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ABSTRACT
The Cramer-Shoup cryptosystem has attracted much atten-
tion from the research community, mainly due to its efficien-
cy in encryption/decryption, as well as the provable reduc-
tions of security against adaptively chosen ciphertext attacks
in the standard model. At TCC 2005, Vasco et al. proposed
a method for building Cramer-Shoup like cryptosystem over
non-abelian groups and raised an open problem for finding a
secure instantiation. Based on this work, we present another
general framework for constructing Cramer-Shoup like cryp-
tosystems. We firstly propose the concept of index exchange-
able family (IEF) and an abstract construction of Cramer-
Shoup like encryption scheme over IEF. The concrete instan-
tiations of IEF are then derived from some reasonable hard-
ness assumptions over abelian groups as well as non-abelian
groups, respectively. These instantiations ultimately lead to
simple yet efficient constructions of Cramer-Shoup like cryp-
tosystems, including new non-abelian analogies that can be
potential solutions to Vasco et al.’s open problem. Moreover,
we propose a secure outsourcing method for the encryption
of the non-abelian analog based on the factorization problem
over non-commutative groups. The experiments clearly indi-
cate that the computational cost of our outsourcing scheme
can be significantly reduced thanks to the load sharing with
cloud datacenter servers.
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1. INTRODUCTION
The standard notion of security for public key encryp-

tion (PKE), i.e., indistinguishability against chosen cipher-
text attacks (IND-CCA), was introduced in [17], where the
adversary is allowed to make queries to the decryption or-
acle at any time, while the decryption query on the chal-
lenge ciphertext is not permitted. After then, IND-CCA se-
cure PKE schemes based on non-interactive zero-knowledge
(NIZK) proof of knowledge were proposed [6, 14], which
however are inefficient in both performance and security re-
ductions. In 1993, Zheng and Seberry gave immunizing pub-
lic key cryptosystems against chosen ciphertext attacks [22,
23]. Subsequently, based on Zheng’s method, Bellare and
Rogaway designed IND-CCA secure PKEs in random oracle
models (ROM) [3]. At CRYPTO 1998, Cramer and Shoup
constructed an efficient PKE scheme that is not only prov-
ably IND-CCA secure in the standard model, but also very
efficient in terms of security reductions [4]. Four years lat-
er, Cramer and Shoup [5] further proposed a general frame-
work for building secure PKEs by using the so-called univer-
sal projective hash family which was shown implementable
based on either subset membership problems or language
membership problems from a general class of group theoret-
ic perspectives.

Meanwhile, many cryptographers pay effort to the design
of cryptography based on non-abelian algebraic structures,
such as braid group [11], Thompson group [20], Suzuki 2-
group [13, 12]. At TCC 2005, Vasco et al. presented a
new approach to building Cramer-Shoup like PKEs from
group theoretic perspectives, in which the concept of auto-
morphism group system is used to construct universal pro-
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jective hash families [21]. But they failed in finding a secure
instantiation based on reasonable non-abelian intractability
assumptions. Recently, Kahrobael and Anshel proposed a
non-abelian construction of Cramer-Shoup like PKE scheme
by using matrices of group ring [10]. However, we find that
ciphertexts of their scheme are malleable and thus cannot re-
sistant to adaptively chosen ciphertext attacks. Therefore,
it is interesting to develop a new tool to build Cramer-Shoup
like PKEs based on non-abelian groups.

We firstly define the concept of index exchangeable fami-
ly (IEF) and propose IEF’s security requirements for cryp-
tographic applications. Then, based on IEF, an efficient
framework for constructing Cramer-Shoup like encryption
is proposed, and the IND-CCA security reduction is pre-
sented. After that, we give three concrete instantiations of
IEF: the first is based on the hardness assumptions of de-
cisional Diffie-Hellman problem over finite fields, resulting
in the original Cramer-Shoup encryption scheme. The sec-
ond and the third are respectively based on the hardness
assumptions of decisional conjugacy problem and decisional
group factorization problem over certain non-abelian group-
s, contributing to the potential solutions towards Vasco et
al.’s open problem. Furthermore, we propose a secure out-
sourcing technique for the third instantiation, where the en-
cryptor only needs to keep its transformation key that can
be hidden by a random slot. The scheme significantly saves
the computational cost by taking advantage of the compu-
tational resource from cloud servers.

