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ABSTRACT
Multi-User MIMO has attracted much attention due to its
significant advantage of increasing the utilization ratio of
wireless channels. Recently a serious eavesdropping attack,
which exploits the CSI feedback of the FDD system, is dis-
covered in MU-MIMO networks. In this paper, we firstly
show a similar eavesdropping attack for the TDD system is
also possible by proposing a novel, feasible attack approach.
Following it, a malicious user can eavesdrop on other users’
downloads by transforming training sequences. To prevent
this attack, we propose a secure CSI estimation scheme for
instantaneous CSI. Furthermore, we extend this scheme to
achieve adaptive security when CSI is relatively statistical.
We have implemented our scheme for both uplink and down-
link of MU-MIMO and performed a series of experiments.
Results show that our secure CSI estimation scheme is highly
effective in preventing downlink leakage against malicious
users.
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1. INTRODUCTION
Multiple-Input Multiple-Output (MIMO) system has re-

ceived much attention from both academia and industry.
Lots of applications of MIMO technique have been developed
since MIMO emerged. For example, transmitter with mul-
tiple antennas can use beamforming to transmit to receiver
with multiple antennas to achieve a significant array gain
[22]. This is an application of single-user MIMO scenario.
On the other hand, transmitter with multiple antennas can
serve multiple users in the same time-frequency slot through
precoding symbols for each antenna [24]. And this is an ap-
plication of Multi-User MIMO (MU-MIMO) scenario. With
advantage of improving the speed and capacity of networks,
MU-MIMO has been standardized in IEEE 802.11ac [25].

To ensure that MU-MIMO can fully utilize spatial poten-
tial of wireless channels, two main problems should be con-
sidered carefully when a MU-MIMO system is constructed:
the multi-user detection problem in uplink and the multi-
user interference cancellation problem in downlink [20]. The
multi-user detection problem concerns how to demultiplex
signals of multiple Mobile Stations (MSs) for the Base Sta-
tion (BS). The multi-user interference cancellation problem
concerns how to maximize received signal strength of each
MS. Solutions for these two problems, especially the latter,
greatly depend on Channel State Information (CSI) which
plays an important role in MU-MIMO because CSI charac-
terizes channel coefficients. With the help of full CSI, the
BS can provide reliable services for many MSs concurrently.

There is plenty of work that studies the acquisition of CSI.
According to ways in which the BS learns CSI, methods for
the acquisition of CSI can be categorized into two types: ex-
plicit CSI estimation [32] and implicit CSI estimation [3]. In
explicit CSI estimation, pilots or training sequences1, which
are commonly known to MSs and the BS, will be transmit-
ted to MSs from the BS. Then MSs can use received training
sequences and original sequences to estimate CSI. When the
estimation is done, MSs will feed back their estimated CSI
to the BS explicitly. In implicit CSI estimation, commonly
known training sequences will be transmitted from MSs to
the BS in the contrary. Then the BS will do CSI estimation
with received training sequences implicitly. Implicit CSI es-
timation is usually used in Time-Division Duplex (TDD)
systems. Because of the reciprocity of TDD channels, esti-

1There is no significant difference between pilots and train-
ing sequences for estimating CSI in principle. To keep suc-
cinct, we will use training sequence to refer the material for
estimating CSI.

1580



mation of CSI at transmitting end can be done by implicit
CSI estimation in a single pass of training sequences.

Recently, a serious eavesdropping attack on downlink of
MU-MIMO with explicit CSI estimation is proposed [33]. In
this attack, the attacker feeds back forged CSI to the BS so
that the victim’s downlink signal at the attacker’s receiver
will not be a total cancellation. The attacker’s received sig-
nal will be a mixture of the attacker’s download and the
victim’s download. With a careful selection of forged CSI,
the attacker will be able to extract the victim’s downlink
content. This eavesdropping attack has been proved feasi-
ble in explicit CSI estimation. However, there is no evidence
for the possibility of this attack in implicit CSI estimation.

In fact, this eavesdropping attack cannot be easily per-
formed in implicit CSI estimation because the biggest dif-
ference between implicit CSI estimation and explicit CSI
estimation is that there is no explicit CSI feedback in im-
plicit CSI estimation. To our best knowledge, our work in
this paper is the first attempt to launch the eavesdropping
attack on the downlink of MU-MIMO with implicit CSI esti-
mation. The gist of our approach is as follows. Same as that
in [33], the attacker in our approach also keeps eavesdrop-
ping on the BS. In this way, the attacker will get every bit of
information from MSs to the BS. Because training sequences
are commonly known, the attacker is able to do estimation
of the victim’s CSI with received training sequences at the
BS. Then a careful selection of forged CSI H1 is calculated.
With his own CSI H2, the attacker can calculate the dif-
ference between H1 and H2. Based on this difference, the
attacker will transform his training sequence to mislead the
BS. When the BS estimates the attacker’s CSI, it believes
that the received training sequences are commonly known
ones. Then the difference coefficient hidden in transformed
training sequence will be transferred to the attacker’s CSI.
However, the BS regards the attacker’s CSI as correct and
do the precoding as usual. In this way, received signal of the
attacker will be a mixture of his download and the victim’s
download. Because of the selection of forged CSI, the at-
tacker will be able to extract the victim’s downlink content.

