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ABSTRACT
Cryptographic design tasks are primarily performed by hand
today. Shifting more of this burden to computers could make
the design process faster, more accurate and less expensive.
In this work, we investigate tools for programmatically alter-
ing existing cryptographic constructions to reflect particular
design goals. Our techniques enhance both security and ef-
ficiency with the assistance of advanced tools including Sat-
isfiability Modulo Theories (SMT) solvers.

Specifically, we propose two complementary tools, Au-
toGroup and AutoStrong. AutoGroup converts a pairing-
based encryption or signature scheme written in (simple)
symmetric group notation into a specific instantiation in the
more efficient, asymmetric setting. Some existing symmet-
ric schemes have hundreds of possible asymmetric transla-
tions, and this tool allows the user to optimize the construc-
tion according to a variety of metrics, such as ciphertext
size, key size or computation time. The AutoStrong tool
focuses on the security of digital signature schemes by auto-
matically converting an existentially unforgeable signature
scheme into a strongly unforgeable one. The main technical
challenge here is to automate the “partitioned” check, which
allows a highly-efficient transformation.

These tools integrate with and complement the Auto-
Batch tool (ACM CCS 2012), but also push forward on the

∗Joseph A. Akinyele’s work was supported in part by Na-
tional Science Foundation (NSF) grant CNS-1154035.
†Matthew Green’s work was supported in part by the De-
fense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL) under contract
FA8750-11-2-0211 and the Office of Naval Research (ONR)
contract N00014-11-1-0470.
‡Susan Hohenberger’s work was supported in part by NSF
CNS-1154035 and CNS-1228443; the DARPA and the AFRL
under contract FA8750-11-2-0211, DARPA N11AP20006,
the ONR under contract N00014-11-1-0470, and a Microsoft
Faculty Fellowship. Applying to all authors, the views ex-
pressed are those of the author(s) and do not reflect the
official policy or position of the Department of Defense, the
NSF, or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Gernany.
Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516718.

complexity of the automation tasks by harnessing the power
of SMT solvers. Our experiments demonstrate that the two
design tasks studied can be performed automatically in a
matter of seconds.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Cryptographic controls,
Authentication, Access controls, Verification

Keywords
Digital Signatures, Public-Key Encryption, Pairing-Based
Cryptography, Automation, Cryptographic Compilers

1. INTRODUCTION
Cryptographic design is challenging, time consuming and

mostly performed by hand. A natural question to ask is:
to what extent can computers ease this burden? Which
common design tasks can computers execute faster, more
accurately or less expensively?

In particular, this work investigates tools for programmat-
ically altering existing cryptographic constructions in order
to enhance efficiency or security design goals. For instance,
digital signatures, which are critical for authenticating data
in a variety of settings, ranging from sensor networks to soft-
ware updates, come in many possible variations based on ef-
ficiency, functionality or security. Unfortunately, it is often
infeasible or tedious for humans to document each possible
optimal variation for each application. It would be enor-
mously valuable if there could be a small number of simple
ways to present a scheme – as simple as possible to avoid
human-error in the design and/or verification process – and
then computers could securely provide any variation that
may be required by practitioners.

A simple, motivating example (which we explore in this
work) is the design of pairing-based signature schemes, which
are often presented in a simple “symmetric” group setting
that aids in exposition, but does not map to the specific
pairing-based groups that maximize efficiency. Addressing
this disconnect is ripe for an automated tool.

Summary of Our Contributions In this work, we ex-
plore two novel types of design problems for pairing-based
cryptographic schemes. The first tool (AutoGroup) deals
with efficiency, while the second (AutoStrong) deals with
security. We illustrate how they interact in Figure 1. The
tools take a Scheme Description Language (SDL) represen-
tation of a scheme (and optionally some user optimization
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Figure 1: A high-level presentation of the new automated tools, AutoGroup and AutoStrong. They take as
input a Scheme Description Language (SDL) representation of a cryptographic scheme and output an SDL
representation of a transformation of the scheme, which can possibly be further transformed by another tool.
These tools are compatible with the existing AutoBatch tool and Code Generator (shaded). An SDL input
to the Code Generator produces a software implementation of the scheme in either C++ or Python.

constraints) and output an SDL representation of the altered
scheme. This SDL output can be run through another tool
or a Code Generator to produce C++ or Python software.

A contribution of this work is that we integrated our tools
with the publicly-available source code for AutoBatch [3, 4]
of Akinyele et al. (ACM CCS 2012), a tool that automati-
cally identifies a batch verification algorithm for a given sig-
nature scheme, therein weaving together a larger automa-
tion system. For instance, a practitioner could take any
symmetric-pairing signature scheme from the literature, use
AutoGroup to reduce its bandwidth in the asymmetric set-
ting, use AutoBatch to reduce its verification time, and then
automatically obtain a C++ implementation of the opti-
mized construction. Our work appears unique in that we
apply advanced tools, such as SMT solvers and Mathemat-
ica, to perform complex design tasks related to pairing-based
schemes.

Automated Task 1: Optimize Efficiency of an En-
cryption or Signature Scheme via User Constraints.
Pairings are often studied because they can realize new func-
tionalities, e.g., [17, 19], or offer low-bandwidth solutions,
e.g., [17, 21]. Pairing (a.k.a., bilinear) groups consist of
three groups G1,G2,GT with an efficient bilinear map e :
G1×G2 → GT . Many protocols are presented in a symmet-
ric setting where G1 = G2 (or equivalently, there exists an
efficient isomorphism from G1 to G2 or vice versa).

While symmetric groups simplify the description of new
cryptographic schemes, the corresponding groups are rarely
the most efficient setting for implementation [32]. The state
of the art is to use asymmetric groups where G1 6= G2 and
no efficient isomorphism exists between the two. See for
instance the work of Ramanna, Chatterjee and Sarkar [50]
(PKC 2012) which translates the dual system encryption
scheme of Waters [57] from the symmetric to a handful of
asymmetric settings.

Such conversions currently require manual analysis (of all
steps) – made difficult by the fact that certain operations
such as group hash functions only operate in a single group.
Moreover, in some cases, there are hundreds of possible sym-
metric to asymmetric translations, making it tedious to iden-
tify the optimal translation for a particular application.

We propose a tool called AutoGroup that automatically
provides a“basic”translation from symmetric to asymmetric
groups.1 It employs an SMT solver to identify valid group

1By ”basic”, we mean that it translates the scheme as writ-
ten into the asymmetric setting, with minor optimizations
performed, but does not attempt a re-imagining of the con-

assignments for all group elements and also accepts user con-
straints to optimize the efficiency of the scheme according
to a variety of metrics, including signature/ciphertext size,
signing/encryption time, and public parameter size. The
tool is able to enumerate the full set of possible solutions
(which may run to the hundreds), and can rapidly identify
the most efficient solution.

