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ABSTRACT
Fuzz testing is an automated testing technique where ran-
dom data is used as an input to software systems in order to
reveal security bugs/vulnerabilities. Fuzzed inputs must be
binaries embedded with compiled bytecodes when testing
against ActionScript virtual machines (AVMs). The cur-
rent fuzzing method for JavaScript-like virtual machines is
very limited when applied to compiler-involved AVMs. The
complete source code should be both grammatically and se-
mantically valid to allow execution by first passing through
the compiler. In this paper, we present ScriptGene, an algo-
rithmic approach to overcome the additional complexity of
generating valid ActionScript programs. First, nearly-valid
code snippets are randomly generated, with some controls
on instruction flow. Second, we present a novel mutation
method where the former code snippets are lexically ana-
lyzed and mutated with runtime information of the AVM,
which helps us to build context for undefined behaviours a-
gainst compiler-check and produce a high code coverage. Ac-
cordingly, we have implemented and evaluated ScriptGene
on three different versions of Adobe AVMs. Results demon-
strate that ScriptGene not only covers almost all the blocks
of the official test suite (Tamarin), but also is capable of
nearly twice the code coverage. The discovery of six bugs
missed by the official test suite demonstrates the effective-
ness, validity and novelty of ScriptGene.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools
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1. INTRODUCTION
The theory of application virtual machines is well devel-

oped. An application virtual machine (VM) isolates the host
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OS from a single process. The VM is created when the asso-
ciated process is started and destroyed when the associated
process exits [27]. VM Implementations can be divided in-
to two categories based on the code execution. JavaScript-
like VMs accept source code directly, interpreting and ex-
ecuting code lines sequentially. ActionScript-like VMs ac-
cept only bytecodes generated by a compiler from source
code. This additional compilation stage adds complexity
to ActionScript-like VMs when compared to JavaScript-like
VMs. Since many VMs are programmed using C/C++, it is
not surprising that they contain bugs similar to other com-
plex software systems.

Fuzz testing or fuzzing is a form of testing heavily used for
finding security vulnerabilities in software. Since complete-
ly random strings generated by traditional fuzzing methods
do not usually execute in VMs, grammar-based fuzzing is
employed instead. Grammar-based whitebox approach of
[17] has been used on a JavaScript VM. They presented
a dynamic test-case generation algorithm, where symbol-
ic execution directly generates grammar-based constraints,
whose satisfiability is verified using a custom grammar-based
constraint solver. The solver solves the altered constraints
and directs code snippet generation to cover more execution
paths of the VM. Unfortunately this approach is limited to
JavaScript-like VMs, since feedback operates on the input
directly. In comparison, ActionScript-like VMs only accept
binaries embedded with bytecodes, which are the outputs
of the compiler. Therefore, a hypothetical solver is unable
to analyze and generate new pieces of code as inputs, ren-
dering this approach ineffective. Grammar-based blackbox
approach of [19] is yet another effective fuzzing method on
VMs. Previously, this approach has also been restricted to
testing JavaScript-like VMs. Both grammar-based whitebox
and blackbox fuzzing methods focus only on the grammar,
ignoring the substantial contributions of runtime class, prop-
erty and API functions to the discovery of bugs in VMs.

To overcome the difficulties associated with fuzzing of
ActionScript-like VMs, we have created ScriptGene. Script-
Gene generates ActionScript (AS) source code, compiles and
executes them on Adobe Flash ActionScript Virtual Ma-
chines (AVMs). As seen in figure 1, the left-hand side se-
quence of block diagrams, connected by downward arrows
illustrates the ScriptGene code generation process. Pri-
or to the code generation, a knowledge base is built by
interpreting the grammar file of AS and the official test
cases. Then, grammar-based blackbox methods generate
nearly-valid code. The right-hand side sequence of the fig-
ure with upward arrows illustrates the mutation phase. A
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lexier marks all the identifiers in source code, pointing to
functions, classes and variables with markers, followed by
mutations and substitutions of markers with actual runtime
class information. Lastly, the test case programs are created
and sent to the target AVM.
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Figure 1: ScriptGene workflow.

In comparison with earlier approaches, ScriptGene’s test-
generation techniques substantially advance the state of the
art in fuzzing VMs by generating compilable and expressive
random source code of high complexity, employing many
AS language features. Compiler-validity is ensured by gen-
erating AS code that does not contain undefined classes,
variables or functions; nor depend on random arrangements
of the code structure. Currently, ScriptGene generates AS
programs suitable for testing AVMs. Flexibility of our ideas
underpinning ScriptGene, as well as our specific implemen-
tation should easily port to test other VMs. This paper
summarizes the construction of ScriptGene and some of its
current testing results.
Adobe Flash is a multimedia platform used to add ani-

mations to web pages and hybrid document formats such as
PDFs and Office documents. Usually, Adobe Flash files with
the “.SWF” (SWF) extension are treated as harmless files or
as videos by the host OS. AS code inside SWFs are typically
used to control animations and merely contain functions to
operate natively on local resources (e.g., disk, process. . . ).
Thus, AVMs are running in trusted environments. If a SWF
file triggers a vulnerability of the AVM and executes na-
tive code out of the trusted environment, the local resources
could be compromised. Furthermore, Just-In-Time compil-
ers (JIT) of AVMs can be used to breakthrough memory
protection methods such as ASLR and DEP [16]. APT at-

tack to RSA [15] in 2011 demonstrated the ramifications of
AVM security vulnerabilities.

AVMs were chosen as the testing targets for two reasons.
First and foremost, vulnerabilities in trusted environments
are intrinsically harmful, more so than an equivalent lan-
guage that operates on the local resources natively. Sec-
ond, there appears to be a lack of existing grammar-based
approaches focusing on ActionScript-like languages, where
compilers are involved.

• Our first contribution is the implementation of a grammar-
based blackbox method to fuzz test complier-involved
AVMs. Our implementation has covered almost all the
code blocks (>96%) of the official test cases.