We note that it is quite challenging to stem this downlink
leakage. First, this eavesdropping attack in implicit CSI
estimation is difficult to be identified, since there is no evi-
dence of the transforming of training sequences for the BS
to tell whether his received training sequences are original
ones. Second, there is a conflict in protecting CSI estima-
tion, where CSI and training sequences should be available
to the BS but should not be available to other MSs even
in the situation in which the BS may be eavesdropped on.
Third, when CSI has not been estimated in TDD systems,
we cannot assume that a reliable uplink is available as the
case in Frequency-Division Duplex (FDD) system because
of the reciprocity of channel. This means, if we assume that
reliable uplink is available before doing estimation, we are
assuming reliable downlink at the same time. Fourth, com-
plex cryptographic tools cannot be adapted. Construction of
secure communication or secure key exchanging in unstable
transmitting is too inefficient for estimation phase. Masking
or confusing techniques cannot be adapted because training
sequences and CSI need to be as accurate as possible.

With overcoming these challenges, we have proposed a se-
cure CSI estimation scheme for TDD systems. We observe
that it is very hard to keep MSs’ historical CSI secret, so
we trade outdated CSI records off for the security of current

CSI estimation. Our secure CSI estimation is designed to be
a two-phase scheme, in which uplink and downlink will be
carefully designed. The first phase is for the BS to collect
commitments of training sequences from MSs, which should
happen in the previous coherence interval before expected
downlink interval. A fuzzy commitment scheme [16] is em-
ployed to generate commitments of training sequences for
MSs, which can help the BS ensure that when the BS does
CSI estimation, MSs will use exactly the same sequences as
they have committed. The first phase mainly involves up-
link of MSs. This phase can be regarded as a process of
multi-user detection in conventional uplink schemes. The
second phase should happen in expected coherence interval.
In the beginning of the second phase, MSs should reveal
their training sequences to the BS. Then the BS will verify
whether these training sequences can match those that have
been committed before. If the training sequence of any MS
is legal, the BS will recover the original training sequence
from the MS’s commitments and estimates this MS’s CSI
with the original training sequence and received training se-
quence.

The above countermeasure is based on the observation
that instantaneous CSI is changing significantly. Therefore
we can make use of the timeliness of CSI to ensure that cur-
rent CSI is secure against attackers. But there may be rel-
atively statistical CSI cases which should be also taken into
consideration. To this end, we extend our secure CSI esti-
mation scheme to achieve adaptive security in relatively sta-
tistical CSI case. Adaptive security here means that varying
degree of security can be achieved according to the selection
of security parameter. If a security threshold is determined,
then varying degree of resources will be expended according
to the statistical degree of CSI.

Our major contribution in this paper can be summarized
as follows:

• A feasible approach is proposed to make eavesdropping
attack happen in downlink of MU-MIMO with implicit
CSI estimation. To our best knowledge, this is the first
study for this situation. We verify this approach in a
TDD MU-MIMO network.

• We propose a secure CSI estimation scheme which
takes advantage of the timeliness of instantaneous CSI.
Solutions for both uplink and downlink of MU-MIMO
have been given to implement our scheme.

• In case that CSI is relatively statistical, an adaptive
security approach is proposed. This approach is inte-
grated into our scheme to ensure security with varying
cost according to the statistical degree of CSI.

2. RELATED WORK
MU-MIMO systems have attracted more and more atten-

tion since it emerged. A lot of work has been done during re-
cent years. Some techniques which are essential components
supporting MU-MIMO systems are growing mature. For up-
link, both the multi-user detection problem and simultane-
ous upload problem have been carefully studied. Minimum
mean square error method and maximum likelihood method
have been proved efficient in multi-user detection [14, 20].
Many uplink protocols have been proposed for MU-MIMO.
Some of them are designed to contend for channels without
coordination [23, 30, 21]. This kind of methods is easy to
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establish, and flexible to use. Some other methods are de-
signed to use uplink with coordinated access [13, 31, 19].
This kind of methods usually has higher utility of channels,
but the prerequisite is that full CSI of users must be avail-
able. As for downlink of MU-MIMO, block-diagonalization
and zero-forcing are two most popular methods [29]. Al-
though dirty paper coding [9] has been proved to have op-
timal performance, its computing complexity is too high to
be used in reality.

No matter what protocol is used to build download links,
full CSI is needed if a highly reliable transmitting is to be
acquired. To obtain CSI within small delay for transmit-
ting, lots of subtle estimation schemes are proposed. Among
them, a training sequence based approach [6] has gained
much favor. A robust training sequence has also been pro-
posed [27] for correlated MIMO channel. According to feed-
back styles, CSI estimation schemes can be classified into
explicit CSI estimation and implicit CSI estimation, both of
which have been well studied and widely applied. Explicit
CSI estimation is usually employed in frequency-division du-
plex systems. Since explicit feedback of CSI is needed, an
efficient feedback scheme is indispensible. Many efficient
feedback schemes and training techniques have been pro-
posed, such as [32, 28, 8]. Implicit CSI estimation has an
advantage of single-pass training form. This can be used
with reciprocity characteristic of time-duplex division sys-
tems to shape a complete CSI estimation scheme [3, 18] for
both transmitters and receivers in TDD mode.

Although much work about CSI estimation has been done,
only a small part studies the security of CSI. It is commonly
agreed that CSI should be fed or learnt in plain text. But re-
cently a serious eavesdropping attack has been proved to be
practicable in MU-MIMO system even with protection of ar-
tificial noise [33]. This attack can threaten users’ download
if CSI is available to the attacker. The attack will be able
to extract the victim’s downloading message if forged CSI
is reported to the BS. This attack is proposed and proved
in explicit CSI estimation with FDD mode. In implicit CSI
estimation, this kind of attack will be inapplicable because
CSI is not explicitly reported. In this paper, we will show
a feasible approach to launch the eavesdropping attack in
implicit CSI estimation. Different with prior work [33], we
will launch this attack by misleading the BS with the fraud-
ulent training sequence instead of forging a CSI report. And
before this our work, there has been no effective method to
identify this attack in implicit CSI estimation.