Automated Task 2: Strengthen the Security of a
Digital Signature Scheme. Most signature schemes are
presented under the classic, existential unforgeability defini-
tion [35], wherein an adversary cannot produce a signature
on a “new” message. However, strong unforgeability guar-
antees more – that the adversary cannot produce a “new”
signature even on a previously signed message. Strongly-
unforgeable signatures are often used as a building block in
signcryption [6], chosen-ciphertext secure encryption [25,28]
and group signatures [7, 18].

There are a number of general transformations from clas-
sic to strong security [14, 15, 37, 53–55], but also a highly-
efficient transformation due to Boneh, Shen and Waters [22]
that only applies to “partitioned” schemes. We propose a
tool called AutoStrong that automatically decides whether
a scheme is “partitioned” and then applies BSW if it is and
a general transformation otherwise. The partitioned test
is non-trivial, and our tool harnesses the power of both
an SMT solver and Mathematica to make this determina-
tion. We are careful to err only on false negatives (which
impact efficiency), but not false positives (which could com-
promise security.) Earlier works [14, 15] claimed that there
were “very few” examples of partitioned schemes; however,
our tool proved this was not the case by identifying valid
partitions for most schemes we tested.

1.1 Related Work
Many exciting works have studied how to automate var-

ious cryptographic tasks. Automation has been introduced
into the design process for various security protocols [38,
40, 49, 52], optimizations to software implementations in-
volving elliptic-curves [10] and bilinear-map functions [48],
the batch verification of digital signature schemes [4], se-
cure two-party computation [36,41,42], and zero-knowledge
proofs [5, 8, 9, 23,43].

struction based on a stronger asymmetric complexity as-
sumption. While the latter is sometimes possible, e.g., [50],
it may not be required in some applications and the novel se-
curity analysis required places it beyond the current ability
of our automation tools. See Section 3.3 for more.
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Our current work is most closely related to the AutoBatch
tool of Akinyele et al. [4]. We borrow our tool-naming sys-
tem from their paper and designed our tools so that they
can integrate with the publicly-available source code of Au-
toBatch [3] to form a larger, more comprehensive solution.
This work is different from AutoBatch in that it attacks new,
more complicated design tasks and integrates external SMT
solvers and Mathematica to find its solutions.

Prior work on automating the writing and verification of
cryptographic proofs, such as the EasyCrypt work of Barthe
et al. [13], are complimentary to but distinct from our effort.
Their goal was automating the construction and verification
of (game-based) cryptographic proofs. Our goal is automat-
ing the construction of cryptographic schemes. A system
that combines both to automate the design of a scheme and
then automate its security analysis would be optimal.

2. TOOLS USED
Our automations make use of three external tools. First,

Z3 [26, 46] is a freely-available, state-of-the-art and highly
efficient Satisfiability Modulo Theories (SMT) solver pro-
duced by Microsoft Research. SMT is a generalization of
boolean satisfiability (SAT) solving, which determines whether
assignments exist for boolean variables in a given logical
formula that evaluates the formula to true. SMT solvers
builds on SAT to support many rich first-order theories such
as equality reasoning, arithmetic, and arrays. In practice,
SMT solvers have been used to solve a number of constraint-
satisfaction problems and are receiving increased attention
in applications such as software verification, program anal-
ysis, and testing. Z3 in particular has been used as a core
building block in API design tools such as Spec#/Boogie [11,
27] and in verifying C compilers such as VCC.

We leverage Z3 v4.3.1 to perform reasoning over state-
ments involving arithmetic, quantifiers, and uninterpreted
functions. We use Z3’s theories for equality reasoning com-
bined with the decision procedures for linear arithmetic ex-
pressions and elimination of universal quantifiers (e.g., ∀x)
over linear arithmetic. Z3 includes support for uninterpreted
(or free) functions which allow any interpretation consistent
with the constraints over free functions and variables.

Second, we utilize the development platform provided by
Wolfram Research’s Mathematica [59] (version 9), which al-
lows us to simplify equations for several of our analytical
techniques. We leverage Mathematica in our automation to
validate that given cryptographic algorithms have certain
mathematical properties. Finally, we utilize some of the
publicly-available source code of the AutoBatch tool [3], in-
cluding its Scheme Description Language (SDL) parser and
its Code Generator, which translates an SDL representation
to C++ or Python.

3. AUTOGROUP
In this section, we present and evaluate a tool, called Au-

toGroup, for automatically altering a cryptographic scheme’s
algebraic setting to optimize for efficiency.

3.1 Background on Pairing Groups
Let G1,G2,GT be algebraic groups of prime order p.2

We say that e : G1 × G2 → GT is a pairing (a.k.a., bi-

2Pairing groups may also have composite order, but we will
be focusing on the more efficient prime order setting here.

linear map) if it is: efficiently-computable, (bilinear) for all
g ∈ G1, h ∈ G2 and a, b ← Zp, e(ga, hb) = e(g, h)ab; and
(non-degenerate) if g generates G1 and h generates G2, then
e(g, h) 6= 1. This is called the asymmetric setting. A spe-
cialized case is the symmetric setting, where G1 = G2.3

In practice, all efficient candidate constructions for pairing
groups are constructed such that G1 and G2 are groups of
points on some elliptic curve E, and GT is a subgroup of a
multiplicative group over a related finite field. The group of
points on E defined over Fp is written as E(Fp). Usually G1

is a subgroup of E(Fp), G2 is a subgroup of E(Fpk ) where k
is the embedding degree, and GT is a subgroup of F∗pk . In

the symmetric case G1 = G2 is usually a subgroup of E(Fp).
The challenge in selecting pairing groups is to identify

parameters such that the size of GT provides acceptable se-
curity against the MOV attack [44]. Hence the size of pk

must be comparable to that of an RSA modulus to provide
the same level of security – hence elements of Fpk must be of
size approximately 3,072 bits to provide security at the 128-
bit symmetric equivalent level. The group order q must also
be large enough to resist the Pollard-ρ attack on discrete
logarithms, which means in this example q ≥ 256.

Two common candidates for implementing pairing-based
constructions are supersingular curves [31, 47] in which the
embedding degree k is ≤ 6 and typically smaller (an example
is |p| = 1536 for the 128-bit security level at k = 2), or ordi-
nary curves such as MNT or Barreto-Naehrig (BN) [12]. In
BN curves in particular, the embedding degree k = 12, thus
|p| = |q| can be as small as 256 bits at the 128-bit security
level, with a corresponding speedup in field operations.

A challenge is that the recommended BN subgroups do
not possess an efficiently-computable isomorphism from G1

to G2 or vice versa, which necessitates re-design of some
symmetric cryptographic protocols. A related issue is that
BN curves permit efficient hashing only into the group G1.
This places restrictions on the set of valid group assignments
we can use.