• Our second contribution is the advancement of the s-
tate of the art in grammar-based blackbox test code
generation, coupled with runtime class mutations. Our
approach not only has allowed us to gain addition-
al code coverage to nearly double that of the official
test cases in our experiments, but also has discovered
six previously undocumented bugs in three versions of
AVMs [11] that were missed by the official test cases.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the technical details on ScriptGene, from the
code generation phase to the runtime class mutation phase.
Section 3 details the actual implementation and discusses
our evaluations. Section 4 discusses related works and the
state of the art in fuzz testing. Section 5 details the sim-
plified strategy for ScriptGene and some of its limitations.
Section 6 concludes the paper.

2. SCRIPTGENE
The basic concepts behind ScriptGene are in Section 2.1.

The additional grammar controls are in Section 2.2. Our AS
code generation algorithm is presented in Section 2.3. Ex-
traction of runtime information for runtime class mutations
is detailed in Section 2.4. Mutation of extracted informa-
tion into code to create compilable source code is presented
in Section 2.5.

2.1 Basic concepts and terminology
ActionScript and AVMs There are currently two ver-

sions of AS: AS2 and AS3, executed by AVM1 and AVM2.
AS2 lacks many new features, such as 3D presentations and
is less effective in code execution as compared to AS3. AS3
is chosen, since it is the version most frequently employed
by current SWFs. AS3 based on ECMAScript4 standard [6]
is an object-oriented programming language used to build
SWFs. Unless otherwise noted, AS refers to AS3 and AVM
refers to AVM2 hereafter.

Grammar files In order to generate and parse source
code, the grammar file [7] written in ANTLR, containing
the grammar standards of AS is utilized. ANTLR is a pars-
er generator framework written by Parr and Quong [23].
Once the grammar file is established, the task of building a
parser is similar to compiling source code. In addition to the
AS parser, an ANTLR language parser parses the ANTLR
format AS grammar file, since we wish to generate AS code
snippets beyond merely parsing them. Since some features
of ANTLR are only enabled under Java, Java is used to parse
source code. Other parts of ScriptGene are programmed in
Python, to leverage its string manipulation capabilities.
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In total, there are three grammar files for ScriptGene: a
grammar file used to build a parser for AS (G1), a grammar
file used to guide the AS code generation process (G2) and
a grammar file used to build a parser for ANTLR (G3).
G2 is a modified version of G1, which will be explained in
Section 2.2. G3 is the official ANTLR grammar file inside
the example directory of its Java distributions.
Grammar rules in ANTLR format In ANTLR, AS

grammar elements can be divided into three categories: rules,
blocks and atoms. Rules comprise the main structures list-
ed in an ANTLR format grammar file. Rules also con-
tain sub-rules. Sub-rules are mixtures of blocks and atom-
s. Blocks consist of atoms. Atoms represent terminal and
non-terminal nodes. Non-terminal nodes are other rules and
terminal nodes are tokens or real characters inside a range.
For the code generation phase, only the knowledge of node
extensibility is required. If the node stands for a rule, it is
extensible and ready to be extended with sub-rules, other-
wise, no action is performed to this node until the end.

2.2 Adding control to grammar rules
The generated code should contain a diversity of gram-

mar structures and runtime class interactions, while being
easy to mutate and free of non-interesting code structure.
Simultaneously, the generated code must be compilable. To
satisfy these requirements, two controls are added to the
production of AS code during opportune stages of Script-
Gene before compilation. First control consists of modifi-
cations to the grammar file and the second control consists
of adjustments to the context during the mutation phase
(Section 2.5). Although adjustments of the grammar file
are less flexible than that of the runtime class mutations
Python code, the foremost occurrence of the grammar file
in the ScriptGene generation process necessitates that it be
given a higher adjustment priority. This allows the removal
of root causes of potentially troublesome structures from
the compiler. G2 is therefore created from G1 under a few
controls (e.g., simplification, ignorance, modification...) of
select rules. G2 is then transformed into a Python source
file by the ANTLR parser.
Simplification rules ANTLR allows Java code to be in-

serted into grammar rules to analyze the complex context of
the source code. However, this kind of Java code behaves as
comments to the ANTLR language parser, and is ill-suited
for generating code snippets. A clean-up simplification of
this Java code is required to facilitate the process of parsing
G2 into Python format.
Ignorance rules A rule such as xmlPrimaryExpression is

used to parse XML expressions, which are uninteresting to
us, since we focus on the grammar structures of the context
and not on particular API functions. Code generation cycles
will be wasted if these rules are left unmodified. Thus, these
rules’ sub-rules are replaced with short XML expression in-
stances.
Modification rulesA rule such as functionBody is rewrit-

ten with a one-time loop structure. All the functions gen-
erated will start from one-time for-loops. This allows most
breaks and continues inside those functions compiler-legal
statuses.
Expansion and replacement rules Consider the rule

tryStatement as an example. The main part of this rule
is embedded inside a block, whose expansion according to
our algorithm can simply be a random pick from its sub-

atoms (see Section 2.3.2). Initialization of tryStatement sub-
rule selection will not work. Therefore, depth-first sub-rule
selection is disabled in this situation. The rule is rewriten
and the block inside the tryStatement is replaced with a
newly defined rule tryStatementBlock. Initialization of sub-
rule selection on tryStatementBlock will work and give the
code generation phase a greater diversity.

1: tryStatement

: TRY blockStatement

( catchClause+ finallyClause

| catchClause+

| finallyClause

)

;

2: tryStatement

: TRY blockStatement tryStatementBlock

;

tryStatementBlock

: catchClause+ finallyClause

| catchClause+

| finallyClause

;

Marking of rules related to functions and variable
declarations This is done for the runtime class mutation
phase, to reduce the complexity of lexical analysis subse-
quently. For example, if we attempt to expand the vari-
ableDeclaration rule during the code generation phase, the
sophisticated variable expression will be very difficult for the
mutation algorithm to control both the type and the value
of the variable. Therefore, its sub-rules are replaced with
markers such that we can directly alter the type and the
value of the variable.

2.3 Grammar-based blackbox fuzzing
According to vulnerability reports of AVMs in the past

2 years [20], many vulnerabilities were caused by AS code
containing interactions with runtime classes. Therefore, a
main aspect of ScriptGene is to create opportunities for in-
teractions between different runtime classes.