3. PRELIMINARIES
We will focus on the leakage of downlink in a single-cell

MU-MIMO TDD system in this paper. We note that the
biggest difference between the TDD system and FDD sys-
tem is that the TDD system uses the reciprocity of channels
for transmitters and receivers. This is also the main factor
that makes secure CSI estimation in TDD systems difficult
to be achieved. In the favor of TDD systems, we use im-
plicit CSI estimation method as the default setting. Before
the introduction of our attack model and proposed scheme,
we will review downlink model of MU-MIMO system and
implicit CSI estimation first.

3.1 Downlink in MU-MIMO
In this MU-MIMO network, we assumt that the BS uses

M antennas to communicate with K single-antenna MSs.
As mentioned above, there are two elementary requirements
to design MU-MIMO MAC protocols: multi-user detection
scheme in uplink and multi-user interference cancellation
scheme in downlink [20]. Although dirty paper coding [9]
has been proved to be the most effective interference can-
cellation scheme theoretically, zero-forcing (ZF) is now the
most popular scheme in practical use. So we use ZF scheme
as the foundation of downlink. The stochastic block-fading
channel of downlink between the BS and MSs can be repre-
sented by a K ×M matrix:

H =


h11 h12 · · · h1M

h21 h22 · · · h2M

...
. . .

...
hK1 hK2 · · · hKM

 , (1)

where hij , i ∈ [1 : K], j ∈ [1 : M ] is the complex coefficient
from the j-th antenna of the BS to the i-th MS. Accord-
ing to IEEE 802.11ac standard, download data should be
modulated into multiple streams for N subcarriers based on
Orthogonal Frequency-Division Multiplexing (OFDM). We
should use Hk to denote the channel coefficient on the k-
th subcarrier. But to be succinct, we ignore the sign k of
subcarrier unless when the statement is in need of specific
subcarriers. We use Hi to denote the i-th row of H, which
characterizes full CSI from the all M antennas of the BS
to the i-th MS. In this way, the received signal of MSs in
downlink can be represented as:

Y =


y1
y2
...
yK

 =


H1

H2

...
HK




x1
x2
...
xK

+


z1
z2
...
zK

 = Hx + z,

(2)
where x = [x1, x2, . . . , xK ]T is modulated symbols from
BS’s M antennas, z = [z1, z2, . . . , zN ]T is the additive white
Gaussian noise (AWGN), satisfying E{zi} = 0, V ar{zi} =
σ2, i ∈ [1,K]. We use HT to denote transpose of H, and H†

to denote Hermitian transpose of H.

3.2 Channel Estimation
According to ZF scheme, symbols x modulated by the BS

should be precoded with inverse matrix of CSI. To obtain full
CSI at the transmitter end, MSs should transmit commonly
known training sequences on N subcarriers to the BS in
the training phase. Assume that all these N subcarriers
are orthogonal perfectly. We can denote training symbols of
these N subcarriers as a matrix: X = [X1, X2, . . . , XN ]T ,
where Xi is training symbol of the i-th subcarrier. Note that
the length of training symbols should be larger than M . The
BS will estimate MSs’ CSI with known training sequences X
and received training sequences Y . In order to calculate the
approximation of H, minimum mean square error (MMSE)
is commonly used. The linear MMSE estimator [5] of H is:

ĤMMSE = Y (XHRHX + σ2
0KI)−1XHRH , (3)

where RH = E{HHH}.
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3.3 Fuzzy Commitment Scheme
Fuzzy commitment is usually applied to biometric tem-

plates, such as fingerprint authentication system. Since the
readings of the same fingerprint are not always identical,
biometric templates, as important as passwords, require re-
silience to small corruptions. Fuzzy commitment was pro-
posed to meet this need. A fuzzy commitment scheme can
allow a blob y = F (b, x), where F () represents fuzzy com-
mitment function, x is confidential message, b is blurring
parameter, to be opened using any witness x′ that is close
to x in some appropriate metric, but not necessarily identical
to x. There are two main tasks for the fuzzy commitment
employed in our scheme: one is to protect MSs’ training
sequences against malicious users, and the other one is to
deal with unreliable channel when MSs reveal commitments.
More detailed description and examples of fuzzy scheme can
be found in [17].

4. EAVESDROPPING ATTACK
BASED ON TRAINING SEQUENCE

To do channel estimation normally, every MS should trans-
mit commonly known training sequence. However, some ma-
licious MS is capable of misleading the BS by transmitting
elaborately forged training sequence instead of the benign
one. More specifically, the BS will give estimation Ĥ ≈ H
when the benign training sequence X is transmitted. If the
MS transmits ∆HX instead, the BS will give estimation
Ĥ ≈H∆H, since the BS still uses X as expected training
sequence. This kind of eavesdropping attack is hard to be
identified because the attacker can forge any channel state
by transforming his training sequence and the BS has no
ability to find out whether CSI is forged or not. The main
reason is that conventional CSI estimation is based on the
assumption that both the BS and MSs are trusted.

4.1 Threat Model
The BS must be trusted in any scenario, because every

effort for physical security will be in vain if the BS is com-
promised. We do not consider attackers from outside of
this MU-MIMO network because the attack that we study
here can only be launched inside, because attackers from
outside cannot have interactive behavior such as estimating
and downloading with the BS. This means our attacker is
some MS in the MU-MIMO network. Other kinds of attacks
from outside or higher layers are out of our concern. We will
focus on physical security of MSs’ CSI and downlink.