3.2 How AutoGroup Works
AutoGroup is a new tool for automatically translating

a pairing-based encryption or signature scheme from the
symmetric-pairing setting to the asymmetric-pairing setting.
At a high-level, AutoGroup takes as input a representa-
tion of a cryptographic protocol (e.g., signature or encryp-
tion scheme) written in a Domain-Specific Language called
Scheme Description Language (SDL), along with a descrip-
tion of the optimizations desired by the user. These opti-
mizations may describe a variety of factors, e.g., requests to
minimize computational cost, key size, or ciphertext / sig-
nature size. The tool outputs a new SDL representation of
the scheme, one that comprises the optimal assignment of
groups for the given constraints. The assignment of groups
is non-trivial, as many schemes are additionally constrained
by features of common asymmetric bilinear groups settings,
most notably, restrictions on which groups admit efficient
hashing. At a high level, AutoGroup works by reducing this
constrained group assignment problem to a boolean satis-
fiability problem, applying an SMT solver, and processing
the results. We next describe the steps of AutoGroup, as
illustrated in Figure 2.

3An alternative instantiation of the symmetric setting has
G1 6= G2 but admits an efficiently-computable isomorphism
between the groups.

401



Input: SDL of
Scheme S

SDL 
Parser

Extract
Generators

Output: SDL of
Scheme S'

Program Slice
for each pairing input

Encode Pairings
as Formula

Input: User 
Optimization 
Constraints

AutoGroup

Run Z3
1. find all solutions

2. reduce iteratively by constraint priorities
Efficiency Pass
optimize solution

Figure 2: A high-level presentation of the AutoGroup tool, which uses external tools Z3 and SDL Parser.

1. Extract Generator Representation. The first stage
of the AutoGroup process involves parsing SDL to identify
all base generators of G that are used in the scheme. For
each generator g ∈ G, AutoGroup creates a pair of gener-
ators g1 ∈ G1 and g2 ∈ G2. This causes an increase in
the parameter size of the scheme, something that we must
address in later steps.

We assume the Parser knows the basic structure of the
scheme, and can identify the algorithm responsible for pa-
rameter generation. This allows us to parse the algorithm
to observe which generators that are created. When Auto-
Group detects the first generator, it marks this as the “base”
generator of G and splits g into a pair g1 ∈ G1 and g2 ∈ G2.
Every subsequent group element sampled by the scheme is
defined in terms of the base generators. For example, if the
setup algorithm next calls for “choosing a random generator
h in G”, then AutoGroup will select a random t′ ∈ Zp and

compute new elements h1 = gt
′

1 and h2 = gt
′

2 .

2. Traceback Inputs to the Pairing Function. Re-
call that the pairing function e(A,B) takes two inputs. We
extract all the pairings required in the scheme; these might
come from the setup algorithm, encryption/signing, or de-
cryption/verification. Prior to tracing the pairing inputs,
we split pairings of the form e(g,A ·B) as e(g,A) · e(g,B) to
prepare for encoding pairings as logical formulas in the SMT
solver. In the final step of AutoGroup we recombine the pair-
ings to preserve efficiency. We reuse techniques introduced
in [4, 29] to split and combine pairings in AutoGroup.

After splitting applicable pairings, we obtain a program
slice for each variable input to determine which (symmetric)
generators were involved in computing it. This also helps us
later track which variables are affected when an assignment
for a given variable is made in G1 or G2. Consider the
example A = X · Y . Clearly, the group assignment of A
affects variables X and Y , and capturing the slice for each
pairing input variable is crucial for AutoGroup to perform
correct re-assignment for the subset of affected variables.

3. Convert Pairings to Logical Formulas. Asymmet-
ric pairings require that one input to the function be in G1,
and the other be in G2. Conversion from a symmetric to
an asymmetric pairing can be reduced to a constraint sat-
isfiability problem; we model the asymmetric pairing as an
inequality operator over binary variables. This is analogous
because an inequality constraint enforces that the binary
variables either have a 0 or 1 value, but not both for the
equation to be satisfiable. Therefore, we express symmet-
ric pairings as a logical formula of inequality operators over
binary variables separated by conjunctive connectors (e.g.,
A 6= B ∧ C 6= D). We then employ an SMT solver to find

a satisfiable solution and apply the solver’s solution to pro-
duce an equivalent scheme in the asymmetric setting.

4. Convert Pairing Limitations into Constraints.
When translating from the symmetric to the asymmetric
pairing setting, we encounter several limitations that must
be incorporated into our model. Chief among these are lim-
itations on hashing: in some asymmetric groups, hashing to
G2 is not possible. In other groups, there is no such iso-
morphism, but it is possible to hash into G1. Depending on
the groups that the user selects, we must identify an asym-
metric solution that respects these constraints. Fortunately
these constraints can easily be expressed in our formulae, by
simply assigning the output of hash functions to a specific
group, e.g., G1.

5. Execute SMT Solver. We run the logical formula
plus constraints through an SMT solver to identify a satis-
fying assignment of variables. The solver checks for a sat-
isfiable solution and produces a model of 0 (or G1) and 1
(or G2) values for the pairing input variables that satisfies
the specified constraints. We can go one step further and
enumerate all the unique solutions (or models) found by the
solver for a given formula and constraints. After obtaining
all the possible models, we utilize the solver to evaluate each
model and determine the solutions that satisfies the user’s
application-specific requirements.

6. Satisfy Application-specific Requirements. To
facilitate optimizations in the asymmetric setting that suit
user applications, we allow users to specify additional con-
straints on the chosen solution. There are two possible ways
of tuning AutoGroup: one set of options focus on reducing
the size of certain scheme outputs. For public key encryp-
tion, the user can choose to minimize the representation of
the secret keys, ciphertext or both. Similarly, for signatures
schemes, the user can optimize for minimal-sized public keys,
signatures or both. The second set of options focus on re-
ducing algorithm execution times. This is possible due to
the fact that for many candidate asymmetric groups, group
operations in G1 are dramatically more efficient than those
that take place in G2. Users may also combine various op-
erations, in order to find an optimal solution based on a
combination of size and operation time.

We find application-specific solutions by minimizing an
objective function over all the possible models obtained from
the solver. Our objective function is straightforward and
calculated as follows:

F (A,C,w1, w2) =

n∑
i=1

((1− ai) · w1 + ai · w2) · ci

where A = ai, . . . , an and represents the pairing input
variables, w1 and w2 denote weights over groups G1 and G2,
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respectively, C = ci, . . . , cn and each ci corresponds to the
cost for each ai. Each input variable ai can have a value
of 0 = G1 or 1 = G2. We now describe how the above
options are converted into parameters of F and discuss how
the SMT solver is used to obtain a minimal solution.

For each parameter that we intend to optimize, we de-
fine a weight function that evaluates each candidate solution
according to some metric. For each assigned variable, the
weight function calculates the total “cost” of the construc-
tion as a function of some cost value for the specific variable,
as well as an overall cost for an assignment of G1 and G2.
In the case of ciphertext size we assign the cost value to 1
for each group element that appears in the ciphertext, and
0 for all others. For encryption time, we assign a cost that
corresponds to the number of group operations applied to
this variable during the encryption operation. The overall
cost value then determines the cost of placing a value in one
of the two groups – for size-related calculations, this roughly
corresponds to the length of a group element’s representa-
tion, and for operation time it corresponds to the cost of a
single group operation. By assigning these costs correctly,
we are able to create a series of different weight functions
that represent all of the different values that we would like
to minimize (e.g., ciphertext size, parameter size, time).

