
Crocus: A Steganographic Filesystem Manager

HIOKI Hirohisa
Center for Promotion of Excellence in Higher Education, Kyoto University

Yoshida-Nihonmatsu-cho, Sakyo-Ku, Kyoto, 606-8501, Japan
hioki@i.h.kyoto-u.ac.jp

ABSTRACT
Cryptographic filesystems are widely used to protect pri-
vate files. It is, however, impossible to hide the existence
of private information by such filesystems. Steganographic
filesystems attempt to address this problem by embedding
files imperceptibly into containers. In most steganographic
filesystems ever proposed, files are embedded into contain-
ers those apparently randomized. Their existence would,
however, imply that they include hidden files. This pa-
per presents a new steganographic filesystem manager called
Crocus. When a filesystem is to be hidden, it is embedded
separately into a set of innocent-looking containers piece by
piece. When the filesystem is to be used later, it is re-
constructed from the pieces. We can resize or destruct the
filesystem if required. Since more than one containers can be
used for one filesystem, we can build filesystems those large
enough. A prototype system of Crocus has been developed
for Linux and a preliminary experiment was performed. The
result indicates the effectiveness of the framework of Crocus.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
information hiding

General Terms
Design

Keywords
Filesystem manager, Steganography

1. INTRODUCTION
Cryptographic filesystems are widely used to protect pri-

vate files. We can make files unreadable by storing them in
such filesystems; but even so, it is still evident that we have
unreadable encrypted files. Steganographic filesystems[1, 3,
4, 6, 7, 8, 9] attempt to address this problem by embed-
ding files imperceptibly into containers like disk partitions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’07,March 20-22, 2007, Singapore.
Copyright 2007 ACM 1-59593-574-6/07/0003 ...$5.00.

or files. The files embedded there apparently disappear from
the local disks.

In most steganographic filesystems ever proposed, files
are hidden in containers those apparently randomized and
logically divided into more than one layers. This type of
steganographic filesystem is said to have the property of
plausible deniability. Assume that we are threatened to dis-
close all the hidden files under a filesystem. In such a case,
we can open a decoy layer that includes only not-really sen-
sitive files and say we have disclosed all. The more sensitive
layers are then kept secret, since the threatener cannot know
whether such layers exist from outside. This model of plau-
sible deniability is indeed useful. It is, however, unusual
that we have randomized volumes those not used for any
purpose. Their existence might arise suspicion that they
include hidden files.

Steganography literally means the technique of hiding se-
crets behind something else that camouflage their existence.
In this sense, we should use common containers with their
own contents. Many steganographic methods have been pro-
posed for embedding secret stuff into containers like graphi-
cal images, sounds and texts[5, 8]. Unfortunately, they work
only for a single container, which limits severely the sizes of
filesystems we can build.

This paper presents a new steganographic filesystem man-
ager called Crocus. It is a descendant of AshFS[4]. Cro-
cus allows us to embed one filesystem separately into a set
of innocent-looking containers piece by piece. When the
filesystem is to be used, it is reconstructed from the pieces.
We can resize or destruct filesystems if required.

Since more than one containers can be used for embedding
one filesystem, we can build filesystems those large enough.
This framework is a key feature for constructing stegano-
graphic filesystems those not based on randomized volumes.

Although AshFS has been designed under the same frame-
work, the number of containers that can be assigned to one
filesystem is actually limited. The flexibility of AshFS is
also limited in the sense that filesystems managed under it
are not resizable. The containers should be selected from a
single filesystem in AshFS, while Crocus is not subject to
such a limitation.

A prototype system of Crocus has been developed for
Linux. A preliminary experiment was performed on the pro-
totype system. The result indicates the effectiveness of the
framework of Crocus.

The rest of this paper is organized as follows. Section 2
presents the basic concepts of Crocus. Section 3 outlines
the prototype system. The experimental result is shown

344

in Section 4. Finally, Section 5 concludes this paper with
directions of future work.

2. BASIC CONCEPTS
This section presents the basic concepts of Crocus. The

overview of filesystem management methods is given first.
Next, the procedure for embedding payloads (pieces of a
filesystem image and others) is described. We will then see
how to find the layout of containers of a hidden filesystem.

2.1 Filesystem Management Methods

container

...... ...

...... ...

...... ...

...
Private Filesystem

mount/unmount

embed/extract

Filesystem image
in a regular file

Figure 1: The filesystem model under Crocus

Crocus can create, open, close, resize or destroy filesys-
tems those under its control. Figure 1 shows the filesystem
model under Crocus. The private filesystem in the figure
represents a filesystem managed by Crocus.