The attacker in our work is militant, who is able to eaves-
drop on the BS to grab all information which is supposed
to be received by the BS. Since the training sequences are
transmitted in plain text, the attacker can get BS’s received
training sequences easily. Generally, we assume that the vic-
tim is some MS, say MS1, and the attacker is another MS,
say MS2. MS1’s training sequence received at the BS is also
known to MS2. Then MS2 can do the same estimation as
the BS and obtain CSI of MS1 in the coherence interval. We
assume that all transmitters are physically secure with arti-
ficial noise. Our attack will be considered under this secure
assumption.

4.2 Transforming of Training Sequence
The attack we investigated is based on the observation

that training sequences can be transformed without BS’s

awareness. For brevity, we will illustrate training sequence
based attack in the context of a 2 × 2 MU-MIMO TDD
system. The BS uses two antennas to transmit messages to
two MSs with single antenna respectively. The setting of this
system can be extended to more complicated systems with
more antennas. In this 2 × 2 MU-MIMO system, received
signals from downlink of two MSs can be written as:[

y1
y2

]
=

[
H1

H2

] [
C1

C2

] [ √
p1s1√
p2s2

]
+

[
z1
z2

]
, (4)

where [C1, C2] = [H1, H2]−1 is the precoding matrix that the
BS precodes downlink streams according to ZF,

√
p1,
√
p2

are transmitting power of signal, and s1, s2 are signals trans-
mitted to MS1 and MS2.

Generally, we assume that MS2 is coveting downlink mes-
sage s1 that MS1 are downloading from the BS. To achieve
his attempt, MS2 first eavesdrops on training sequences that
the BS receives from other MSs including MS1. Then MS2

estimates MS1’s channel coefficient Ĥ1. Attacker MS2 now
knows both MS1’s CSI Ĥ1 and his own CSI Ĥ2. Then,
MS2 can calculate the difference ∆H between his channel
coefficient and MS1’s channel coefficient:

Ĥ1 = Ĥ2∆H. (5)

Since the BS can only estimate MSs’ CSI by commonly
known training sequences, it is possible for attacker MS2 to
mislead the BS to learn MS2’s CSI by transforming benign
training sequence. With CSI difference ∆H learnt, if MS2

wants his CSI to be estimated by the BS to be the same as
MS1, MS2 should transform his training sequence into:

Xf
2 = ∆HX2. (6)

Then this transformed training sequence will be received by
the BS as:

Y f
2 = H2∆HX2 + z2. (7)

The BS will estimate MS2’s CSI as Ĥ2
f
, which will seem

like Ĥ1. Forged CSI Ĥ2
f

surely is different to MS1’s actual
CSI H1. But we should not worry about this, because what

we want is to let Ĥ2
f

looks like Ĥ1, not H1, in BS’s obser-

vation. A bound of difference between Ĥ2
f

and Ĥ1 is given
in Theorem.1, which directly follows a property of MMSE
[12].

Theorem 1 (Difference of CSI). The difference be-

tween forged CSI Ĥ2
f

and estimated CSI Ĥ1 can be bounded

by (
2

X2∆H
)n
√
n!.

Proof. We regard channels’ coefficient of both MS2 and
MS1 as variable independently. Estimated CSI Ĥ2 and Ĥ1

are known to the BS. Transformed training sequence is only
corresponding to Ĥ2 and Ĥ1. MMSE estimator of this se-
quence will be:

mmse(Hf
2 , (X2∆H)2) = E(Hf

2 − EH
f
2 |(X2∆H)Hf

2 + z2)n

≤ (
2

X2∆H
)n
√
n!.
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4.3 Eavesdropping Attack
In a trusted MU-MIMO scenario, after having training se-

quences received from MSs, the BS will estimate MSs’ CSI
and prepare download for MSs. Having download content
precoded with inverse matrix of full CSI by the BS, MSs
are supposed to receive their own downlink content. But
when there is an attack who covets another MS’s downlink
content, received content of the attacker will be a mixture
of the attacker’s download and the victim’s download. The
attacker must use his own CSI and the victim’s CSI to elim-
inate channel coefficient and precoding matrix. Hence, a big
problem for eavesdropping attack is the elimination of inter-
ference. To solve this problem, the prerequisite for eaves-
dropping is acquisition of the victim’s CSI, assuming that
CSI is in plain text.

Although MS2 can transform his training sequence to
Xf

2 = ∆HX2 to imitate CSI of MS1, this is not the best
choice to eavesdrop on MS1. When MS2 fakes his CSI as
F2 = [F21, F22] by the transforming of training sequence

Xf
2 , the download messages of MS1 and MS2 from the BS

with ZF precoding will be:[
y1
y2

]
=

[
H1

H2

] [
C1

F2

] [ √
p1s1√
p2s2

]
+

[
z1
z2

]
. (8)

WhenMS2 does eavesdropping and downloading at the same
time, the downlink content ofMS1 inMS2’s observation will
be:

sMS2
1 =

(h11f22 − f21h12)
√
p1(h21f22 − h22f21)

(y2 −
(h11h22 − h12h21)

(h11f22 − f21h12)

√
p2s2)

= m1 +
(h11f22 − f21h12)
√
p1(h21f22 − h22f21)

z2.