If the user chooses to optimize for multiple criteria simul-
taneously, we must find a model that balances between all
of these at the same time. This is not always possible. For
example, some schemes admit solutions that favor a min-
imized secret key size or ciphertext size, but not both. In
this case, we allow the user to determine which constraint to
relax and thereby select the next best solution that satisfies
their requirements.

7. Evaluate and Process the Solution. Once the
application-specific solution is obtained from the solver, the
next step is to apply the solution to produce an asymmetric
scheme. As indicated earlier, we interpret the solution for
each variable as 0 = G1 and 1 = G2. To apply the solution,
we first pre-process each algorithm in SDL to determine how
the pairing inputs are affected by each assignment. Consider
a simplistic example: e(A,B) where A = ga and B = hb.
Let us assume that the satisfying solution is that A ∈ G1 and
B ∈ G2. Therefore, we would rewrite these two variables as
A = ga1 and B = hb2 where g1 ∈ G1 and h2 ∈ G2. The
program slice recorded for each pairing input in step (2)
provides the necessary information to correctly rewrite the
scheme in the asymmetric setting.

In addition to rewriting the scheme, AutoGroup performs
several final optimizations. First, it removes any unused pa-
rameter values in the public and secret keys. For signature
schemes, we try to optimize further by reducing the pub-
lic parameters used per algorithm. In particular, we trace
which variables in the public key are actually used during
signing and verification. For elements that appear only in
the signing (resp. decryption) algorithms, we split the pub-
lic key into two: one is kept just for computing signatures
(resp. decryption), and the other is given out for use in
encryption/verification. Second, AutoGroup performs an
additional efficiency check and attempts to optimize pair-
ing product equations to use as few pairings as possible.
This is due to the decoupling of pairings in earlier phases
of translating the scheme to the asymmetric setting or per-
haps, just a loose design by the original SDL designer. In
either case, we apply pairing optimization techniques from

previous work [4, 29] to provide this automatic efficiency
check. Finally, AutoGroup outputs a new SDL of the mod-
ified scheme.

We do not offer the efficiency check of AutoGroup as a
standalone tool for symmetric groups at present, because
our experience inclines us to believe that most practitioners
concerned with efficiency will want to work in asymmetric
groups. However, our results herein also demonstrate that
a simple tool of this sort is efficient and feasible.

3.3 Security Analysis of AutoGroup
Whether a scheme is translated by hand (as is done to-

day [50]) or automatically (as in this work), a completely
separate question applying to both is: is the resulting asym-
metric scheme secure? The answer is not immediately clear.
Unlike the signature transformation that we automate in
Section 4 that already has an established security proofs
showing that the transformations preserve security, the the-
oretical underpinnings of symmetric-to-asymmetric transla-
tions are less explored. Here are some things we can say.

First, the original proof of security is under a symmet-
ric pairing assumption, and thus can no longer immediately
apply since the construction and assumption are changing
their algebraic settings. This would seem to require the iden-
tification of a new complexity assumption together with a
new proof of security. In many examples, e.g., [21], the new
assumption and proof are only minor deviations from the
original ones, e.g., where the CDH assumption in G (given
[g, ga, gb], compute gab) is converted in a straight-forward
manner to the co-CDH assumption in (G1,G2) (given [g1, g2,
ga2 ], compute ga1 ). However, there could be cases where a ma-
jor change is required to the proof of security. For instance,
in some asymmetric groups it is not possible to hash into G2,
but in these groups there exists an isomorphism from G2 to
G1. In other groups there is no such isomorphism, but it is
possible to hash into G2. So if a scheme requires both for
the security proof, that scheme may not be realizable in the
asymmetric setting (see [32] for more).

In best practices today, a human first devises the new
construction (based on their desired optimizations) and then
the human works to identify the new assumption and proof.
Our current work automates the first step in this process,
and hopefully gives the human more time to spend on the
second step. In this sense, our automation is arguably faster,
and no less secure than what is done by hand today.

However, a more satisfactory solution requires a deeper
theoretical study of symmetric-to-asymmetric pairing trans-
lations, which we feel is an important open problem, but
which falls outside the scope of the current work. What can
one prove about the preservation of security in symmetric-
to-asymmetric translations? Is it necessary to dig into the
proof of security? Or could one prove security of the asym-
metric scheme solely on the assumption of security of the
symmetric one? Will this work the same for encryption, sig-
natures and other protocols? Do the rules by which trans-
lations are done (by hand or AutoGroup) need to change
based on these findings? These questions remain open.

3.4 Experimental Evaluation of AutoGroup
To determine the effectiveness of our automation, we eval-

uate several encryption and signature schemes on a variety of
optimization combinations supported by our tool. We sum-
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Encryption Time Approx. Size Num.
Keygen• Encrypt• Decrypt• Secret Key Ciphertext Solutions

ID-Based Enc.
BB04 [16, §4] Symmetric (SS1536) 59.9 ms 64.8 ms 125.4 ms 3072 bits 6144 bits

Asymmetric (BN256) [Min. CT] 4.8 ms 7.8 ms 27.6 ms 2048 bits 3584 bits 4

Gentry06 [33, §3.1] Symmetric (SS1536) 39.9 ms 176.2 ms 67.8 ms 3072 bits 7680 bits
Asymmetric (BN256) [Min. SK] 1.4 ms 41.0 ms 19.1 ms 512 bits 7168 bits 4

WATERS09 [57, §3.1] Symmetric (SS1536) 294.6 ms 286.8 ms 612.8 ms 13824 bits 18432 bits
Asymmetric (BN256) [Min. SK/CT/Exp] 12.6 ms 19.2 ms 128.0 ms 5376 bits 8704 bits 256

Broadcast Encryption
BGW05 [20, §3.1] Symmetric (SS1536) (n = 100) 1992.2 ms 119.6 ms 136.9 ms 19200 bytes 6144 bits

Asymmetric (BN256) [Min. SK] 70.4 ms 25.7 ms 28.5 ms 3200 bytes 5120 bits 4
•Average time measured over 100 test runs and the standard deviation in all test runs were within ±1% of the average.

Figure 3: AutoGroup on encryption schemes under various optimization options. We show running times and
sizes for several schemes generated in C++ and compare symmetric to automatically generated asymmetric
implementations at the same security levels (roughly equivalent with 3072 bit RSA). For IBE schemes, we
measured with the identity string length at 100 bytes. For BGW, n denotes the number of users in the
system.

marize the results of our experiments on encryption schemes
in Figure 3 and signature schemes in Figure 5.

