties in the static case, but their linear nature imposes a high com-
munication cost when even a small portion of the original data
needs to be updated (insertions/deletions). Moreover, it is dif-
ficult to hide the relationship among file symbols (required for
robustness) while achieving a low communication overhead for
updates.

• We give the definition of a Robust DPDP (R-DPDP) scheme,
which is a remote data checking scheme that supports dynamic
updates and at the same time provides robustness. We propose
two R-DPDP constructions that realize this definition. The first
one, RDC1, achieves robustness by extending techniques from
the static to the dynamic setting. The resulting R-DPDP scheme
is efficient in encoding, but requires a high communication cost
for updates (insertions/deletions). Our second construction,RDC2,
overcomes this drawback by: (a) decoupling the encoding for

1043

robustness from the position of symbols in the file and instead
relying on the value of symbols, and (b) reducing expensive in-
sert/delete operations to append/modify operations when updat-
ing the RS-coded parity data, which ensures efficient updates
even under an adversarial setting. The improvement provided
by RDC2 over RDC1 is beneficial, as our source code anal-
ysis of a few popular software projects shows that insert/delete
operations represent a majority of all updates [4].

Although DPDP schemes and robustness for the static RDC set-
ting have been individually considered previously, we are the first
to propose R-DPDP schemes that simultaneously provide robust-
ness and support dynamic updates, while requiring small, constant,
client storage.

2. BACKGROUND

2.1 Remote Data Checking Schemes
A remote data checking scheme consists of four phases, Setup,

Challenge, Update, and Retrieve. During Setup, the data owner
preprocesses the file F generating metadata Σ, and then stores both
F and Σ at the server. The data owner deletes F and Σ from its local
storage and only keeps a small amount of secret key material K
(constant client storage). During Challenge, an auditor challenges
the server to prove that it can produce the data that was originally
stored. The server produces a proof of data possession based on the
data and the metadata. The auditor uses the secret key material K
to check the validity of the proof. During Update, the data owner
securely updates the outsourced data. During Retrieve, the data
owner recovers the original data.

2.2 Cauchy Reed-Solomon Code
We consider a (n, k) Reed-Solomon (RS) code that can correct

up to d = n − k known erasures or b d
2
c unknown errors, or any

combination of E errors and S erasures with 2E + S ≤ d. To
encode a k-symbol message into a n-symbol codeword, we need
a n ∗ k encoding matrix, known as the distribution matrix. Typ-
ically, Vandermonde or Cauchy matrices are used to construct the
distribution matrix. We use Cauchy RS codes [11], for two reasons:
they are more suitable to handle dynamic operations on the origi-
nal data, and they were shown to be approximately twice as fast as
the classical Reed-Solomon encoding based on Vandermonde ma-
trices.

Encode. We take a (6, 4) Cauchy RS code as example. The mes-
sage L contains 4 data symbols, all of which are in the Galois Field
GF (2w): L = (b1 b2 b3 b4).

We use the method introduced in [10] to construct the Cauchy
matrix, which has the useful property that it can be re-generated on
the fly based on a constant amount of information. The distribution
matrix M , which is composed of the identity matrix in the first 4
rows and Cauchy matrix in the remaining 2 rows, is as follows:

M =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
a11 a12 a13 a14
a21 a22 a23 a24

 ,where aij =
1

i⊕ (d+ j)

The codeword C is computed as

C = M × LT =
(
b1 b2 b3 b4 p1 p2

)T

where the parity symbols p1 and p2 are
p1 = a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3 + a14 ∗ b4
p2 = a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3 + a24 ∗ b4

Cauchy RS codes have some useful properties: When append-
ing/modifying a symbol, we only need the parity symbols and the
new symbol to update the codeword. By retrieving only the parity
symbols, the update communication can be significantly reduced.
Our RDC2 solution will utilize these properties.

3. ROBUST DYNAMIC REMOTE DATA
CHECKING

Preliminaries. The outsourced file is seen as a collection of sym-
bols, which are grouped into chunks. Each chunk is encoded inde-
pendently and we call the resulting codewords constraint groups.
To achieve robustness, the association between symbols and con-
straint groups must be hidden from the possibly malicious cloud
servers.

R-DPDP Definition. The definition of an R-DPDP scheme is pre-
sented in the full version of this paper [4].

The RDC1 scheme: Our first robust dynamic remote data check-
ing scheme, RDC1, extends our previous work [6] to a dynamic
setting.

Setup phase: The file is divided into k-symbol chunks, and a
(n, k) Cauchy RS code is computed over the symbols from every
chunk (i.e., one chunk will result in one constraint group). The en-
coded file is F̃ = F||P, where F is the original file and P is the
parity. To achieve robustness for F̃, we: (1) determine the chunk to
which a symbol is assigned by applying a Pseudo Random Permu-
tation (PRP) ψ over the index of the symbol, and (2) permute and
encrypt all the parity symbols. We then compute a verification tag
for every block in F̃, and a Merkle hash tree T over all the verifica-
tion tags. The encoded file as well as the tags are outsourced to the
server. The client keeps the root of T and a small amount of secret
key material.

Challenge phase: The client randomly samples a small number
of blocks (e.g., 400) from the server. By checking the relationship
between the sampled blocks and their verification tags, as well as
checking the root of T , the client can detect data corruption with
high probability [1].