2. PRELIMINARIES
In this section, we recall some mathematic backgrounds

on computational group theory, mainly focusing on the ma-
terials that are related to our following cryptographic ap-
plications. Considering for resisting all kinds of exhaustive
attacks as well as the well-known birthday attacks, the in-
volved groups are in general assumed to be very large, say
with orders no less than 2160 or sometimes infinite. Thus,
it is impossible to enumerate all elements of the involved
groups. Instead, we always specify a group G by its pre-
sentations. In particular, for a given, possibly non-abelian,
group G, we use 〈g〉 denotes the cyclic subgroup of G gen-
erated by g ∈ G.

Our main concern is related to the following computation-
al and the decisional problems over non-abelian groups:

• Conjugacy Search Problem (CSP) [11, 10, 15]: Given a
non-abelian groupG and two conjugate elements g, h ∈
G, the objective is to find g0 ∈ G such that g−1

0 gg0 = h.

• Group Factorization Problem (GFP) [1, 8, 9]: Given
a non-abelian group G and three elements g, h, g0 ∈ G
with gh 6= hg, the objective is to find g1 ∈ 〈g〉 and
g2 ∈ 〈h〉 such that g1g2 = g0, provided that there is at
least one solution.

The corresponding computational Diffie-Hellman like ver-
sions of above problems are given below:

• Computational Diffie-Hellman Conjugacy Problem

(CDH-CP): Given a non-abelian groupG and a quadru-
ple (g, h, g1 = hxgh−x, g2 = hygh−y) for some un-
known x, y ∈ Z, where gh 6= hg, the objective is to
compute g3 = hx+ygh−x−y.

• Computational Diffie-Hellman Factorization Problem
(CDH-FP): Given a non-abelian groupG and a quadru-
ple (g, h, g1 = gx1hy1 , g2 = gx2hy2) for some unknown
x1, x2, y1, y2 ∈ Z, where gh 6= hg, the objective is to
compute g3 = gx1+x2hy1+y2 .

Similarly, the corresponding decisional Diffie-Hellman like
versions are given below:

• Decisional Diffie-Hellman Conjugacy Problem (DDH-
CP): Given a non-abelian group G and a quintuple
(g, h, g1 = hxgh−x, g2 = hygh−y, g3 = hzgh−z) for
some unknown x, y, z ∈ Z, where gh 6= hg, the objec-
tive is to decide whether g3 = hx+ygh−x−y or not.

• Decisional Diffie-Hellman Factorization Problem (DDH-
FP): Given a non-abelian group G and a quintuple
(g, h, g1 = gx1hy1 , g2 = gx2hy2 , g3 = gx3hy3) for some
unknown x1, x2, x3, y1, y2, y3 ∈ Z, where gh 6= hg, the
objective is to decide whether g3 = gx1+x2hy1+y2 or
not.

Apparently, the average hardness relationships among the
above problems are

CSP � CDH-CP � DDH-CSP

and

GFP � CDH-FP � DDH-GFP,

where symbol“�”means“as least as hard as”. At present, we
do not know whether the CSP (resp. CDH-CP or DDH-CP)
problem is harder or easier than the GFP (resp. CDH-FP
or DDH-FP) problem. On one hand, from the perspective
of computational group theory, there are no known efficient
algorithms, except for exhaustive search, for all above prob-
lems if we regard G as a generic group1. On the other hand,
the non-commutativity of G is necessary for maintaining the
hardness of the CSP, CDH-CP and DDH-CP problems. In
fact according to the analysis presented in [8, 9], we know
that the non-commutativity in the above definitions plays
core roles in resisting the well-known Shor’s quantum algo-
rithm attacks [19]. As for the GFP, CDH-FP and DDH-FP
problems, although the underlying group G is not required
to be non-abelian, the existing cryptographic constructions
based on these problems also employ the so-called Sandwich
transformation technique [13, 12] that is meaningless if the
underlying group is abelian. Therefore, if without explicit
statement, groups mentioned in this paper are in general
non-abelian.

3. NEW FRAMEWORK OF CRAMER-SHOUP
LIKE ENCRYPTION

3.1 Index Exchangeable Family

Definition 1. (Index Exchangeable Family, IEF) Let G be
a group and Ω = {ϕKi} be a collection of maps indexed by
K, where each ϕKi : G → G (for Ki ∈ K) maps G to itself.