(9)

As shown in expression of sMS2
1 , in order to maximize the at-

tacker’s eavesdropping and minimize the interference of his
own downloading message, the key is to forge the attacker’s
CSI. A weighted sum of genuine CSI has been proved to be
the best choice [33]. F2 = [wh11−h12, wh21−h22], where w
is a adjustable coefficient. This is the approach proposed by
prior work [33] in a FDD system with explicit CSI estima-
tion. We in this paper, make this eavesdropping approach
also feasible in a TDD system with implicit CSI estimation
by transforming training sequences. To ensure that the BS
can learn F2 as MS2’s CSI, the training sequence of MS2

should be transformed in the way shown in Equation.6. The
received signal at attacker MS2 contains a mixture of s1 and
s2. In order to decode m1 of MS1, MS2 should download
known message m2 from a colluded or spurious server [33].
Thus, MS2 can remove m2 and his own interference from
the received signal. In this way, we can launch this kind
of eavesdropping attack in TDD systems, but no existing
scheme can prevent it effectively.

5. SECURE ESTIMATION OF
INSTANTANEOUS CSI

There are generally two types of CSI: statistical CSI and
instantaneous CSI. Statistical CSI usually has strong corre-
lation in space, time and frequency, and can be described by
statistical characteristics of the channel. This type of CSI
usually has no need to be estimated over time. Thus, we will
focus on instantaneous CSI first which needs to be estimated

continually. Our secure CSI estimation procedure of MSs is
designed to have two phases. The first phase is MSs’ gen-
erating commitments, which should happen in the previous
coherence interval before MS’s expected downlink interval.
The second phase is revealing commitments, which should
happen in the same coherence interval with expected down-
load. As for the BS, commitments of training sequences
should be collected in the first phase, and CSI estimation
will be done in the second phase. In order to show the
difference of CSI in different intervals, we have performed
experiments to measure how big the difference can be. The
result is shown in Figure.1. It can be seen that difference
of CSI is greater when SNR is relatively low. When SNR is
high, this difference is still significant.
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Figure 1: Difference of CSI in two intervals. The
difference is measured in MSE.

Specifically, each MS generates a random training sequence
in the previous coherence interval just ahead of his expected
download. Then each MS makes a commitment of this ran-
dom training sequence to the BS. The BS will put these
MSs, whose commitments have been collected in the first
phase, into the scheduling of next interval. When the second
phase begins, each MS reveals his commitment of training
sequence to the BS. The BS then can do correct estimation
of each MS’s CSI. An illustration of the two phases is given
in Figure.2.

5.1 First Phase: Generating Commitments
Different from FDD systems, when CSI of downlink is

unknown in TDD systems, a reliable uplink cannot be as-
sumed because of the reciprocity of TDD channels. Thus,
any secure CSI estimation scheme for TDD systems must
be constructed from the very beginning of communication,
including uplink and downlink. Because of lacking CSI, co-
ordinated uplink access or synchronous uplink transmissions
[20] cannot be achieved directly. To be realistic and efficient
in establishing communication, we use a spatial multiple ac-
cess scheme similar with SAM [30]. Then, we will construct
our secure downlink scheme based on this uplink scheme to
achieve an effective and secure TDD MU-MIMO system.

It is commonly agreed that training sequences should be
inserted in data stream of uplink to avoid frequent interrup-
tion of continuous download in TDD systems [15, 4]. We
do the same in our scheme. But what’s different is that we
insert the commitment of training sequence for the next co-
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Figure 2: Examples of the relation between two
phases. 1© represents locations of commitments. 2©
represents locations of revealing messages.

herence interval in current uplink. This means MSs always
commit their training sequences that will be used in the
next coherence interval beforehand. MSs will reveal their
training sequences in the second phase which is in the next
coherence interval. MSs who newly join this MU-MIMO net-
work should wait for an guard interval. Then these new MSs
will be able to use their training sequences for CSI estima-
tion at the BS, and start their download process. Different
situations have been illustrated in Figure.2.

All MSs that want to transmit to the BS should follow
our spatial multiple uplink access scheme. But different
from SAM [30], we use a fixed-format package to contain
commitments of MSs’ training sequences as uplink payload.
And we employ a relatively loose time window of uplink
channels for MSs. This is due to two reasons: ensuring
interval to be larger than safe threshold and guaranteeing
the demultiplex of potential transmitters. Without loss of
generality, for any user MSi, i ∈ [1,K], a random train-
ing sequence ri is generated. Then a linear error correcting
code ECC(ne, te, Enc(), Dec()) is used to encode ri, where
ne is the length of codeword, te is the error-correcting ca-
pability, and Enc() and Dec() are encoding operation and
decoding operation respectively. Enc(ri) will yield corre-
sponding codeword ci ∈ 0, 1ne . Without loss of generality,
we use Hamming distance to depict difference between ri
and ci, which will be δi = ri ⊕ ci, where ⊕ is XOR opera-
tion. But in order to keep readable, we still use numeric plus
and minus hereafter. Then the construction of commitment
function F is:

F (ci, ri) = (h(ci), δi), (10)

where h : {0, 1}ne → {0, 1}l is a secure hash function. This
construction follows [16], so our commitment function F
meets both binding condition and concealing condition. Ac-
cording to carrier sense multiple access with collision avoid-
ance (CSMA/CA), MSi will send commitment (h(ci), δi)
to the BS when the backoff timer of MSi is up. The BS
will keep collecting commitments generated by different MSs
during time window of the first phase. Algorithm.1 shows
summarized construction of commitments in the first phase.