System Configuration. All of our benchmarks were executed
on a 2.66GHz 6-core Intel Xeon Mac Pro with 10GB RAM
running Mac OS X 10.8.3 using only a single core of the
Intel processor. Our implementation utilizes the MIRACL
library (v5.5.4), Charm v0.43 [2] in C++ due to the effi-
ciency gains over Python code, and Z3 SMT solver (v4.3.1).
We based our implementations on the MIRACL library to
fully compare each scheme’s performance using symmetric
and asymmetric curves at equivalent security levels.

Results. To demonstrate the soundness of AutoGroup on
encryption and signature schemes, we compare algorithm
running times, key and ciphertext/signature sizes between
symmetric and asymmetric solutions. We tested AutoGroup
on a variety of optimization combinations to extract different
asymmetric solutions. In each test case, AutoGroup reports
all the unique solutions, obtains the best solution for given
user-specified constraints, and generates the executable code
of the solution in a reasonable amount of time. AutoGroup
execution time on each test case is reported in Figure 6, but
does not include time for generating the C++ of the SDL
output.

4. AUTOSTRONG
In this section, we present and evaluate a tool, called Au-

toStrong, for automatically generating a strongly-unforgeable
signature from an unforgeable signature scheme.

4.1 Background on Digital Signatures
A digital signature scheme is comprised of three algo-

rithms: key generation, signing and verification. The classic
(or “regular”) security definition for signatures, as formu-
lated by Goldwasser, Micali and Rivest [35], is called exis-
tential unforgeability with respect to chosen message attacks,
wherein any p.p.t. adversary, given a public key and the abil-
ity to adaptively ask for a signature on any message of its
choosing, should not be able to output a signature/message
pair that passes the verification equation and yet where the
message is “new” (was not queried for a signature), with
non-negligible probability.

An, Dodis and Rabin [6] formulated strong unforgeability
where the adversary should not only be unable to generate

a signature on a “new” message, but also be unable to gen-
erate a different signature for an already signed message.
Strongly-unforgeable signatures have many applications in-
cluding building signcryption [6], chosen-ciphertext secure
encryption systems [25,28] and group signatures [7, 18].

Partitioned Signatures In 2006, Boneh, Shen and Wa-
ters [22] connected these two security notions, by provid-
ing a general transformation that converts any partitioned
(defined below) existentially unforgeable signature into a
strongly unforgeable one.

Definition 4.1 (Partitioned Signature [22]). A sig-
nature scheme is partitioned if it satisfies two properties for
all key pairs (pk , sk):

– Property 1: The signing algorithm can be broken into
two deterministic algorithms F1 and F2 so that a sig-
nature on a message m using secret key sk is computed
as follows:

1. Select a random r from a suitable randomness
space.

2. Set σ1 = F1(m, r, sk) and σ2 = F2(r, sk).
3. Output the signature (σ1, σ2).

– Property 2: Given m and σ2, there is at most one
σ1 such that (σ1, σ2) verifies as a valid signature on m
under pk.

As one example of a partitioned scheme, Boneh et al. par-
tition DSS [45] as follows, where x is the secret key:

F1(m, r, x) = r−1(m+ xF2(r, x)) mod q

F2(r, x) = (gr mod p) mod q

Our empirical evidence shows that many discrete-log and
pairing-based signatures in the literature are partitioned.
Interestingly, some prominent prior works [14, 15] claimed
that there were “few” examples of partitioned schemes “be-
yond Waters [56]”, even though our automation discovered
several examples existing prior to the publication of these
works. We conjecture that it is not always easy for a human
to detect a partition.

Chameleon Hashes The BSW transform uses a chameleon
hash [39] function, which is characterized by the nonstan-
dard property of being collision-resistant for the signer but
collision tractable for the recipient. The chameleon hash
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Figure 4: A high-level presentation of the AutoStrong tool, which uses external tools Z3, Mathematica and
SDL Parser.

is created by establishing public parameters and a secret
trapdoor. The hash itself takes as input a message m and
an auxiliary value s. There is an efficient algorithm that
on input the trapdoor, any pair (m1, s1) and any additional
message m2, finds a value s2 such that ChamHash(m1, s1) =
ChamHash(m2, s2).

Boneh et al. [22] employ a specific hash function based
on the hardness of finding discrete logarithms.4 Since pair-
ing groups also require the DL problem to be hard, this
chameleon hash does not add any new complexity assump-
tions. It works as follows in G, where g generates G of order
p. To setup, choose a random trapdoor t ∈ Zp∗ and com-
pute h = gt. The public parameters include the description
of G together with g and h. The trapdoor t is kept secret.
To hash on input (m, s) ∈ Zp2, compute

ChamHash(m, s) = gmhs.

Later, given any pair m, s and any message m′, anyone with
the trapdoor can compute a consistent value s′ ∈ Zp as

s′ = (m−m′)/t+ s

such that ChamHash(m, s) =ChamHash(m′, s′).

The BSW Transformation The transformation [22] is ef-
ficient and works as follows. Let Πp = (Genp, Signp,Verifyp)
be a partitioned signature, where the signing algorithm is
partitioned using functions F1 and F2. Suppose the ran-
domness for Signp is picked from some set R. Let || denote
concatenation. BSW constructs a new scheme Π as:

Gen(1λ): Select a group G with generator g of prime order
p (with λ bits). Select a random t ∈ Zp and com-
pute h = gt. Select a collision-resistant hash function
Hcr : {0, 1}∗ → Zp. Run Genp(1

λ) to obtain a key
pair (pkp, skp). Set the keys for the new system as
pk = (pkp, Hcr,G, g, h, p) and sk = (pk , skp, t).

Sign(sk ,m): A signature on m is generated as follows:

1. Select a random s ∈ Zp and a random r ∈ R.
2. Set σ2 = F2(r, skp).
3. Compute v = Hcr(m||σ2).
4. Compute the chameleon hash m′ = gvhs.
5. Compute σ1 = F1(m′, r, skp) and output the sig-

nature σ = (σ1, σ2, s).

4Indeed, we observe that substituting an arbitrary
chameleon hash could break the transformation. Suppose
H(m, s) ignores the last bit of s (it is easy to construct such
a hash assuming chameleon hashes exist.) Then the BSW
transformation using this hash would result in a signature
of the form (σ1, σ2, s), which is clearly not strongly unforge-
able, since the last bit can be flipped.

Verify(pk ,m, σ): A signature σ = (σ1, σ2, s) on a message m
is verified as follows:

1. Compute v = Hcr(m||σ2).
2. Compute the chameleon hash m′ = gvhs.
3. Output the result of Verifyp(pkp,m

′, (σ1, σ2)).

Theorem 4.2 (Security of BSW Transform [22]).
The signature scheme Π = (Gen,Sign,Verify) is strongly ex-
istentially unforgeable assuming the underlying scheme Πp =
(Genp,Signp,Verifyp) is existentially unforgeable, Hcr is a
collision-resistant hash function and the discrete logarithm
assumption holds in G.