We can use various files as containers. Different types of
container are processed in a uniform way through the virtual
steganographic interface module (VSIM). When a container
is given to VSIM, it selects an appropriate steganographic
engine for the container. Steganographic engines are regis-
tered with Crocus as plugins for VSIM. They directly inter-
act with containers for embedding or extracting payloads.
A file is accepted as a container when a suitable stegano-
graphic engine is registered and its capacity is larger than a
predetermined threshold VT .

We can create a new filesystem by giving containers and
a password to Crocus. Crocus then requests the system OS
to build a new filesystem image within a regular file and to
mount it1. The size of the image is computed from the total
capacity of the containers. Since we can allocate more than
one containers for one filesystem, we can make a filesystem
as large as we like if we can provide enough containers and
have a space to write the file holding its image.

While a filesystem is mounted, it is fully operated by the
system OS. We can thus read or write files stored there as
usual. A filesystem which is mounted is said to be in the
active state.

Closing a filesystem brings it to the hidden state. Crocus
requests the system OS to unmount it first. Right after it
is unmounted, the filesystem image is embedded separately

1Crocus thus works on an OS under which we can use a
regular file as a virtual disk.

into containers piece by piece. The file holding the filesystem
image is then randomized and deleted2. The filesystem now
becomes imperceptible (and temporarily unavailable). Note
that the imperceptibility of the hidden filesystem depends
on the steganographic engines.

We can open the hidden filesystem later to bring it back
to the active state and use it again. On opening the hidden
filesystem, all the pieces are extracted from the containers
and the filesystem image is reconstructed from them. Once
the filesystem image is reconstructed, we are ready to mount
and use it. In order to perform this reconstruction, we must
know how to find the containers and how to arrange them.
This problem is addressed in Section 2.3.

It is possible to resize existing filesystems by adding or
removing containers. Shrinking is performed only when
filesystems are not damaged.

We can destroy hidden filesystems to wipe out them. De-
struction is performed (without deleting containers) by fill-
ing all the containers with dummy payloads steganographi-
cally. Since the filesystem image is destroyed completely, not
only the files in the hidden filesystem but also the filesystem
itself is revoked.

2.2 Payload Embedding Procedure
On embedding, a payload is passed to VSIM from the

core system of Crocus. VSIM encapsulates the payload as
a packet . It is composed of a magic string, a string which
represents the size of the payload and the payload itself.

A packet will not be embedded directly into a container, or
attackers might find the container and read payloads inside.
In order to protect payloads, first, each packet is encoded
using a pseudo-random number generator and partitioned
into small blocks. Those blocks are then shuffled accord-
ing to a pseudo-random permutation and are passed to an
appropriate steganographic engine. The steganographic en-
gine is then embedded the (shuffled) blocks into the con-
tainer. The password assigned for the filesystem is used for
encoding and shuffling. This protection method is called
scrambling in this paper.

2.3 Finding Layout of Containers
In Crocus, a hidden filesystem is embedded across a set of

containers. In order to open and use the hidden filesystem
later, we must find all of its containers and arrange them in
the correct order to reconstruct the filesystem image.

Assume that the filesystem image is embedded piece by
piece into the containers C0, C1, . . ., Cn−1 in this order. In
Crocus, we can open a hidden filesystem by giving the pass-
word assigned for it and the root container C0, i.e. the first
one of the containers.

Let id(Ci) be the identifier of the container Ci. We can
find the layout of containers via the root container if the se-
quence of identifiers id(C1), id(C2), . . ., id(Cn−1) is embedded
along with the filesystem image. This sequence of identifiers
is called layout information of containers (LIC).

The LIC is embedded into the root container, at least par-
tially. Note that the identifier id(Ci) should be embedded
into a preceding container Cj(j < i). Let V (Ci) be the ca-
pacity of the container Ci and pre(j) be the prefix of the LIC
up to the end of the identifier of the container Cj . We can
then find that the whole LIC can be restored on extraction

2Here, randomization is performed to prevent unsolicited
recovery of the deleted file.

345

if the following is satisfied:

1≤∀j < n, pre(j) ≤
j−1
X

i=0

V (Ci). (1)

Since the LIC can extend for more than one containers, we
can assign containers for one filesystem as many as we want.
On the other hand, AshFS has the restriction that the LIC
must always be embedded entirely into the root. This limits
the number of containers assignable to one filesystem.

3. PROTOTYPE SYSTEM
A prototype system of Crocus has been developed for

Linux. In the prototype system, we can use graphical im-
age files and audio files as containers if they are in lossless-
compression or in uncompressed formats such as PNG, BMP
and WAV. Steganographic engines based on the simple LSB
method[5] are employed both for graphical image files and
audio files. Filesystems are formatted as ext2fs and accessed
via loopback devices. The standard e2fsprogs utilities are
used for creating or resizing filesystems.