Algorithm 1 Commitment of training sequence

1: for all MSi, i ∈ [1, k] do
2: generates random training sequence ri,
3: chooses codeword ci ∈ C,
4: computes F (ci, ri) = (αi, δi) = (h(ci), ri − ci).
5: sends F (ci, ri) to the BS.
6: end for

5.2 Second Phase: Revealing Commitments
When the first phase ends, those MSs whose commitments

of training sequences have not been collected will not be
available candidates in the next coherence interval. These
MSs whose commitments have been collected will enter the
second phase as soon as the BS broadcasts a end of first
phase message which is similar to CTS package in RTS/CTS
protocol. To leverage fresh CSI as soon as possible, we set
time window of the second phase to be compact. So MSs are
required to send the revealing message simultaneously once
the BS’s broadcasting is detected. Synchronous revealing
messages are demultiplexed with help of short orthogonal
preambles which are allocated to each MS. These revealing
messages are the real training sequences that will be used to
gain full CSI.

To prevent attackers who replay commitment and reveal-
ing message of a target MS to disturb MU-MIMO system,
we will do cheating detection after revealing commitments.
If replicate training sequences are detected, only the first MS
using this sequence will be allowed to the next step accord-
ing to the timestamp when the BS received these sequences
in the second phase. When the BS obtains a revealing mes-
sage r′i for any MS MSi, the BS should check whether the
commitment (αi, δi) can be revealed by r′i. If the reveal-
ing message transmitted by MSi is the same as the train-
ing sequence which has been committed, then the following
equation will hold:

αi = h(f(r′i − δi)), (11)

where αi = h(ci), δi = ri− ci. If MSi’s commitment can be
revealed correctly, then the BS will estimate the CSI using
ri and (r′i) which are known training sequence and actually
received training sequence respectively. Now, the BS can
run the same MMSE as usual to calculate approximate CSI.
The revealing procedure is shown in Algorithm.2.

Algorithm 2 Revealing commitment

1: for all MSi, i ∈ [1, k] do
2: if αi = h(f(r′i − δi)) then
3: the BS recovers ri = f(r′i − δi) + δi,
4: end if
5: end for
6: for all ri, i ∈ [1, k] do
7: replicate cheating detection by the BS,
8: the BS: Ĥ ← ĤMMSE(ri, r

′
i).

9: end for

5.3 Security Analysis
This commitment scheme can protect instantaneous CSI

of all MSs perfectly. But every CSI will still be available
to the attacker in the end of each interval, because this at-
tacker keeps eavesdropping all information that the BS has.
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Although the attacker cannot use this CSI immediately, he
can use this as an outdated CSI in the next coherence in-
terval. To guarantee that any message of any MS will be
safe, we need a bound of changing of CSI so that attackers
can reveal nothing by outdated CSI. To this end, the SNR
of received signal should be kept under threshold δsnr when
the attacker tries to reveal messages with outdated CSI. As-
sume that both the BS and attackers can learn perfect CSI
H between the BS and MSs so that maximal ratio trans-
mission (MRT) can be achieved. Then the output SNR of
MRT with perfect CSI can be given by [10]:

γMRT = λmax
Es
σ2
, (12)

where λmax is the largest eigenvalue of H†H. If outdated
CSI is denoted by H̃ then the changing of CSI is δH =
H − H̃. Since CSI of every moment can be regarded to fol-
low independent Gaussian distribution, δH can be seen as an
independent difference following Gaussian distribution with
zero-mean and variance σ2

d. If the attacker uses outdated
CSI to reveal other MSs’ messages from received signal, the
SNR will be associated with δH by Theorem.2 which is de-
rived from a existing theorem [7].

Theorem 2 (SNR with outdated CSI). The SNR of
received signal with outdated CSI can be given by:

γMRT =
λ̃max

(1 + σ2
d)(σ2

d +
(1+σ2

d
)σ2

Es
)
, (13)

where λ̃max is the largest eigenvalue of H̃†H̃, Es is trans-
mitting energy of data symbol.

If a fixed SNR threshold δsnr is given, then output message
with SNR γMRT ≤ δsnr will be regarded as useless, i.e. no
information leakage.

Except outdated CSI, preambles which are inserted to
cancel frequency offset and to demultiplex MSs’ signals may
be leveraged by the attacker too. But everything that the
attacker can get in the first phase will be outdated in the
next coherence interval except for commitments. And the
attacker can get nothing from these commitments. As for
the second phase, it is too late for the attacker to lever-
age CSI which is obtained from revealing messages or short
orthogonal preambles, because the BS will do zero-forcing
with the CSI that the attacker has committed in the first
phase.

6. ADAPTIVE SECURITY WITH
STATISTICAL CSI

Generally, CSI estimation is used for instantaneous CSI
because this kind of CSI keeps varying rapidly. As for sta-
tistical CSI scenario, fixed CSI is usually used instead of
periodic estimation. But there is always a blurred area
where instantaneous CSI may vary not that fast sometimes.
Or sometimes instantaneous CSI may also change slowly.
Hence, we have also considered the situation where CSI is
relatively statistical. Strictly speaking, we will achieve adap-
tive security for slow-varying CSI when SNR with changing
CSI is higher than δsnr. By adaptive security, we mean that
varying degree of security can be achieved according to the
selection of security parameter. If a security threshold is de-
termined, then varying degree of resources will be expended
according to statistical degree of CSI.

Since σ2
d ∝ (

Ep
N0

)−1 [34], where Ep is the pilot symbol en-

ergy, according to Theorem.2, it is possible to weaken the
energy of training sequences to achieve a lower SNR. But
the quality of downlink of MU-MIMO will be disappointing
in this way because of inaccurate CSI. The hint of lower
SNR can lead to another possible solution: higher Bit Error
Rate (BER). This solution sounds like irrational, but we do
find out that the attacker’s eavesdropping can be thwarted
effectively with higher BER of download content. And this
BER can be bounded in a reasonable range. In other words,
a little higher BER can be traded for more secure down-
link. To avoid unnecessary loss of bandwidth, we propose
an adaptive security scheme to control BER of downlink to
prevent eavesdropping.