2.3.1 Key points of the design
There are three key points that should be taken into con-

sideration while creating compiler-pass AS code to test a
backend AVM.

Stricter environment For a JavaScript-like VM, even
if the backend VM receives no executable code due to the
inappropriate grammar context of the input code, it is stil-
l possible to test the frontend parser and trigger bugs in
trusted environments. Unlike JavaScript code and its VM,
AS code interfaces with the AVM via a compiler. Bugs of
the parser (in the compiler) would not be a direct threat
to the trusted environment. Accordingly, AS requires much
stricter context than JavaScript, since any preceding line of
invalid AS code will block the execution of the remaining
code due to the compiler. I.e., AS should be global-valid
while JavaScript needs to be only line-valid. Adding con-
trols to the code generation phase and marking rules inside
G2 (see Section 2.2) overcomes this difficulty.

Additional grammar structures in AVMs In order
to compile and execute code on the AVM, some addition-
al structures are needed in our AS code. Such structures
are difficult to generate with random walks over grammar
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space, thus a brute force approach is inefficient. Therefore,
code templates (see Section 2.5.2) are used to reconstruct
the source code just one step before compilation.
Valid context Source files with proper structure and

grammar still contain undefined variables, functions, class-
es, etc., and are thus still uncompilable. This is addressed
by mutating the source code during the mutation phase (see
Section 2.5) with real classes, API functions and predefined
variables that are extracted from runtime libraries of the
AVM.

2.3.2 Generation of nearly-valid code snippets
One possible approach for fuzzing AVMs based on gram-

mar involves randomly generating source code that follow
the grammar structure. However, näıve random walks over
grammar rules are not guaranteed to terminate. Referring
to the idea of LangFuzz [19], we bring an end to the ran-
dom walk code generation process using instances of gram-
mar rules learnt from known test suites. This is a good
start, but in contrast to LangFuzz, it is not the final step be-
fore code execution. Furthermore, we enhance LangFuzz ’s
idea by incorporating both depth-first and breadth-first al-
gorithms into ScriptGene, as described in algorithm 1. The

Algorithm 1 ActionScript code generation

Input:
A decision of sub-rule selection, seednum;

Output:
Nearly-valid code snippets, codearray ;

1: Initialize codearray as [startrulenode];
2: Initialize the sub-rule selection based on seednum using

a deterministic-random algorithm;
3: while (Number of active nodes and number of genera-

tion cycles are still low) do
4: for each node in codearray do
5: if node is not an active node then
6: Remain node unchanged;
7: else
8: Replace node with expanded nodes using

breadth-first/depth-first algorithms of sub-rule s-
elections;

9: end if
10: end for
11: end while
12: for each node in codearray do
13: Replace node with rule instances of its type;
14: end for
15: return codearray ;

AS code is generated on a per-cycle basis. Each cycle of gen-
eration expands the nodes inside the codearray. Iteration is
used instead of recursion, since determination of possible
code length and number of nodes are more convenient with
iteration. These important parameters control the termina-
tion of the code generation phase.
Each level of expansion is done on active nodes. The type

of the node determines if a node is active or not. In figures
2, 4 and 3, each circle represents a node, while the char-
acter inside states the content. A given node is a NULL
atom if the node is blank (previous level of expansion has
randomly chosen zero for the quantifiers or optional). The
quantifiers (‘*’,‘+’) and optional (‘?’) are stored without
any simplifications and will be replaced by a random num-

ber in its valid range during code generation. This is also
different from LangFuzz [19]. Before a level of expansion,
the nodes in the codearray are scanned and a hierarchy is
established for each cycle: rule->block->atom. During each
cycle, only the highest hierarchy item is set active. This
ordered expansion is more effective and intuitive when we
need to examine the generation process. Both ordered and
non-ordered expansion processes are illustrated in figures 2
and 4 for comparison. In a non-ordered expansion process,
such as illustrated in figure 2, different structures will in-
evitably begin to embed each other (a block inside a block,
an atom inside a block embedded further inside a rule, ex-
tended from an atom. . . ). Additionally, expansion cycles
may be wasted on extending structures that will eventual-
ly become NULL (the left branch of figure 2, for example).
Therefore, the ordered process as depicted in figure 4 is our
node expansion approach. Although figure 4 appears to

S: (a b)? (c d)*

a: -     
b: (c a)+

c: .

d: c? | a?

Figure 2: Node expansions in random order.

S: a | b | c

Figure 3: Left branch represents a depth-first sub-
rule selection. Right branch represents a breadth-
first sub-rule selection.

depict a breadth-first algorithm, it is not. Breadth-first or
depth-first algorithms apply to the selection of sub-rules.
Rules consist of sub-rules, separated by “|” in ANTLR such
as “Rule S: a | b | c”. Rule “S” can be selected as “a”, “b”
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or “c”. Our breadth-first method is a random selection a-
mong sub-rules, whereas our depth-first method holds on to
the initial selection at the beginning of the code generation
phase (see line 2 of algorithm 1). Figure 3 demonstrates the
difference between breadth-first and depth-first algorithm-
s. Our breadth-first method is similar to that used by [19].
Depth-first algorithm was added, based on results of our
previous testings of the regular expression interpreter [31].
This addition enables us to test AVMs with nested grammar
structures. The idea is akin to sending a “((((((expr))))))”,
to test the expression interpreter. Nested structures appear
to be validated with less caution and return more bugs. In-
tuitively, to cover more grammar rules, breadth-first algo-
rithms need longer code lengths, while depth-first algorithms
need more generation cycles with different sub-rule initial-
izations. To terminate the code generation process as in line

S: (a b)? (c d)*

a: -     
b: (c a)+

c: .

d: c? | a?

Figure 4: Node expansions following the rule, block,
atom order.