Update phase: To insert/delete a symbol into/from F (outsourced
to the server), P should be updated. Since RDC1 relies on a
PRP over the indices of symbols in F to determine their constraint
groups, inserting/deleting a file symbol requires to re-compute the
whole P. Thus, for insert/delete operations, the whole F needs to
be retrieved. To modify a symbol in F does not affect the indices,
and only the parity in the corresponding constraint group must be
re-computed. Thus retrieving P is sufficient for modify operations.

Retrieve phase: The client simply retrieves all the data and may
use P to correct data corruption.

The RDC2 scheme. Though efficient in encoding, RDC1 has
a high communication overhead for updates because the PRP ψ
is applied to the index of data symbols, thus making it sensitive
to insert/delete operations (e.g., one simple insertion/deletion may
require to re-encode the whole file, thus requiring to retrieve the
entire previous version of the file).

To mitigate the drawbacks ofRDC1, we propose a second scheme,
RDC2, in which we still use the notion of constraint groups. How-
ever, we rely on two additional main insights.

Firstly, unlike in RDC1, in which symbols are assigned to con-
straint groups based on the position (i.e., index) of the symbols in
the file, RDC2 assigns symbols to constraint groups based on the

1044

value of the symbols. More precisely, for a data symbol b, the client
uses hK(b) to decide the index of the constraint group to which b
belongs, where h is a cryptographic hash function and K is a se-
cret key. This has the advantage that, when inserting/deleting a
data symbol into/from the file, we only need to update the parity
symbols from the corresponding constraint group, without affect-
ing other constraint groups.

Secondly, we employ several techniques to preserve robustness
and minimize the bandwidth overhead. To utilize the useful prop-
erties of Cauchy RS codes, we reduce insert operations to append
operations, and delete operations to modify operations when updat-
ing the RS-coded parity data. Inserting a symbol to F is equivalent
to inserting this symbol into the corresponding constraint group.
Our strategy is to update the parity symbols of the corresponding
constraint group as if the symbol was appended to the end of the
data symbols in that constraint group. Deleting a symbol from F
is equivalent to deleting this symbol from the corresponding con-
straint group. We use another strategy: To delete a data symbol,
we ask the server to physically delete the symbol from F, but we
update the parity symbols from the corresponding constraint group
as if that symbol was modified to have the value 0. This results in
a more expensive Retrieve procedure (a more complex decoding
algorithm is required to recover the file from corruptions), but we
argue this is not a major concern because file recovery is usually a
rare event.

4. CONCLUSION
Adding protection against small corruptions to remote data check-

ing schemes that support dynamic updates extends the range of ap-
plications that rely on outsourcing data at untrusted servers. In
this paper, we have proposed the first Robust Dynamic Remote
Data Checking schemes that provide robustness and, at the same
time, support dynamic data updates, while requiring small, con-
stant, client storage. The main challenge was to reduce the client-
server communication overhead during updates under an adversar-
ial setting. This work initiates the study of robust dynamic remote
data checking, but more investigation is required in order to im-
prove the efficiency of our RDC2 solution (such as further reduc-
ing the update bandwidth factor and the computation required by
the brute force search during data retrieval).

5. ACKNOWLEDGEMENTS
The full version of this paper [4] contains a detailed description.

This research was sponsored by the US National Science Founda-
tion CAREER grant 1054754-CNS.

6. REFERENCES
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan,

L. Kissner, Z. Peterson, and D. Song. Remote data checking
using provable data possession. ACM Trans. Inf. Syst. Secur.,
14, June 2011.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,
Z. Peterson, and D. Song. Provable data possession at
untrusted stores. In Proc. of ACM CCS, 2007.

[3] K. Bowers, A. Oprea, and A. Juels. HAIL: A
high-availability and integrity layer for cloud storage. In
Proc. of ACM CCS, 2009.

[4] B. Chen and R. Curtmola. Robust dynamic provable data
possession. In Proc. of ICDCS-SPCC, 2012.

[5] B. Chen, R. Curtmola, G. Ateniese, and R. Burns. Remote
data checking for network coding-based distributed storage
systems. In Proc. of ACM CCSW, 2010.

[6] R. Curtmola, O. Khan, and R. Burns. Robust remote data
checking. In Proc. of ACM StorageSS, 2008.

[7] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. MR-PDP:
Multiple-replica provable data possession. In Proc. of
ICDCS, 2008.

[8] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia.
Dynamic provable data possession. In Proc. of ACM CCS,
2009.

[9] A. Juels and B. S. Kaliski. PORs: Proofs of retrievability for
large files. In Proc. of ACM CCS, 2007.

[10] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A
library in C/C++ facilitating erasure coding for storage
applications - Version 1.2. Technical Report CS-08-627,
University of Tennessee, August 2008.

[11] J. S. Plank and L. Xu. Optimizing cauchy reed-solomon
codes for fault-tolerant network storage applications. In
Proc. of IEEE NCA, 2006.

[12] H. Shacham and B. Waters. Compact proofs of retrievability.
In Proc. of Asiacrypt, 2008.

[13] C. Wang, Q. Wang, K. Ren, and W. Lou. Ensuring data
storage security in cloud computing. In Proc. of IWQoS,
2009.

1045