1In a generic group model, the adversary is only given access
to a randomly chosen encoding of a group, instead of effi-
cient encodings. Up to now, the GFP is still hard for most
non-abelian groups such as Suzuki 2-Groups and GLn(R),
etc. The most efficient algorithm of solving GFP is sub-
exponential for group SL2(F2m) [16].
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We say that Ω is an index exchangeable family (IEF) on any
g ∈ G, denoted by ΩieK(g), if

ϕKi(ϕKj (g)) = ϕKj (ϕKi(g))

holds for ∀Ki,Kj ∈ K. Furthermore,if Ω is an IEF on every
g ∈ G, we call Ω an IEF over G, denoted by ΩieK(G).

As for cryptographic applications, we propose the follow-
ing basic security requirements for the above defined IEF
ΩieK(g): 2

• Onewayness of map index (OMI): Given a pair (g,
ϕKi(g)) ∈ G2, it is hard to derive Ki ∈ K. (Note that
this implies that K should be large enough; otherwise,
one can easily get Ki with non-negligible probability
by guessing.)

• Onewayness of map composition (OMC): Given a triple
(g, ϕKi(g), ϕKj (g)) ∈ G3, it is hard to compute g0 ∈ G
such that g0 = ϕKi(ϕKj (g)), where Ki,Kj ∈ K.

• Confidentiality of map composition (CMC): Given a
quadruple (g, g0, ϕKi(g), ϕKj (g)) ∈ G4, it is hard to
decide whether or not g0 = ϕKi(ϕKj (g)), whereKi,Kj

∈ K.

Apparently, a Diffie-Hellman like key exchange protocol
can be immediately obtained by using an ΩieK(g) with CMC
property, in which Ki,Kj ∈ K are viewed as temporary
keys of two parties and then ϕKj (ϕKi(g)) is their shared

session key. One can also do this by using an ΩieK(g) with
merely OMI property, plus a universal hash function that is
used as the key deriving function. Similarly, an Elgamal like
encryption scheme can also be derived based on an ΩieK(g)
with CMC property.

3.2 Cramer-Shoup Encryption Scheme From
Index Exchangeable Families

Now, let us propose a Cramer-Shoup like encryption scheme
based on index exchangeable families.

Key Generation: Let λ be the system security parameter.
Suppose that G is a finite group with order |G| = 2Θ(λ)

and ΩieK(g) is an associated index exchangeable family
for any g ∈ G and index set K. Let H : G3 → K and
H0 : G → {0, 1}λ be cryptographic hash functions.
Randomly choose K1,K2,K3,K4 ∈ K and compute

g1 = ϕK1(g0), b = ϕK2(g0), c = ϕK3(g1), d = ϕK4(g1).

Then, the public key is pk = (G,K, g0, g1, b, c, d,H,H0)
and the secret key is sk = (K2,K3,K4).

Encryption: To encrypt a message m ∈ {0, 1}λ, one chooses
K5 ∈ K at random and then outputs a ciphertext as:

C = (u, v, e, w) = (ϕK5(g0), ϕK5(g1),

H0(ϕK5(b)ϕK5(c))⊕m, ϕK5(d)ϕα(ϕK5(b))),

where α = H(u, v, e) ∈ K.

2We will see that for cryptographic applications, we merely
need a ΩieK(g) for some g ∈ G, instead of ΩieK(G).

Decryption: Upon receiving a ciphertext C = (u, v, e, w),
the receiver knowing the secret key sk at first checks
whether the equation

w = ϕK4(v) · ϕα(ϕK2(u)) (1)

holds, where α = H(u, v, e). If so, he/she computes
the message

m = H0(ϕK2(u) · ϕK3(v))⊕ e; (2)

otherwise, he/she outputs ⊥, for indicating that C is
an invalid ciphertext.

Consistency. To prove the correctness of the above scheme,
one only needs to notice the following equalities:

w = ϕK5(d) · ϕα(ϕK5(b))

= ϕK5(ϕK4(g1)) · ϕα(ϕK5(ϕK2(g0)))

= ϕK4(ϕK5(g1)) · ϕα(ϕK2(ϕK5(g0)))

= ϕK4(v) · ϕα(ϕK2(u)),

e = H0(ϕK5(b)ϕK5(c))⊕m
= H0(ϕK5(ϕK2(g0))ϕK5(ϕK3(g1)))⊕m
= H0(ϕK2(ϕK5(g0))ϕK3(ϕK5(g1)))⊕m
= H0(ϕK2(u)ϕK3(v))⊕m.

Remark 1. The above framework is different from the o-
riginal construction in [4], especially for key generation. Ac-
tually, based on the algorithm of decryption of the Cramer-
Shoup scheme, the multiplication homomorphism of expo-
nential function is used in verification equation. However, in
non-abelian algebraic structure, the functions of IEF some-
times cannot provide this homomorphism as ϕKi(g1g2) 6=
ϕKi(g1)ϕKi(g2). Besides, H0 is employed for enhancing the
security. Particularly, the OMI assumption is required in
the security proof.