13 of algorithm 1, we study code fragments (which are es-
sentially examples for non-terminals in grammar rules and
in our case, are instances of rules) from the AVM test suite
in Tamarin [12], which is an open-source AVM project under
Mozilla. The AS source code is taken from their acceptance
test cases and dissected into pieces then categorized based
on their rule types. A sample code fragment pool is built
after parsing the test suite with the help of G1, in which
there are several instances for each rule. The G1 grammar
file originally belongs to a plug-in for Eclipse, intended to be
part of a syntax highlighter function. It is imperfect when
handling large assortments of code fragments. Since some
parsed results may contain faults, the pool requires manual
fixes. In addition, G2 is a modified version of G1, not all of
the rules find their instances from this test suite. Thus, the
missing ones are added manually.

2.4 Extraction of runtime information
After creating nearly-valid AS code snippets, all the iden-

tifiers pointing to labels, functions, variables and types are
marked with the AS lexier. Some of these will be replaced
with runtime classes, properties and API functions of the
AVM, while others need modifications to suit the current
context. A knowledge base is built for this purpose, con-
taining the relevant runtime class information of the AVM.
Runtime class information can be obtained from mainly t-

wo sources. The first is the ActionsPanel 3.xml, found in the
sub-directory of the SWF Integrated Development Environ-

ment (IDE), Adobe Flash Professional CS6 [4]. It contain-
s sufficient information for the construction of expressions
that declare variables to be instances of classes, call their
member functions and modify their properties. However, it
does not contain newly published APIs and classes.

The second one is the file playerglobal.swc, which accom-
panies newly released versions of Adobe Flash. This file
contains the newly introduced APIs and runtime classes,
and constitutes sufficient information for a compiler to de-
termine if a class or function exists. By unpacking the play-
erglobal.swc file yields the files catalog.xml and library.swf.
Inside catalog.xml are names of runtime classes, especial-
ly some undocumented API functions. Demonstrations of
functions and properties are missing compared to Action-
sPanel 3.xml. It is possible that they reside in library.swf in
binary format. Instead of dealing with library.swf, the dy-
namic reflection mechanism of Flash is used to extract the
missing information. Thus, describeType [1] is employed to
restore the structure of the class using only its name.

After runtime information has been collected, verification
is required for runtime class mutations, to ensure that they
are compatible with our compilation environment. Our com-
piler asc.jar comes from Flex SDK [2], an open-source SD-
K designed to build Flash. Asc.jar performs compilation-
checks by utilizing the information in playerglobal.abc. How-
ever, playerglobal.abc is not as up-to-date as playerglob-
al.swc. Therefore, the compilation and execution status of
each class collected in the current AVM of interest is manu-
ally verified, to minimize the amount of non-executable test
cases produced by the mutation phase.

To verify the compilation status of these runtime classes,
an AS source file is built by importing all the classes collect-
ed, then called upon with describeType inside a “try-catch”
clause. The classes that are not recognized (cause excep-
tions) by asc.jar and the target AVM are excluded, then the
valid description output by describeType are recorded. For
this purpose, a Python module is created that parses all the
XML outputs of both describeType and ActionsPanel 3.xml,
to build a runtime class pool in memory. This pool contains:

• name of runtime classes and their parent classes,
• name of member functions and the type of each pa-

rameter,
• name of dynamic and static properties of each class.

2.5 Runtime class mutation
This phase is a critical part of ScriptGene. Outputs of this

phase are valid AS code that will be compiled into SWF files.
The guiding idea of runtime class mutation is to bring more
interactions between different classes and give a valid con-
text to the code simultaneously. This is done in the following
two steps.

2.5.1 Step 1, mark identifiers
We mark the identifiers pointing to names and types of

functions, classes, catch variables, break variables, continue
variables, labels and function-calls via lexical analysis. The
lexier is based on G1, which recognizes all the identifiers.
The identifiers are distinguished according to the characters
of the former and latter tokens in the lexical sequence. For
example, if a “while” clause is generated in code generation
phase, then identifiers such as “DateCase” are neither API
functions nor static classes and are not yet acceptable to
the compiler. Subsequently, the nearly-valid AS source code
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will become a marked file with all the identifiers replaced by
markers, for example:

1: while(new Object+=a,

DateCase.setMilliseconds(newms)||c,

i++||f||2);

2: while(new _varname_+=_varname_,

_varname_._funcall_(_varname_)||_varname_,

_varname_++||_varname_||2);

2.5.2 Step 2, replace markers
The input of this step is the output of the previous step,

an AS source code file full of markers. Our goal is to mu-
tate these markers with real classes, build a context for each
variable that will be used and to correct lexical issues to
compensate for G1. For example, marked AS code will re-
place “ userdefine ” in the following prebuilt template:

package{

import flash.display.*;

_import_

_globalvardeclaration_

_userdefine_

public class Main extends MovieClip{

public function Main():void{

_functioncall_

}

}

}

When the mutation begins, the input will be a template
file full of markers. All the classes, API functions, global
variables and member properties will be enumerated from
the runtime class information pool as built in Section 2.4.
Every mutation cycle will commence by picking several class-
es from the runtime class information pool. Presently, we
have adopted a limit of two classes per cycle. During this
process, all markers in the template file will be replaced with
meaningful code.
“ import ”will be replaced with“import”clause to include

the class of our choice. ” globalvardeclaration ” will be re-
placed with declarations of class objects with “new” clauses.
References are made to the runtime class information pool
to check the existence of constructors. If so, a“new”clause is
built for this class with appropriate parameters. Otherwise,
the chosen class is a static class. Properties and member
functions of such a class can be used directly without decla-
ration.
Next, a variable pool and a function pool are initialized.

The variable pool and the function pool stores the variable
names and methods of runtime class objects of our choice
respectively, including all of their properties and their par-
ents’. These two pools will be referred to, when markers
referencing variables and function-calls are encountered. In
addition, there is one more global pool to record the classes
that ScriptGene generates and their variables, functions and
labels.
When ScriptGene scans the marked template file, it will

encounter several kinds of markers. Markers referring to
variables will be replaced as listed below.

• A variable pointing to the instance of a picked class.
• A property of the chosen class and its parent.
• A member function of the chosen class and its paren-

t. Member functions can be seen as variables in AS

under specific circumstances. Thus, they can be incor-
porated into grammar structures, such as assignment
expressions.