Assume that the SNR of current downlink is tsnr with CSI
Ht of current coherence interval. The attacker’s eavesdrop-
ping is based on previous CSI Hp, so the BS can always use
current CSI to calculate how much BER should be added
for the next coherence interval. The BER function of QPSK
modulation with AWGN can be given by:

BER = 1/2erfc(

√
Eb
N0

), (14)

where Eb
N0

is energy per bit to noise power spectral density

ratio, erfc() is complementary error function:

erfc(x) = 1− 2√
π

∫ x

0

e−t
2

dt. (15)

As for our MU-MIMO system,

Es
N0

(dB) =
Eb
N0

(dB) + log2(2 log2(M)),

Es
N0

(dB) = 10 log10(
Tsymbol
Tsampling

) + SNR(dB).
(16)

Then we can calculate the compensation of SNR that is
needed to achieve δsnr:

10 log10

δsnr
tsnr

= (
Eb
N0

)δ(dB)− (
Eb
N0

)t(dB), (17)

where (
Eb
N0

)δ is corresponding to δsnr, so (
Eb
N0

)t can be cal-

culated in Equation.17. Then Equation.14 and 15 are used
to calculate necessary BER δber which should be added to
downlink of each MS.

A more intuitive explanation for our adaptive security
scheme is here. Recall that a mixture of s1 and s2 is re-
ceived when attacker MS2 is eavesdropping on MS1. The
extraction of s1 is based on not only full CSI but also the
known content of s2. When additional BER is introduced
to downlink of each MS, both s1 and s2 will be less precise.
When MS2 tries to extract s1 as shown in Equation.9, intro-
duced BER will be cumulated. In this way, a low SNR will
be achieved. If the BS calculates the compensation of SNR
in each interval, then only necessary BER should be added
to downlink of each MS. We can integrate this adaptive secu-
rity scheme into our secure estimation scheme easily, because
when SNR is higher than δsnr, no additional BER is needed,
which means no loss of bandwidth in instantaneous CSI sit-
uation. Algorithm.3 shows the detailed procedure after the
integration of two schemes.
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Algorithm 3 Secure estimation for arbitrary CSI

1: for all MSi, i ∈ [1, k] do
2: MSi generates random training sequence ri,
3: MSi chooses codeword ci ∈ C,
4: MSi computes F (ci, ri) = (αi, δi) = (h(ci), ri − ci).
5: MSi sends F (ci, ri) to the BS.
6: end for
7: for all MSi, i ∈ [1, k] do
8: if αi = h(f(r′i − δi)) then
9: the BS recover ri = f(r′i − δi) + δi,

10: end if
11: end for
12: for all ri, i ∈ [1, k] do
13: the BS does replicate cheating detection,
14: the BS: Ĥ ← ĤMMSE(ri, r

′
i).

15: end for
16: the BS calculates the compensation of SNR with previ-

ous tsnr.
17: if δsnr < tsnr then
18: the BS calculates necessary BER δber which should

be introduced to downlink of each MS.
19: introduce δber by flipping bits or decreasing Eb.
20: end if

7. IMPLEMENTATION AND
EXPERIMENTS

We have introduced our scheme in abstract construction
theoretically. In this part, we will give one kind of implemen-
tation with state-of-the-art techniques. Some part which has
been introduced in previous sections will also be reviewed for
the completeness of reference. Then we will introduce our
experimental implementation with GNU Radio and Univer-
sal Software Radio Peripheral (USRP). In the final subsec-
tion, numerical results of our scheme will be discussed.

When we construct uplink of MU-MIMO, we use a spa-
tial multiple access scheme similar with SAM [30]. The core
idea is to monitor any other MSs’ upload frame and en-
sure that preambles of any two MSs are not overlapping. In
the payload of uplink, a customized packet is employed to
convey commitment of training sequences. This customized
packet is easy to parse. There are two elements within this
packet, one is the hash of codeword, and the other one is
distance between codeword and training sequence. Both el-
ements are within fixed length. Except for extra payload
length, this packet will cause no interference to original con-
tent. We choose SHA-256 as secure hash function h(), and
a low-density parity-check code [11, 26] (LDPC) is used as
ECC() for commitment scheme. Downlink construction is
straightforward. After MSs’ commitments are revealed, CSI
will be estimated by MMSE method. Then the BS can do
ZF precoding with full CSI in the same way as other normal
MU-MIMO downlink [29].

7.1 Experiments
We have implemented secure CSI estimation in the MU-

MIMO TDD system with the help of Gnu Radio [1] and
USRP [2]. We use 8 USRP N210 to construct the BS with
8 antennas. And each MS is functioned with single USRP
N210. An OctoClock-G is used to feed synchronized 10MHz
clock and 1 PPS reference to the BS. Data of each USRP

N210 is transmitted through Gigabyte cable to a computer
for analysis. Figure.3 shows a demo of the BS and MSs.

Figure 3: Demo of the BS and MSs. This BS is
constructed with 4 USRP N210. Two MSs are ready
to be deployed in other place with laptop connected
respectively.