3.3 Security
The following theorems capture the security of the pro-

posed scheme.

Theorem 1. The encryption scheme is semantic secure a-
gainst adaptively chosen ciphertext attacks (IND-CCA) in
the standard model, assuming that the associated index ex-
changeable family ΩieK(g0) satisfies the property of CMC.

Proof. (Sketch of the proof.) Suppose there is an adver-
sary A that can break the IND-CCA security of the above
scheme with non-negligible probability. Now, let us con-
struct a simulator S that can break the CMC property of
the associated IEF ΩieK(g0) with non-negligible probability,
too.

Suppose that S is given the CMC challenge, i.e. a quadru-
ple

(g0, g1 = ϕK1(g0), g2 = ϕK5(g0), g3) ∈ G4,

and its purpose is to decide whether g3 = ϕK1(ϕK5(g0)) or
not. The simulator will invokes A in executing the following
IND-CCA game:

Setup: The simulator randomly chooses K2,K3,K4 ∈ K,
and computes

b = ϕK2(g0), c = ϕK3(g1), d = ϕK4(g1).

Then, the simulator S sends the public key pk =
(G,K, g0, g1, b, c, d,H,H0) to the adversary A, while
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keeps the secret key sk = (K2,K3,K4) only known to
himself/herself.

Phase 1: Now, the adversaryA can invoke decryption queries
at his/her will, and the simulator produces the re-
sponse accordingly by using the secret key sk.

Challenge: The adversary A submits two equal-length chal-
lenge messages m0,m1 ∈ G to the simulator S. Then,
S flips a fair coin β ∈ {0, 1}, and then replies A with
the challenge ciphertext that is computed as below:

C∗ = (u∗, v∗, e∗, w∗) = (g2, g3,

H0(ϕK2(g2)ϕK3(g3))⊕mβ , ϕK4(g3) · ϕα∗(ϕK2(g2))),

where α∗ = H(u∗, v∗, e∗).

Phase 2: Now, the adversary A will continue to invoke de-
cryption queries at his/her will, except that the de-
cryption query on the challenge ciphertext C∗ is not
allowed. In response, the simulator, by using the se-
cret key sk, will check the validity of the ciphertexts
and then output the corresponding messages or ⊥.

Guess: Finally, the adversary A outputs β′ ∈ {0, 1} as a
guess on β. Now, if β′ = β, the simulator S answer-
s his/her CMC challenge with 1 for indicating g3 =
ϕK1(ϕK5(g0)); otherwise, S simply answers his/her
CMC challenge at random.

Now, let us consider S’s advantage for making correct deci-
sion on his/her CMC challenge. Apparently, if g3 is random,
then C∗ is also random and gives no information about the
simulator’s choice of β. Thus in this case, both A and S
have no any advantage in making correct decisions. On the
other hand, if g3 = ϕK1(ϕK5(g0)), then the challenge ci-
phertext C∗ is well formed under the public key pk. Thus
in this case, whenever the adversary A has non-negligible
advantage in making correct guess on β, the simulator S
has non-negligible advantage in making correct decision on
his/her CMC challenge. This concludes the theorem.

In the following theorem, we illustrate that the bit β is
independent from the adversary’s view.

Theorem 2. Any information of the challenged message
won’t be revealed in Phase 2.

Proof. Suppose the adversary invokes decryption query
on the ciphertext C = (u, v, e, w) 6= (u∗, v∗, e∗, w∗) after
Challenge phase. We discuss by the following three cases.

Case 1: (u, v, e) = (u∗, v∗, e∗).

In this case, the hash values are the same, but w 6= w∗

implies that the decryption query will be rejected.

Case 2: (u, v, e) 6= (u∗, v∗, e∗) and α = α∗.

If this happens with non-negligible probability, then it
is a contradictory for the collision-resistant property of
the hash function H.

Case 3: (u, v, e) 6= (u∗, v∗, e∗) and α 6= α∗.

(1) When u = u∗ and v = v∗, then e 6= e∗. The
adversary fails to construct w such that w = ϕK4(v∗) ·
ϕα(ϕK2(u∗)) since ϕK4(v∗) and ϕK2(u∗) are unknown.
That is, such a query will be rejected.