The Bellare-Shoup Transformation The BSW trans-
formation [22], which only works for partitioned signatures,
sparked significant research interest into finding a general
transformation for any existentially unforgeable signature
scheme. Various solutions were presented in [14, 15, 37, 53–
55], as well as an observation in [14] that an inefficient trans-
formation was implicit in [34].

We follow the work of Bellare and Shoup [14,15], which is
less efficient than BSW and, for our case, requires a stronger
complexity assumption, but works on any signature. Their
approach uses two-tier signatures, which are “weaker” than
regular signatures as hybrids of regular and one-time schemes.
In a two-tier scheme, a signer has a primary key pair and,
each time it wants to sign, it generates a fresh secondary
key pair and produces a signature as a function of the both
secret keys and the message. Both public keys are required
to verify the signature. Bellare and Shoup transform any
regular signature scheme by signing the signature from this
scheme with a strongly unforgeable two-tier scheme. They
also show how to realize a strongly unforgeable two-tier sig-
nature scheme by applying the Fiat-Shamir [30] transfor-
mation to the Schnorr identification protocol [51], which re-
quires a one-more discrete logarithm-type assumption.

The BS transformation works as follows. Let Πr = (Genr,
Signr,Verifyr) be a regular signature scheme and let Πt =
(PGent, SGent, Signt,Verifyt) be a two-tiered strongly unforge-
able scheme. A new signature scheme Π is constructed as:

Gen(1λ): Run Genr(1
λ)→ (pkr, skr) and PGent(1

λ)→ (ppk ,
psk). Output the pair PK = (pkr, ppk) and SK =
(skr, psk).

Sign(SK,m): A signature on m is generated as follows:

1. Parse SK as (skr, psk).
2. Run SGent(1

λ)→ (spk , ssk).
3. Sign the message and secondary key as σ1 ←

Signr(skr, (spk ||m)).
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4. Sign the first signature as σ2 ← Signt(psk , ssk , σ1).
5. Output the signature σ = (σ1, σ2, spk).

Verify(PK,m, σ): A signature σ = (σ1, σ2, spk) on a message
m is verified as follows:

1. Parse PK as (pkr, ppk).
2. If Verifyr(pkr, (spk ||m), σ1) = 0, then return 0.
3. If Verifyt(ppk , spk , σ1, σ2), then return 0.
4. Otherwise, return 1.

Theorem 4.3 (Security of BS Transformation [15]).
If the input scheme is existentially unforgeable, then the out-
put signature is strongly existentially unforgeable assuming
the strong unforgeability of the two-tier scheme.

The Transformation used in AutoStrong For our pur-
poses, we employ the following hybrid transformation com-
bining BSW and Bellare-Shoup. On input a signature scheme,
we automate the following procedure:

1. Identify a natural partition satisfying property 1 and
test if it has property 2. (We allow false negatives, but
not false positives. See Section 4.3.)

2. If a valid partition is found, apply the BSW transfor-
mation [22] (using SHA-256 and the DL-based chameleon
hash above).

3. If a valid partition is not found, apply the Bellare-
Shoup transformation [14,15] (using the Schnorr Fiat-
Shamir based two-tier scheme suggested in [15].)

4. Output the result.

The security of this transformation follows directly from
the results of [15,22] as stated in Theorems 4.2 and 4.3. The
most challenging technical part is step one: determining if a
scheme is partitioned.

4.2 How AutoStrong Works
AutoStrong takes as input the SDL description of a digital

signature scheme along with some metadata.5 At a high-
level, it runs the transformation described at the end of
the last section, where the most challenging step is testing
whether a scheme is partitioned according to Definition 4.1.

We now describe each step involved in testing that Prop-
erties 1 and 2 are satisfied and how we utilize Z3 and Math-
ematica to prove such properties, as illustrated in Figure 4.

Identify Property 1. The first goal is to identify the vari-
ables in the signature that should be mapped to σ1 or σ2

according to Definition 4.1. We assume that the input sig-
nature scheme is existentially unforgeable.6 Given this as-
sumption, our objective is to identify the portions of the
signature that are computed based on the message and des-
ignate that component as σ1. All other variables in the sig-
nature that do not meet this criteria are designated as σ2.
We determine that we have designated the correct variables
for property 1 if and only if the variable mapping satisfy
property 2. We test only the most “natural” division for

5The user must specify the variables that denote message,
signature, key material in a configuration file.
6We remark that we tested the partition checker for Au-
toStrong on schemes that are not existentially unforgeable
to fully vet the checker (see Figure 5), but the resulting out-
put in these cases may not be strongly unforgeable.

property 1, which could result in a false negative, but this
won’t impact the security, so our system allows it.

To illustrate each step, we will show how our tool identifies
the partition in the CL signature scheme [24].

CL signatures [24]: Key generation consists of selecting
a generator, g ∈ G, then randomly sampling x ∈ Zq and
y ∈ Zq. It sets sk = (x, y) and pk = (g,X = gx, Y = gy).
To sign a message m ∈ Zq, the signer samples a uniformly
from G and computes the signature as:

σ = (a, b = ay, c = ax+m·x·y).

The verifier can check σ by ensuring that e(a, Y ) = e(g, b)
and e(X, a) · e(X, b)m = e(g, c).

Intuitively, our logic would identify that c is dependent
on the message, therefore, identifying that σ1 = c and σ2 =
(a, b) which satisfies the definition of property 1. The next
challenge is to determine whether property 2 holds given our
identified mapping for σ1 and σ2.

Prove Property 2. Proving that a scheme satisfies this
property requires the ability to abstractly evaluate the ver-
ification equations on the input variables. We require this
ability to automatically prove that there exists at most one
σ1 which verifies under a fixed σ2, m and pk for all pos-
sible inputs. To this end, the partition checker determines
whether a σ′1 exists such that σ′1 6= σ1 and is a valid sig-
nature over the fixed variables. Finding such a σ′1 means
the signature is not partitioned. The checker determines
whether it can find a solution or if it can determine that no
such solution exists. If no solutions exist, then the signature
is indeed partitioned. Stated more precisely, does there exist
a σ′1 6= σ1 such that the following condition holds:

Verify(pk ,m, (σ1, σ2)) = 1 ∧ Verify(pk ,m, (σ′1, σ2)) = 1

At a high-level, our goal is to evaluate the pairing-based
verification algorithms in a way that allows us to find a
contradiction to the aforementioned condition. Recall that
the bilinearity property of pairings states that e(ga, gb) =
e(g, g)ab holds for all a, b ∈ Zq where g ∈ G. We observe
that pairings can be modeled as an abstract function that
performs multiplication in the exponent. Because the rules
of multiplication and addition hold in the exponent, we can
abstractly reduce pairings to basic integer arithmetic.