• A property or member function of the chosen class in
prototype form. This is added, since prototype is a
way to inherit for this object-oriented program. We
expect that it will lead to more interactions between
different classes.

Under special circumstances, only pure variables are permit-
ted (variables that are instances of classes), such as “ var-
name ++”, “-- varname ”. These situations are identified
and replaced with only predefined instances of the chosen
classes.

The function-call mutation is similar to the variable mu-
tation. All the markers pointing to function-calls with mem-
ber functions of chosen classes and their parents are replaced
appropriately.

Other than the runtime class mutations, grammar struc-
tures in the marked template file also needs manual fixes.
Some are fixed by altering G2 in Section 2.2, such as “con-
tinue” clauses. To accomplish this, we maintain a label pool
to record recently declared labels. Once “continue” clauses
are encountered that request for labels, the labels are substi-
tuted and appended. Although this process is not foolproof,
it is necessary to enable a substantial portion of the code to
compile. Other fixes on grammar structures are too trivial
to be listed here and can be found on our website [11].

When all the variables and function-calls used in the code
snippets have been declared, the instruction flow is altered
to be logical and grammar errors are fixed. The “ func-
tioncall ”markers are replaced by calls to member functions
that ScriptGene has generated and mutated. Then, all the
classes from the global pool are initialized and every func-
tion is called to enable our generated code to run in the
target AVM. This completes the generation of compilable
AS source code.

3. EVALUATION
Two experiments were conducted with ScriptGene. The

first evaluates different generation and mutation strategies:
breadth-first or depth-first during code generation phase and
multiple or single templates during runtime class mutation
phase.

The second compares our code coverage with the origi-
nal Tamarin test suite. The results show that ScriptGene
achieves a much better code coverage than Tamarin in all
three versions of AVMs tested. A brief analysis of typical
bugs found during the second experiment and details about
how they were found will be given.

3.1 Testing conditions
The testing process consists of three parts: a generation

phase, a runtime class mutation phase and an execution
phase. The first part typically requires about half a day
on a PC (equipped with an Intel Core Q9400 with 4GB of
DDR3 RAM), to generate about ten thousand source code
files with distinct sub-rule initializations and transform them
to marked template files with lexical analysis. The mutation
phase is then given a week of computation time. Millions of
SWF files are produced and stored during this phase. Fi-
nally, all the SWF files are executed in the AVM.

To sequentially send test cases to the AVM via Adobe

462



Flash ActiveX Control, a wrapper was constructed and em-
ployed. When bugs occur that result in non-severe memo-
ry leaks, the AVM may not crash directly or immediately.
Therefore, all test cases are sent by the wrapper in the same
process, which amplifies memory leak effects on the AVM by
accumulating multiple persistent memory leaks. This can ei-
ther directly cause or hasten AVM crashes. Each SWF file
is allowed at most one second of execution time before they
are freed from memory.
Since we lack the source code of the AVMs tested, we

resort to block coverage instead of line coverage to evaluate
our fuzzing performance. To record the block coverage, we
refer to the idea of PaiMei [24] and use PIDA to analyze the
Adobe Flash ActiveX Control by recording the start and
end addresses of each block inside. Basic block coverage is
the same as statement coverage, except that the unit of code
measured is each sequence of non-branching statements. A
block is a basic element of the disassembled code in IDA
Pro [8]. Once the start address is covered, all the assembled
code in this block will be executed.
The debugger we have built is based on Pydbg (a sub-

project of PaiMei), to record block coverages and memory
corruptions caused by the test cases. Once the wrapper
begins loading the test cases, the debugger is attached and
the breakpoints on basic blocks over Adobe Flash ActiveX
Control are set. If any of the breakpoints are triggered,
it is removed from the list for the remainder of the test.
Subsequently, all the breakpoints that have been triggered
(to record the total block coverage) during the execution
phase are collected. If the AVM crashes due to some test
cases, the debugger will record the current crash information
and the test case file for further analysis.
There are two additional reasons for running the test cases

in a single process. First, setting breakpoints on the wrap-
per requires no more than a few minutes, but are only done
whenever the wrapper is restarted (e.g., such as due to crash-
related wrapper terminations). Running the test cases in a
single process instead of a new process for each test cas-
es saves time spent on setting breakpoints. Second, in a
multiple processes approach, it is possible to miss bugs that
are only triggered together by multiple test cases. The root
causes of these types of bugs are hard to locate in a multiple-
test case, multi-processes scenario.
All the experiments are done through three versions of

AVMs. Since many features of AS3 are not available until
Adobe Flash 10, our first choice is version 10.0.45.2. This
is the very first version of Adobe Flash 10. The second
version, version 10.2.152.32 is chosen from the period when
AVM’s vulnerabilities began to attract security engineers’
attention, around the time of CVE-2010-1297 [20]. The last
version is the newest version available during our tests, ver-
sion 11.3.300.265.

3.2 Comparison of code generation and mu-
tation methodology combinations

In total, there are four code generation and mutation
methodologies: breadth-first or depth-first methods for code
generation, single or multiple templates methods for runtime
class mutations. The first two methodologies that govern
node-order expansions are given in Section 2.3.
The other methodologies regard to varying initial tem-

plates by choosing single or multiple templates during the
mutation phase. For the single template methodology, an

initialized selection of a single marked template file is used
for the mutation phase. For the multiple templates method-
ology, each batch of mutations is done on a candidate selec-
tion, chosen randomly from all available marked template
files. The multiple templates methodology is capable of
more initialization choices of sub-rule selections when com-
pared to the single template methodology. Four unique com-
binations of these methodologies are: breadth-first&single
template (BS), breadth-first&multiple templates (BM), depth-
first&single template (DS) and depth-first&multiple tem-
plates (DM).