(2) When u 6= u∗ or v 6= v∗, baesd on the collision-
resistance of H0, H0(ϕK2(u)ϕK3(v)) is random and
independent from H0(ϕK2(u∗)ϕK3(v∗)). In this case,
even if C can pass the verification equation (1), the
replied message is unrelated to the challenged message.

This concludes the theorem.

Note that in the above reduction on the confidentiality of
ciphertext, the simulator S is allowed to possess the secret
key sk during his/her whole interactive process with the
adversary A. This idea is directly inherited from the original
Cramer-Shoup cryptosystem [4]. Therefore, to establish the
fully confidence on the security of the above scheme, we need
to further show the confidential of the secret key against
chosen ciphertext attacks.

Actually, after a polynomial number of queries of cipher-
texts to the decryption oracle, the adversary can get the fol-
lowing equations about secret key K2,K3 from decryption
algorithms: e1 ⊕m1 = H0(ϕK2(u1)ϕK3(v1))

· · ·
ei ⊕mi = H0(ϕK2(ui)ϕK3(vi))

Meanwhile, A also obtains the equations about secret key
about K2,K3,K4 from verification equations: w1 = ϕK4(v1) · ϕα(ϕK2(u1))

· · ·
wi = ϕK4(vi) · ϕα(ϕK2(ui))

Here, ui, vi, ei, wi,mi, α are known to the adversaryA. Then,
the security of secret key is based on the GFP and the OMI.

4. INSTANTIATIONS
In this section, we give some concrete instantiations of the

so-called index exchangeable families. The corresponding
schemes can be obtained based on these IEFs.

4.1 Instantiations of IEFs

• IEF based on DDH problem. Let G = 〈g〉 be a
cyclic group with order of λ. Let us define the index-
set as

K = {Ki = xi : xi ∈ Zλ}.

Meanwhile, for each Ki ∈ K, the map ϕKi : G→ G is
defined as

ϕKi(g) = gxi .

It is easy to see that

ϕKi(ϕKj (g)) = (gxj )xi = ϕKj (ϕKi(g)).

Thus, we indeed get an index exchangeable family ΩieK(g).
It is a very straight observation that ΩieK(g) meets the
property of CMC, under the intractability assumption
of DDH problem over G.

• IEF based on DDH-CP problem. Let G be a
non-abelian group. For any pair (g, h) ∈ G2 satisfying
gh 6= hg and 〈g〉 ∩ 〈h〉 = {1G}, let us define the index-
set as

K = {Ki = hxi : xi ∈ Zλ},
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where λ is the order of the subgroup 〈h〉. Meanwhile,
for each Ki ∈ K, the map ϕKi : G→ G is defined as

ϕKi(g) = hxigh−xi .

It can be proved that

ϕKi(ϕKj (g)) = h(xi+xj)gh−(xi+xj) = ϕKj (ϕKi(g)).

That is, we get an index exchangeable family ΩieK(g),
and apparently, under the intractability assumption of
DDH-CP problem over G, ΩieK(g) satisfies the property
of CMC.

• IEF based on DDH-FP problem. Let G be a non-
abelian group. For any pair (g, h) ∈ G2 satisfying
gh 6= hg and 〈g〉 ∩ 〈h〉 = {1G}, define the index-set as

K = {Ki = (gxi , hyi) : g, h ∈ G, xi ∈ Zλ, yi ∈ Zδ},

where λ, δ are orders of subgroups 〈g〉 and 〈h〉, respec-
tively. Then, for each index (gxi , hyi) ∈ K, let us define
the map ϕKi : G→ G as

ϕKi(g0) = gxig0h
yi

for a fixed g0 ∈ G. It can be proved that

ϕKi(ϕKj (g0)) = gxi+xjg0h
yi+yj = ϕKj (ϕKi(g0)).

That is, we get an index exchangeable family ΩieK(g0). Sim-
ilarly, we see that under the hard assumption of DDH-FP
problem over G, ΩieK(g0) satisfies the property of CMC.

Remark 2. In practice, it still works if we replace Zλ and
Zδ with integers set Z or natural numbers set N directly in
all above instantiations. By doing so, explicit specification
on the index set K is no longer necessary.

4.2 Outsourcing technique based on non-abelian
analog

In this section, we propose an efficient outsourcing tech-
nique for the encryption of the non-abelian analog based on
the factorization problem.