To accomplish this, we leverage Z3 to model the bilinear-
ity of pairings so that it is possible to automatically evalu-
ate them. Our partition checker relies on Z3’s uninterpreted
functions and universal quantifiers to reduce pairing product
equations to simpler equations over the exponents. However,
this reduction alone is not sufficient to completely evaluate
the verification equations as required for detecting a parti-
tioned signature. To satisfy the property 2 condition, we
also need a way to evaluate these equations on all possible
inputs. Z3 was less suited for this task and instead, we em-
ploy the Mathematica scripting framework to evaluate such
equations. Our solution consists of five steps:

Step 1: Decompose Verification Equations. To model
pairings using an SMT solver, we encode the verification
equations into a form that the solver can interpret. The
first phase extracts the verification equations in SDL, then
decomposes the equations in terms of the generators and
exponents used. We leverage recent term rewriting exten-
sions introduced in the SDL Parser by Akinyele et al. [4].
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Signature Time Approx. Size Num.
Security Sign• Verify• Public Key∗ Signature Solutions

CL04 [24, §3.1] Symmetric (SS1536) EU-CMA 169.8 ms 316.6 ms 3072 bits 4608 bits
Symmetric (SS1536) SU-CMA 192.0 ms 387.8 ms 4608 bits 6144 bits
Asymmetric (BN256) [Min. SIG] SU-CMA 3.4 ms 56.8 ms 2048 bits 1024 bits 2

BB Short [17, §3] Symmetric (SS1536) EU-CMA 21.5 ms 102.1 ms 7680 bits 3072 bits
Symmetric (SS1536) SU-CMA 62.8 ms 142.8 ms 9216 bits 4608 bits
Asymmetric (BN256) [Min. PK] SU-CMA 5.0 ms 18.3 ms 3840 bits 1536 bits 2

WATERS05 [56, §4] Symmetric (SS1536) EU-CMA 47.9 ms 195.2 ms 4608 bits† 3072 bits
Symmetric (SS1536) SU-CMA 88.7 ms 236.4 ms 6144 bits† 4608 bits
Asymmetric (BN256) [Min. SIG] SU-CMA 6.5 ms 62.9 ms 2560 bits† 768 bits 8

WATERS09 [58, §6.1] Symmetric (SS1536) WU-CMA 258.5 ms 896.8 ms 23040 bits 13824 bits
Asymmetric (BN256) [Min. PK/SIG] WU-CMA 13.6 ms 129.2 ms 12544 bits 5376 bits 256

ACDKNO12 [1, §5.3] Symmetric (SS1536) RMA 346.4 ms 1307 ms 23040 bits 12288 bits
Asymmetric (BN256) [Min. PK/SIG/Exp] RMA 23.3 ms 279.9 ms 3840 bits 8192 bits 1024

•Average time measured over 100 test runs and the standard deviation in all test runs were within ±1% of the average.
∗Refers to the approximate size of public parameters used in verification.
†Estimates do not include the public parameters for the Water’s hash.

Figure 5: We show the result of AutoGroup and AutoStrong on signature schemes. For CL, BB, and
Waters (with length of identities, ` = 128), we first apply AutoStrong to determine that the signature scheme
is partitioned, then apply the BSW transform to obtain a strongly unforgeable signature in the symmetric
setting. We then feed this as input to AutoGroup to realize an asymmetric variant under a given optimization.
We also tested AutoStrong on the DSE signature and ACDK structure-preserving signature, even though
these are not known to be existentially unforgeable. A partition was found for ACDK, but not DSE.

Their techniques allow us to keep track of how variables are
computed in terms of the generators and exponents. With
knowledge of how each variable is computed, we are able to
fully decompose each equation in an automated fashion.

Our technique for modeling pairings in Z3 requires that
decomposition of verification equations be guided by a few
rules. First, generators must be rewritten in terms of some
base generator, g, if the scheme is specified in the symmetric
setting.7 For example, the random generator a ∈ G chosen

in CL would be represented as ga
′

for a′ ∈ Zq. Second,
hashing statements of the form v = H(m) where v ∈ G are

rewritten as gv
′

for some v′ ∈ Zq.8 Third, we do not de-
compose any variable designated as σ1 for the purposes of
determining whether a signature is partitioned. The intu-
ition is that since σ′1 variables are adversarially controlled we
also treat σ1 as a black box. Finally, whenever we encounter
signatures that compute a product over a list of elements –
as in the case of the Waters hash, for example [56] – we re-
quire the user to provide an upper bound on the number of
elements in this list (if known) so that we can “unroll” the
product calculation and further apply our rules. When all
the above reduction rules are automatically applied to the
CL signature, we obtain the following equations:

e(a, Y ) = e(g, b) becomes e(ga
′
, gy) = e(g, (ga

′
)y)

e(X, a) · e(X, b)m = e(g, c) becomes

e(gx, ga
′
) · e(gx, (ga

′
)y)m = e(g, gc

′
)

Note that c′ denotes the σ1 for CL and is a free variable. All
other variables that comprise m, pk, and σ2 are fixed.

Step 2: Encode Rules for Evaluating Pairings. Once
we have decomposed the verification equation as shown above,
the next step is to encode the equations in terms that Z3 can

7The same would apply for asymmetric pairings except that
we would specify G1 generators in terms of a base generator
g1 and G2 in terms of g2.
8Note that this term re-writing is used only to determine
whether a solution exists. The actual variables a′ and v′

would not (necessarily) be known in the real protocol.

understand. After the pairing equations are rewritten en-
tirely using the base generator, we can model the behavior
of pairings by simply focusing on the exponents. To cap-
ture the bilinearity of pairings, we rely on two features in
Z3: uninterpreted functions and universal quantifiers. As
mentioned earlier, uninterpreted functions enable one to ab-
stractly model a function’s behavior. Our model of a pair-
ing is an uninterpreted function, E, that takes two integer
variables and has a few mathematical properties. First, we
define the multiplication rule as ∀s, t : E(s, t) = s·t. Second,
we define the addition rule as ∀s, t, u : E(s+t, u) = s·u+t·u.9

Third, we adhere to the multiplicative notation in SDL and
convert pairing products defined in terms of multiplication
to addition and division to subtraction.

These rules are straightforward and sufficient for evalu-
ating pairings. Moreover, by defining exponents in terms
of integers, Z3 can apply all the built-in simplification rules
for multiplication and addition. As a result, the solver uses
these rules to reduce any pairing-based verification equation
into a simpler integer equation.

To automatically encode the equations, we first simplify
the decomposed pairing equation as much as possible using
previous techniques [4]. Then, we convert each pairing to
the modeled pairing function, E and remove the base gener-
ators. Upon simplifying and encoding the decomposed CL
equations, we obtain the following:

e(ga
′
, gy) = e(g, (ga

′
)y) becomes E(a′, y) = E(1, a′ · y)

e(gx, ga
′
) · e(gx, (ga

′
)y)m = e(g, gc

′
) becomes

E(x, a′) + E(x ·m,a′ · y) = E(1, c′)

Step 3: Execute SMT Solver. After encoding the pair-
ing functions in terms of E, the next step is to employ the
solver to evaluate it. We first specify our rules in the SMT
solver then evaluate these rules on each input equation. The
result is a simplified integer equation representation of the
verification algorithm. For the above CL formulas, the solver
determines that the first equation is true for all possible in-

9Similarly, E(s, t+ u) = s · t+ s · u
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puts because a′ and y are fixed variables. For the second
equation, the solver produces: a′ · x+ a′ · x ·m · y = c′.