The LIC of a filesystem is derived from the pathnames
of containers. The identifier id(Ci) for the container Ci be-
comes either its absolute pathname or relative pathname
from the directory where the container Ci−1 resides. The
shorter one is selected to make the LIC shorter.

4. AN EXPERIMENTAL RESULT
A preliminary experiment was performed on the prototype

system. A filesystem was created from 38 containers. Low
2 bits of graphical image files and low 4 bits of audio files
were used for embedding respectively. The total data size
(not file size) and the total capacity of the containers were
20412344 bytes and 5103085 bytes respectively.

The filesystem image was created in the unit of 4k bytes,
which is the page size of Linux. The block size for the scram-
bling was set to 512 bytes. The capacity threshold VT for
containers was set to 2k bytes.

The size of the filesystem created from the containers was
5095424 bytes. The sizes of the LIC, packet headers and un-
used fragments were 718 bytes, 439 bytes and 6504 bytes re-
spectively. We can find that the ratio of the image size of the
filesystem to the total capacity is about 99.8%. Most of the
capacity was thus devoted to the filesystem image. The aver-
age PSNR of graphical image files was 44.1dB and that of au-
dio files was 74.8dB. Noise added to the containers through
embedding was not perceptible. This result demonstrates
that Crocus enables us to obtain steganographic filesystems
those fairly large and indicates the effectiveness of the frame-
work of Crocus.

5. CONCLUSION AND FUTURE WORK
The steganographic filesystem manager called Crocus is

presented in this paper. A filesystem managed by Crocus is
built in a regular file and is mounted as a normal filesystem.
It can be hidden steganographically into a set of innocent-
looking containers while it is not in use. Crocus enables us
to have hidden filesystems those not based on randomized
volumes.

We can open a hidden filesystem by giving the root con-
tainer and the password for it. We can make a filesystem
as large as we like if we can provide enough containers and

a space to place the file holding its image. We can extend
or shrink filesystems by adding or removing containers. De-
struction of filesystems is also allowed.

A prototype system of Crocus has been implemented for
Linux. A preliminary experiment was performed on the pro-
totype system and the result indicates the effectiveness of
the framework of Crocus.

Crocus hides images of filesystems only and does not hide
filesystems in the active state. It is worth considering to
take another design model where filesystems are always sep-
arately hidden in containers. If we develop a new driver
which interacts with containers for reading or writing hid-
den files directly, filesystems are not entirely visible anymore
even when we use them and extra files holding filesystem im-
ages are not required as well.

Hidden filesystems created by Crocus are fragile. A filesys-
tem corrupts immediately if one of its container is lost. Pro-
viding robustness for hidden filesystems is another impor-
tant issue to make them more suitable for practical use.

The existence of Crocus may attract the attention of at-
tackers. A possible work around is to embed Crocus itself
into a set of containers and to prepare a small boot-strapping
program for extracting it. On installing the boot-strapping
program, we should name it appropriately and adjust its
code carefully through an obfuscation method[2] not to leave
its signature.

6. ACKNOWLEDGEMENT
This research was partially supported by the Ministry of

Education, Culture, Sports and Technology, Government of
Japan, Grant-in-Aid for Scientific Research, 16700096, 2004.

7. REFERENCES
[1] R. Anderson, R. Needham, and A. Shamir. The

steganographic file system. In Information Hiding: 2nd
International Workshop, pages 73–82, 1999. LNCS
1525.

[2] C. Collberg, C. Thomborson, and D. Low. A taxonomy
of obfuscating transformations. Technical Report 148,
Department of Computer Science, University of
Auckland, New Zealand, 1997.

[3] S. Dean. Freeotfe. http://www.freeotfe.org/.

[4] H. Hioki. A scattered hidden file system. In Proceedings
of Pacific Rim Workshop on Digital Steganography
2004, pages 89–95. Kyushu Institute of Technology,
2004.

[5] N. F. Johnson, Z. Duric, and S. Jajodia. Information
Hiding: Steganography and Watermarking – Attacks
and Countermeasures. Kluwer Academic Publishers,
2001.

[6] A. D. McDonald and M. G. Kuhn. Stegfs: A
steganographic file system for linux. In Information
Hiding: 3rd International Workshop, pages 463–477,
2000. LNCS 1768.

[7] H. Pang, K.-L. Tan, and X. Zhou. Steganographic
schemes for file system and b-tree. IEEE Transactions
on Knowledge and Data Engineering, 16(6):701–713,
2004.

[8] SecureStar Ltd. Drivecrypt.
http://www.securstar.com/products drivecrypt.php.

[9] TrueCrypt Foundation. Truecrypt.
http://www.truecrypt.org/.

346