Key Generation: Suppose that λ is the system secure pa-
rameter, G is a non-abelian group with order of 2Θ(λ),
and the pair (g, h) ∈ G2 meets the conditions gh 6= hg.
Let H : G3 → {0, 1}λ × {0, 1}λ and H0 : G → {0, 1}λ
be secure cryptographic hash functions. Randomly
choose 8 large 3 integers xi, yi ∈ Z (i = 1, 2, 3, 4) and
compute

g1 = gx1hy1 , b = gx2hy2 , c = gx3g1h
y3 , d = gx4g1h

y4 .

Then, set the public key pk = (g, h, g1, b, c, d,H,H0)
and the secret key sk = (x2, y2, x3, y3, x4, y4).

Pre− processing: The encryptor randomly chooses t, t̄ ∈ Z
and computes his/her transformation key gt, ht̄.

Encryption: The encryption algorithm is divided into the
following steps:

3Here, the adjective “large” indicates that xi, yi should be
large enough for resisting exhaustive attacks. In practice,
it is safe to sample them uniformly and randomly from the
interval [2λ, 2λ+1].

Stage 1. To encrypt a message m ∈ G, the user ran-
domly chooses two large integers x5, y5 ∈ Z, then com-
putes x5− t, y5− t̄ and sends (g, h, x5− t, y5− t̄) as the
outsourcing parameters to cloud server.

Stage 2. The cloud server returns gx5−t, hy5−t̄ to user.

Stage 3. The user computes gx5 = gx5−tgt, hy5 =
hy5−t̄ht̄ and then outputs the partial-ciphertext as

C0 = (u, v, e) = (gx5hy5 , gx5g1h
y5 ,

H0(gx5bhy5gx5chy5)⊕m),

and (α1, α2) = H(u, v, e). Then the user sends α1 −
t, α2 − t̄ to the cloud server.

Stage 4. The cloud server returns gα1−t, hα2−t̄ to user.

Stage 5. The user computes gα1 , hα2 and then outputs
C = (u, v, e, w) for w = gx5dhy5 · gα1(gx5bhy5)hα2 .

Decryption: Upon receiving a ciphertext C = (u, v, e, w), if
the equation

w = gx4vhy4 · gα1gx2uhy2hα2

holds for (α1, α2) = H(u, v, e), then the receiver de-
crypts the message as

m = H0(gx2uhy2 · gx3vhy3)⊕ e;

Otherwise, he/she outputs ⊥.

The security analysis is given as below.

Security of transformation key: Any adversaryA wants
to compute the transformation key gt, ht̄, but it can
only obtain gtht̄ = gt−x5uht̄−y5 . Based on the GFP,
A fails to derive gt, ht̄ by the factoring method. Mean-
while, t, t̄ are secure relying on the DLP.

Security of encryption-random numbers: The advers-
ary can gets x5 − t, y5 − t̄, where x5, y5 are blinded by
t, t̄. Then the security of encryption-random numbers
x5, y5 is based on the privacy of t, t̄.

4.3 Performance analysis
In the above outsourced scheme, the encryptor only has

to carry its transformation key then eliminates exponential
operation for encryption. Thus, the computational cost of
encryption can be largely reduced. Now we will present
the efficiency by comparing the outsourced encryption algo-
rithm with the non-outsourced scheme. Table 1 shows the
computational cost of multiplication (MUL) and exponential
(EXP) operations. Note that, the user requires two EXPs
in Pre-processing before encryption.

Table 1: Computational cost for encryption
Schemes MUL EXP

Outsourced Scheme 16 4
Non-outsourced Scheme 20 0

Fig. 1 is obtained based on a 2× 2 matrix group over Zp.
We measured the running time of the two schemes with 80-
bit secure parameter (here we only consider the exhaustive
attack) by using Maple 18 on a 64-bit machine of 1.70GHz.
The figure clearly indicates that the outsourcing method
saves significant computational cost for Cramer-Shoup like
encryption over non-abelian group.
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Figure 1: The comparison of encryption efficiency

5. CONCLUSION
Inspired by the seminal work of Diffie-Hellman’s key a-

greement protocol, we introduced the concept of index ex-
changeable family (IEF) and proposed another general frame-
work for constructing Cramer-Shoup like cryptosystems. We
further showed that IEF can be instantiated based on the
reasonable hardness assumptions originating from number
theory and computational group theory. In particular, our
instantiations can be considered as potential solutions to
Vasco et al.’s open problem of finding non-abelian analo-
gies of Cramer-Shoup cryptosystem. In addition, we pro-
posed a secure outsourcing method for the encryption of the
non-abelian analog based on the factorization problem over
non-abelian groups. We demonstrated that the scheme can
significantly reduce the computational cost thanks to using
the cloud servers.
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