Gnu Radio v-3.7.9 is used to build up our MU-MIMO
scheme. Original OFDM modules of Gnu Radio will be mod-
ified. Some new modules are added to run proposed secure
CSI estimation. Primary modules which are needed for BS’s
transmitter are shown in Figure.4, including modules that
have been modified or added.
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Figure 4: Primary modules for BS’s transmitters.

7.2 Numerical Results
In order to verify the feasibility of our secure CSI esti-

mation, we compare the information leakage of downlink
with secure estimation and downlink without it. We use the
BER of eavesdropping download to measure the informa-
tion leakage of the victim. Our eavesdropping attack uses
a heuristic selection of forged CSI [33] as reference, where
attacker MS2’s CSI should be forged to be wH1 −H2. As
for our attack model, we use this forged CSI to calculate
corresponding ∆H. Hence, the result of eavesdropping will
depend on the selection of weighting parameter w. Results of
eavesdropping are shown in Figure.5. An appreciable eaves-
dropping can be achieved in unprotected downlink when w
is about 1.1. Downlink with secure CSI estimation can avoid
this low BER eavesdropping by disturbing the attacker’s se-
lection of forged training sequence. In secure CSI estimation
scenario, we use previous CSI to extract the victim’s down-
load. The BER is so high that the attacker cannot extract
precise downloading content of the victim.
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Figure 5: Eavesdropping results of downlink with
secure CSI estimation and downlink without secure
CSI estimation.

When the changing of instantaneous CSI is relatively slow,
our adaptive security scheme will do its job. When the
adaptive security is working, additional bit errors will be
introduced. Definitely, additional bit errors will effect valid
bandwidth, but results in Figure.6 show that loss ratio of
bandwidth will decrease significantly when SNR threshold
δsnr is low. If we choose δsnr = 2 which is small enough for
protection, loss of bandwidth will be lower than 10% even
in the condition where CSI MSE equals 10−3. When CSI
MSE of two adjacent intervals keeps lower than 10−3 with
MMSE method, we think this situation can be regarded as a
statistical CSI case where statistical characterization should
be used instead of CSI estimation.
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Figure 6: Loss ratio of bandwidth, which is calcu-
lated by (loss of bandwidth)/(total bandwidth), de-
creases significantly when δsnr is low. Results are
calculated for single MS.

Recall that we have modified the uplink in the first phase.
Transmission of commitments of training sequences cannot
be negligible. Since commitments are always transmitted
with users’ payload of uplink, capacity ratio of uplink can
be effected by the occupancy of commitments. In our im-
plementation, we use short training sequence which is ran-

domly generated and the commitment of training sequence
is always put in the first symbol of of frames for every sub-
carrier. We have measured the capacity ratio of uplinks
between all MSs and the BS. As shown in Figure.7, the ca-
pacity ratio of net payload will reach a nearly saturation if
net payload of each MS keeps increasing. It is reasonable
that the more MSs there are, the more quickly the capacity
ratio will approach to 1.0. But even there is only one MS
in the network, the capacity ratio can still approach to 60%
with 1Kbits net payload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10
C

a
p

a
c
it
y
 R

a
ti
o

Net Payload of Uplink (Kbits)

K=1
K=2
K=4

Figure 7: Capacity ratio is calculated by (capacity
of commitments)/(total capacity) for all MSs.

With secure CSI estimation and adaptive security em-
ployed, results of the experiments can prove the feasibility
of our scheme. Besides, downlink rate of MU-MIMO is an
important evaluation. To find out how much downlink rate
can be achieved with our secure CSI estimation and adap-
tive security employed, we have measured downlink rates
with conditions of different SNR threshold δsnr. Results are
shown in Figure.8. SNR threshold δsnr has significant effect
on downlink rate, because of the loss of bandwidth which
is introduced by adaptive security. Results are following a
similar pattern in scenarios of different amounts of MSs. If
δsnr is set to be 2 as recommended in the discussion of band-
width loss, a downlink rate of 10bits per symbol per Hz can
be achieved even there is only one MS in the network.

Last but not least, we have measured the overhead of com-
putation in CPU cycles. In the first phase, almost all work is
done by MSs in the previous interval, which means MSs can
do commitments’ computation while downloading or wait-
ing. Thus we will focus on the overhead of BS’s computa-
tion. Figure.9 shows results of the overhead of computation
for two main procedures of second phase: revealing com-
mitments and applying adaptive security. Revealing com-
mitments of training sequences takes most of the overhead.
Although the overhead of revealing commitments increases
in a nearly linear tendency, the order of magnitude of CPU
cycles will keep in 103 unless there are about 103 MSs, com-
putation can be done in microseconds by a CPU clocked in
GHz. This means the overhead introduced by our scheme is
acceptable.
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old δsnr are measured for total download links be-
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8. CONCLUSIONS
In this paper, we have proposed a feasible approach to

launch a serious eavesdropping attack, which is recently pro-
posed for explicit CSI estimation, in MU-MIMO network
with implicit CSI estimation method. Based on the trans-
forming of training sequences, we successfully make eaves-
dropping attack possible in implicit CSI estimation. Our
countermeasure is two-fold. First, we design our secure
CSI estimation scheme for instantaneous CSI, which will
change significantly along with time being. With the help
of fuzzy commitment scheme, our countermeasure can effec-
tively stop the attacker from eavesdropping.

Then, considering the situation where CSI may change
slowly, we integrate an adaptive security approach to our
scheme. This approach can guarantee users’ security in dif-
ferent CSI changing scenarios. Additional bits error will be
calculated and introduced dynamically according to current
condition of CSI. Our scheme will cause extra overhead and
bandwidth loss to MU-MIMO network, which, however, are
shown to be acceptable even in some undesirable conditions.
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