Version 10.0.45.2 10.2.152.32 11.3.300.265
Blocks 15206 21819 34532
BM 4635(30.48%) 4330(19.85%) 5909(17.11%)
BS 3691(24.47%) 5152(23.61%) 5703(16.52%)
DM 3477(22.87%) 4660(21.36%) 7549(21.86%)
DS 2350(15.45%) 4353(19.95%) 4770(13.81%)

Table 1: Block coverages of different combination-
s of methodologies. The amount of covered blocks
and the percentages of total blocks covered are tab-
ulated.

Each combination is allotted a week of computation time
for generation and mutations. The output of each is about
∼ 800, 000 SWF files. Then, an additional one to two weeks
is required for execution, when the triggered breakpoints are
recorded to calculate block coverage (see table 1).
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Figure 5: Block coverages under different versions
of AVMs.

As seen from figure 5, the best combination in terms of
coverage is not obvious, while the worst is the DS combina-
tion. During the tests on version 10.2.152.32, some test cases
inside the BM combination have led to a memory bug of the
AVM. Subsequently, the AVM entered a self-protection state
that prevents further execution of a variety of SWF files.
This explains the sudden fall of the BM combination’s block
coverage. For version 11.3.300.265, the DM combination
has a greater increase in coverage as compared to the other
combinations and the former results. This is because BM
has randomly picked several marked template files contain-
ing more grammar structures than the other combinations.
In fact, the DM and BM combinations are the most rep-
resentative of ideal situations, where the diversity of initial
templates is maximized, combined with extensive runtime
class mutations. In reality, however, close approximations to
this ideal results in a very resource-intensive process. There-
fore, prior to fuzz testings, considerations should be made
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regarding the amount of computational resources available
and choose methods accordingly.
These combinations are cross-compared in table 2. Each

item contains three parts: blocks in common that have been
covered during the tests and the proportion of these blocks
to the total blocks. For example, the DM and DS cross-
comparison under version 11.3.300.265 includes 4770 blocks
that both combinations covered. These 4770 blocks repre-
sent 100% of the DS combination’s coverage, and only 63.2%
of the DM combination’s coverage. This suggests that the D-
S combination is less useful for testing version 11.3.300.265,
as compared with the DM combination.

Version 10.0.45.2 10.2.152.32 11.3.300.265

BM,BS
3681
79.42%,99.73%

4098
94.64%,79.54%

5172
87.53%,90.69%

DM,DS
2329
66.98%,99.11%

3770
80.90%,86.61%

4770
63.19%,100.0%

BM,DM
3454
74.52%,99.34%

3959
91.43%,84.96%

5773
97.70%,76.47%

BS,DS
2322
62.91%,98.81%

4350
84.43%,99.93%

4769
83.62%,99.98%

Table 2: Cross-comparison between different combi-
nations of methodologies.

To summarize, when the testing situation involves limit-
ed computational resources and/or time, the DS combina-
tion is inappropriate. The multiple templates methodolo-
gies seems to be more satisfactory than the single template
methodologies. When the template methodology is fixed,
the performance of the overall combination seems to depend
on whether breadth-first or depth-first algorithms performs
better on the particular AVM (e.g., the BM combination is
better than the DM combination for version 10.0.45.2, and
worse for version 11.3.300.265).

3.3 Comparisons between ScriptGene and Tamarin
The open source AVM implementation Tamarin contains

acceptance test cases [3], which can be seen as the official
test suite of AVMs and is employed as instances of gram-
mar structures in the generation phase of ScriptGene. Block
coverage comparisons between the test cases of Tamarin and
ScriptGene should be a direct proof that ScriptGene is an
effective approach to test AVMs. Normally, the test suite

Version 10.0.45.2 10.2.152.32 11.3.300.265
S 4667(30.69%) 5727(26.25%) 7697(22.29%)
T 2474(16.27%) 3351(15.36%) 3686(10.67%)

S,T
2408
51.60%,97.33%

3236
56.50%,96.57%

3622
47.06%,98.26%

Table 3: Block coverages and cross-comparison be-
tween ScriptGene (S) and Tamarin (T).

of Tamarin consists of AS source code and can only be built
as “.abc” files that are compatible with the Tamarin Virtual
Machine. However, thanks to Tamarin’s support, a solution
[10] has been created to compile SWF files with Tamarin-
AS source code under cygwin [5]. There are 603 SWF files
of Tamarin acceptance test cases. Using the same method
as in Section 3.2 the block coverages of Tamarin test suite
are recorded in the three versions of AVMs. The SWF test
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Figure 6: Block coverage of Tamarin.

cases generated by ScriptGene are the same as in the first
experiment. Triggered blocks are merged among the differ-
ent combinations to give us a net total block coverage of
ScriptGene.
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Figure 7: Block coverage of ScriptGene.

From table 3, it is seen that ScriptGene can cover most
blocks (>96%) that are covered by Tamarin test cases in the
three versions of AVMs. Vivid squares in figure 6 and figure
7 are used to demonstrate block coverages. Red strips rep-
resent covered blocks and dark yellow represents untouched
blocks.

All the blocks are arranged according to their real memory
addresses and lengths. The base address of Flash ActiveX
DLL is 0x10000000, located at the bottom of the figures.
Blocks with higher addresses are closer to the top. The fig-
ures look similar for the three versions tested. Therefore
only one version is shown here. Figures 6,7,8 are the test
results of version 10.0.45.2. The highest concentration of
blocks covered by the Tamarin test suite lies near the top
quarter of the memory space, which mainly deals with gram-
mar and interpretation of the AS code. Blocks in lower ad-
dresses are those dealing with the SWF format and external
resources of the operating system.

In figure 8, the blocks that was neither triggered by Tamarin
nor ScriptGene are excluded. Remaining blocks are covered
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Figure 8: Cross-comparison between ScriptGene
and Tamarin.

by only Tamarin (in red), only ScriptGene (in blue) or both
Tamarin and ScriptGene (in light green). The improvement
of block coverage by ScriptGene is seen to be very signifi-
cant. The complexity of grammar structures produced by
ScriptGene is certainly not less than that offered by the
Tamarin test suite. In addition, with runtime class muta-
tions, ScriptGene is able to create more interactions between
various structures. We reason that both of these aspects
have enabled us to achieve the higher block coverage.