Step 4: Evaluate equations. At this point, we have ob-
tained the integer equation version of the verification equa-
tion; we can now concretely express the conditions for prop-
erty 2. That is,

c′ 6= c′′ ∧ a′ · x+ a′ · x ·m · y = c′ ∧ a′ · x+ a′ · x ·m · y = c′′

We use Mathematica to prove that no such c′′ exists as-
suming the verification condition is correct via the Mathe-
matica Script API. In particular, we utilize the FindInstance
function to mathematically find proof over non-zero real
numbers then subsequently try finding a solution over in-
tegers. If no such solution exists, the FindInstance will
return such a statement and the result is interpreted as an
indicator that the signature is partitionable. Otherwise, the
signature may not be partitionable.

During this step, we make an explicit assumption that the
verification condition is mathematically correct. Suppose
that this was not the case. In this scenario, our technique
would also determine that it is not possible to find a σ′1 such
that σ′1 6= σ1 and verifies over fixed variables. In reality,
however, no σ1 and σ2 pair can produce a valid signature
because the verification equation does not hold for any in-
put. To limit the possibility of such scenarios, our partition
checker offers a sanity check on the correctness of the input
verification equations.

By relaxing the rule for decomposing the variables that are
designated as σ1 in Step 1, we can evaluate the verification
equation over all inputs using Mathematica. For the CL
signature, a full decomposition would produce the following
equation in the exponent:

a′ · x+ a′ · x ·m · y = a′ · (x+ x ·m · y)

It is sufficient to leverage the Simplify function within Math-
ematica to evaluate that this holds for all possible inputs.
Since Mathematica has built-in techniques for solving equa-
tions of this sort, it becomes trivial to show that the above
equation is correct in all cases (due to the law of distribu-
tion). We subsequently inform the user on the output of this
sanity check, which is useful for determining the correctness
of SDL signature descriptions.

Step 5: Apply Transformation. Once the partition
checker determines whether the signature is partitioned or
not, we apply the efficient BSW transform if deemed parti-
tioned or the less-efficient BS transform if not as described
in Section 4.1. We elaborate further in the full version.

4.3 Security Analysis of AutoStrong
The theoretical security of the unforgeable-to-strongly-

unforgeable transformations that we use in AutoStrong were
previously established in [14, 15, 22], as discussed in Sec-
tion 4.1.10 The security of the BSW transform only holds,
however, if the input scheme is partitioned. Our partition
test allows false negatives, but not false positives. That is,

10Perfect correctness is assumed in these transformations.
All schemes tested have perfect correctness, except the Wa-
ters DSE signatures [57]. With a negligible probability, the
verification algorithm of this scheme will reject an honestly-
generated signature. After applying the BS transformation
to the DSE scheme, this negligible error probability is car-
ried over in the verification of the strongly-secure scheme.

our algorithm may fail to identify a scheme as partitioned
even though it is, which results in a less efficient final scheme,
but it will not falsely identify a scheme as partitioned when
it is not, which would result in a security failure. To see why
this claim holds, consider that the partition tester guesses a
partition, Z3 interprets the verification equation as a system
of equations, and then Mathematica fixes the variables on
one partition side and asks how many solutions there are
for the free variables on the other side. If 0 or 1 are found,
then the scheme meets the partitioned definition. If more
than 1 is found, then it is not partitioned. If there is no
answer (program crash or times out), then we consider it
not partitioned. Thus, false negatives can occur, but not
false positives (in theory). Proving that there are no soft-
ware or hardware errors in AutoStrong, Z3, Mathematica or
the underlying software and hardware on which they run is
outside the scope of this work. We did experimentally verify
AutoStrong’s outputs and no errors were found.

4.4 Experimental Evaluation of AutoStrong
In 2008 [15], Bellare and Shoup remarked that “unfortu-

nately, there seem to be hardly any [partitioned signature]
schemes”. Interestingly, our experimental results show that
there are in fact many partitioned schemes, including a sub-
stantial number invented prior to 2008. We evaluated Au-
toStrong by testing it on a collection of signatures, including
Camenisch-Lysyanskaya [24], short Boneh-Boyen [17], Wa-
ters 2005 [56], Waters Dual-System (DSE) signature [57],
and a structure-preserving scheme of Abe et al. [1].

Of the above signatures, all but one – the Waters DSE
signature – were successfully partitioned. We do not know
whether the Waters DSE signature can be partitioned, al-
though we suspect that the “randomness freedom” in the
dual-system structure may inherently be at odds with the
uniqueness property of the partitioned test. Although the
Abe et al. scheme is partitioned, applying either the BSW or
BS transformations destroys its structure-preserving prop-
erty. An interesting open problem would be to refine the
BSW or BS transformations to preserve the structured prop-
erty. Figure 6 shows the time that it took our tool to identify
the partitioning and output the revised signature equations.
Figure 5 illustrates the performance and size of the resulting
signatures, when evaluated on two different types of curve
(using AutoGroup to calculate the group assignments).

5. CONCLUSION
We explored two new tasks in cryptographic automation.

First, we presented a tool, AutoGroup, for automatically
translating a symmetric pairing scheme into an asymmetric
pairing scheme. The tool allows the user to choose from a
variety of different optimization options. Second, we pre-
sented a tool, AutoStrong, for automatically altering a digi-
tal signature scheme to achieve strong unforgeability [6]. The
tool automatically tests whether a scheme is “partitioned”
according to a notion of Boneh et al. [22] and then ap-
plies a highly-efficient transformation if it is partitioned or
a more general transformation otherwise. To perform some
of these complex tasks, we integrated Microsoft’s Z3 SMT
Solver and Mathematica into our tools. Our performance
measurements indicated that these standard cryptographic
design tasks can be quickly, accurately and cost-effectively
performed in an automated fashion. We leave open the ques-
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Process BB-IBE Gentry Waters09-Enc BGW CL BB Short Sig Waters05 Waters09-Sig ACDKNO

AutoGroup 0.33s 0.34s 4.30s 0.55s 0.34s 0.31s 0.54s 4.16s 17.65s
AutoStrong - - - - 0.28s 0.27s 0.37s 3.99s 1.23s

Figure 6: Running time required by the AutoGroup and AutoStrong routines to process the schemes discussed
in this work (averaged over 10 test runs). The running time for AutoGroup includes the execution time of
the Z3 SMT solver. The running time for AutoStrong also includes Z3 and Mathematica and the application
of the BSW transformation. In all cases, the standard deviation in the results were within ±3% of the
average. For AutoGroup, running times are correlated with the number of unique solutions found and the
minimization of the weighted function using Z3. AutoStrong running times are highly correlated with the
complexity of the verification equations.

tion of which other design tasks are well suited for SMT
solvers.
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