3.4 Examples of bugs
Next, we would like to explain the generation process of

the test cases that triggered some AVM bugs. These bugs
were found by ScriptGene and missed by Tamarin. The o-
riginal test cases can be found on our website [11]. Because
our test cases contain many lines and each line consists of
multiple structures of AS instructions, it is not immediate-
ly obvious which line or structure triggered a specific bug.
Thus, for the following passages of this section, only the
essential parts pertaining to each bug are maintained and
simplified. ScriptGene found four bugs in version 10.0.45.2,
one in version 10.2.152.32 and one in version 11.3.300.265.
Although these bugs do not exist in the newest version of
AVM at the time of writing, we have not yet found any pub-
lished documentations on them. It is possible that Adobe
adjusted the code of newer versions of AVMs, without re-
porting these bugs. Of the six bugs, three will be briefly
detailed here, to illustrate the effectiveness of our strategies
in code generation, runtime class mutation and testing.

3.4.1 Complex grammar structure generation

1: for each(var o in new <Object>

[1,2,3,"hello",’out’,"there",true,false,3.14159])

{str+=o;}

2: for each(var _vardeclarationname_ in new<_varname_>

[1,2,3,"hello",’out’,"there",true,false,3.14159])

{_varname_+=_varname_;}

3: for each(var var2:Number in new <var2>

[1,2,3,"hello",’out’,"there",true,false,3.14159])

{var2+=var2;}

A bug leading to memory corruption is caused by mal-
formed enumerations against the vector type. A number

variable is made to point to a string under such code gram-
mar, which leads to the AVM accessing unexpected memory.
The ability to find this bug depends on the generation of
valid code that are sufficiently grammatically-complex. As
an example of the process of how this type of code snippet
is generated, consider the following. First, the code gener-
ation phase outputs an AS code file containing a “for-loop”
structure. Second, lexical analysis replaces the identifier
with markers. Finally, in the mutation phase, “ vardecla-
rationname ” will be replaced with “varX:vartype” (where
“X” is a number depending on the order of this pure vari-
able and “vartype” will be chosen randomly from runtime
class). “ varname ” will be replaced by a random pick from
the variable pool (for instance, “varX”).

3.4.2 Mutate with prototype

1: switch(actualmatch=string.match(pattern))

2: switch(_varname_=_varname_._funcall_(_varname_))

3: switch(

var3.constructor=var3.append(

flash.geom.Matrix3D.prototype.append

))

Member function append could cause memory corruption-
s when its parameter contains the prototype of this class.
During the code generation phase of ScriptGene, a “switch”
structure is built. Then, the identifier is marked and re-
placed by member functions, properties and instances of
“flash.geom.Matrix3D”during runtime class mutations. This
definitively supports the idea about bringing prototypes in-
to the source code files, in order to allow more interactions
between different classes as mentioned in Section 2.5.2.

3.4.3 Running tests cases in a single process
Another bug is found due to the method used to run the

test cases. As mentioned before in Section 3.1, the wrapper
of Flash ActiveX control loads the test cases sequentially in
a single process.

In version 10.0.45.2, it was found that many access viola-
tions are triggered during the testing phase. Our debugger
records the files that have caused the access violations. At-
tempts to reproduce the corruptions by sending the recorded
test cases directly into the AVM results in no access viola-
tions. This implies that, some test cases prior to the record-
ed ones are probably also responsible for the access viola-
tions. Typically, this is around 2000-5000 test cases prior
to the recorded test case. After several attempts to repro-
duce the corruptions, it is found that only the quantity of
the test cases is important. If ∼(30-50) test cases are load-
ed simultaneously with none being freed from memory, the
corruption will be reproduced, irrespective of the content in
the test cases.

Tests on version 11.3.300.265 found another bug similar
to the bug of version 10.0.45.2. However, for this version,
the required test cases increased to 40000-120000 to trigger
the corruption. Our attempts to reproduce and analyze the
bug with the same method used on version 10.0.45.2 was
not fruitful, since the newer AVM takes counter-measures
against unbounded memory allocations. When the AVM de-
tects that the following operations can potentially exhaust
the memory, it terminates the AVM immediately and pro-
duce a big exclamation mark in the Flash GUI. This pro-
tection mechanism complicates the simplification and dis-
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tillation of the test cases. Thus, we are uncertain if these
access violations are due to the same reason as in version
10.0.45.2. It is possible that these memory leak problems
have existed in Flash for many versions. Each subsequent
revision reduced the effect of memory leaks somewhat, pos-
sibly through counter-measures, such that newer versions
gradually required more test cases to trigger the memory
leaks.

4. RELATED WORK
Fuzz testing was introduced in 1972 by Purdom [25]. Pur-

dom used a syntax-directed method to generate test sen-
tences for a parser. He gave an efficient algorithm for gener-
ating short sentences from a context-free grammar such that
each production of the grammar was used at least once and
tested LR(1) parsers using this technique. It is one of the
first attempts to automatically test a parser using its gram-
matical structure. In 1990, Miller et al. [21] were among
the first to apply fuzz testing to real world applications. In
their study, the authors used randomly generated program
inputs to test various UNIX utilities. Since then, the tech-
nique of fuzz testing has been used in many different areas,
such as protocol testing [13, 26], file format testing [28, 29],
or mutations of valid inputs [22, 29].
The most relevant studies for this paper are recent ones

on grammar-based fuzzing and test generations for compil-
ers and interpreters. In 2011, Yang et al. [32] presented
CSmith, a language-specific fuzzer operating on the C pro-
gramming language grammar. CSmith is a pure generator-
based fuzzer, generating C programs for testing compilers
and is based on earlier works of the same authors and on
the random C program generator published by Turner [30].
Drawing a parallel to our work, they have used the built-in
grammar to create compilable programs. Furthermore, they
introduced semantic rules during their generation process by
using filter functions, which allow or disallow certain pro-
ductions depending on the context. In contrast to our work,
ScriptGene takes less control over the instruction flow (we
only restrict the behaviour of breaks and continues) during
the generation phase, and leave the compiler-pass task to
the runtime class mutation phase. This approach allows us
to generate a greater diversity of grammar structures during
the generation phase.
In 2012, Holler at al. [19] proposed LangFuzz, a grammar-

based fuzzing framework that has been proven to be versatile
in discovering vulnerabilities in JavaScript engines. We es-
pecially adapted LangFuzz ’s idea of the “Shortest Terminal
String Algorithm” for ScriptGene. Similar to LangFuzz, we
have used grammar instances extracted from a test suite of
a certain language to terminate the code generation branch.
In contrast, LangFuzz mainly deals with JavaScript that re-
quires only line-validity, while ScriptGene must maintain
full-text validation with the help of modified grammar rules
and code templates. Furthermore, ScriptGene adds runtime
class mutations, legalizes the code and covers more branches
in tested AVMs simultaneously.
As shown by Godefroid et al. [17] in 2008, a grammar-

based fuzzing framework that produces JavaScript test cas-
es can increase coverage when linked to a constraint solver
and coverage measurement tools. They present a dynamic
test generation algorithm where symbolic execution direct-
ly generates grammar-based constraints whose satisfiability
is verified using a custom grammar-based constraint solver.

Unfortunately their work in its current form only suits well
on JavaScript VMs, since the feedback adjusts the input di-
rectly. However, AVMs only accept bytecodes, which are
the outputs of the compiler. This additional layer prevents
the direct feedback, rendering the symbolic execution inef-
fective.

Fuzzing web browsers and their components is a promising
field, particularly in the case of Adobe Flash, which are also
used in some hybrid documents. To date, several approaches
have been taken to find bugs/vulnerabilities in Flash.

Flash as a particular format of documents could be fuzzed
using a variety of file format fuzzing frameworks such as
Peach [9] and SPIKE [14]. One of the methods of file for-
mat fuzzing called Dumb Fuzz bitflips every bit in the entire
file. Despite its name, Dumb Fuzz was found to be able to
test AVMs to a certain extent. Since AS code is stored as
bytecodes in a SWF, single bit change in these bytecodes
would in general completely alter the original meaning of
the AS code. Several vulnerabilities were confirmed to be
found by Dumb Fuzz recently [20]. Most of these bugs are
due to type confusion. Late in 2011, Google used large scale
computing resources to fuzz AVMs, relying solely on Dumb
Fuzz and found tens of bugs [18]. Nevertheless, this type
of method is mutation based and highly dependant on the
source of the parent SWF. The source for Google was 20T-
B of downloaded SWF files. While 20TB cannot possibly
include all the structures of AS, mutations on the bytecode
level is a good way to explore additional code paths of AVMs
by bypassing the compiler and alter the inputs directly, when
computational resources permit.

There are other fuzzing approaches targeting Flash. How-
ever, most of them mainly focus on whether AS functions
give enough validation to their parameters. In our previous
work [31], we have attempted to fuzz the Regular Expression
functions of AS. Using grammar-based mutation fuzzing,
we have constructed much more sophisticated expressions
to test the Regular Expression interpreter of AVMs, where
several vulnerabilities were subsequently found.

5. DISCUSSION
Approximate grammarsOther than the additional con-

trols to the AS grammar rules as mentioned in Section 2.2,
several other structures have been simplified. Package =>
Class => Function => Statement is essentially the gener-
ated code in a macro-view. Serialization of Package =>
Function, Class => Expression. . . is impossible due to the
modifications of the grammar rules. Fixed serialization of
code structures helps us keep track of the properties and
functions and enables us to build them valid contexts. We
need more domain knowledge of a particular language and
its grammar, if we want to build a valid context for all com-
plex grammar rules.

Resource limitations For the code generation phase,
only several hours was needed to generate around ten thou-
sand nearly-valid code snippets with different initializations
of sub-rule selections. During each batch of runtime class
mutations, only two of the classes from the pool were chosen.
About ten days of mutation time yields only ∼10% of the
mutations possible under our current strategies. Consider-
ing all possible combinations and the depth of the grammar,
these code snippets explore only a tiny subset of AVM execu-
tion paths, since the mutation phase requires far more time
than the generation phase. This is practically inevitable
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with the blackbox fuzzing method. Additional information
from whitebox analysis should be helpful to constrain the
possibilities for future researches. Distributed computing
environments such as cluster computing or cloud computing
would be helpful for larger mutation diversities.
Finding new vulnerabilities We have used the com-

piler to generate complex bytecodes from AS source code,
then execute the resulting files on the AVMs. Our approach
is seen to be effective in achieving a good code coverage,
as demonstrated in Section 3. However, we have found less
bugs than expected, from our comparatively greater code
coverage (compared to the Tamarin official test suite). N-
evertheless, this is reasonable, since the discovery of bugs
from random fuzzing is probabilistic. Evaluating a given
fuzzing approach by the amount of bugs found is not appro-
priate, unless computational resources permit a large and
statistically valid amount of runs. Therefore, code coverage
and comparisons are better indicators of the effectiveness
of ScriptGene. The discovery of bugs should be considered
secondary to code coverage testing. In our future works, we
would like to add bytecode mutations to the test cases pro-
duced by ScriptGene. Based on current code coverage, we
deduce that bytecode mutations will be capable of identify-
ing even more bugs by extending the code coverage. Byte-
code mutations would also be a more direct method to test
AVMs, since it bypasses the compiler-check.

6. CONCLUSION
ScriptGene is a novel approach to fuzz testing Action-

Script Virtual Machines, where compilers are involved. We
have extended and expanded the ideas of LangFuzz from
JavaScript to ActionScript, to generate code snippets, then
produced nearly-valid ActionScript code with additional con-
trols. Finally, using runtime class mutations, we produce
grammatically-complex compilable code that are rich in run-
time class interactions to ultimately test a few AVMs. Our
evaluation shows that our approach, ScriptGene explores
deeper execution paths and is capable of nearly twice the
code coverage compared to official tests (Tamarin). Our
code coverage and discovery of unreported bugs found by
ScriptGene in three different versions of AVMs demonstrate
the effectiveness, validity and novelty of our approach.
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