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ABSTRACT
At CCS’07, a novel identity-based sequential aggregate sig-
nature scheme was proposed and the security of the scheme
was proven under the hardness assumption of a new com-
putational problem called modified LRSW problem. In the
paper, unfortunately, we show that the scheme is universally
forgeable, i.e., anyone can generate forged signatures on any
messages of its choice. In addition, we show that the compu-
tational assumption is not correct by concretely presenting
a constant-time algorithm solving the problem. The contri-
bution of the new scheme and assumption is a natural step
in cryptologic research that calls for further investigation,
which is a step we perform in the current work.

Categories and Subject Descriptors
E.3 [Security and Protection]: Authentication, Crypto-
graphic controls

General Terms
Security

Keywords
Identity-based cryptography, Sequential aggregate signature,
Universal forgery

1. INTRODUCTION
Various information and communication systems frequently

treat many signatures generated by many users on (distinct)
messages. For a primary example, we can consider the Se-
cure Border Gateway Protocol(S-BGP) (and its variants)
[9, 1, 7] which is currently under consideration for standard-
ization by the IETF. In S-BGP, a router should process n
signatures attesting to a path of length n in the network.
One of the main concerns in these contexts is to find an
effective method for compressing a list of signatures to ob-
tain savings on bandwidth and storage while preserving the
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validity of the signatures. To handle this problem, sequen-
tial aggregate signature schemes have been proposed [6, 11,
12]. In a sequential aggregate signature scheme, multiple
signers can sequentially and incrementally generate a short
signature on their own messages such that the single sig-
nature convinces the verifier that the signer indeed signed
the original message. To simplify a public-key manage-
ment, the research on combining identity-cryptography[13]
with the notion of a sequential aggregate signature has been
conducted [8, 2, 3]. An identity-based sequential aggregate
signature(IBSAS) scheme provides the functionality of a se-
quential aggregate signature only using a signer identity such
as an IP address as a public key. In an IBSAS, verifica-
tion information is reduced and so this feature makes IBSAS
schemes practical.

Despite of the (practical and potential) worth of an IBSAS
scheme, the construction of a secure IBSAS scheme is not
simple. In principle, an identity-based signature scheme is
designed in a “2-level hierarchical” signature scheme: That
is, a trusted key generation center generates a signature to
authenticate an identity of a signer and the signer uses the
signature as his private signing key to generate his signature
on a message. Note that the use of randomness is necessary
in order to appropriately hide the secret signing key in an
IBSAS scheme. As observed in [8], the main difficulty in
constructing an IBSAS scheme is caused by the problem
to (non-interactively) aggregate all the randomness used by
signers to generate their signatures. Recently, a novel IB-
SAS scheme was proposed using a design principle that a
message in a signature is tied between a secret signing key
and a randomness [2, 3]. For the security of the proposed
IBSAS scheme, a so-called modified LRSW(M-LRSW) prob-
lem was introduced and the hardness of this problem was
justified in the generic bilinear group model of [4, 5]. (This
model provides the confidence that it is not helpful to ex-
ploit group representation or specific properties of a group
beyond the definition of a bilinear group in solving a com-
putational problem based on the group.)

Unfortunately, though the reduction (not the proof) of [2,
3] is correct, in the paper, we show that the IBSAS scheme is
universally forgeable, that is, anyone can forge the signature
of any messages of its choice. To show this, we concretely
present a forgery algorithm that makes two signing queries
on two messages and generates a forged signature on any
message, which is not one of the two messages, by using the
two valid signatures. Furthermore, we point out that the M-
LRSW problem on which the security of the IBSAS scheme
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is based, is not correctly constructed. Despite of justification
for the hardness of the problem in the generic bilinear group
model in [2, 3], the problem is inherently easy under the
definition of a (algebraic) group. To show that the problem
is not hard, we present a simple constant-time solver to the
problem. Like the forgery algorithm, this only uses two or-
acle queries. The development of assumptions and schemes
based on them and the further scrutiny of assumptions and
schemes is a natural development in cryptography. Thus, we
believe the contribution of [2, 3] in their attempt to increase
our primitives and assumptions is a very valid research step
that we appreciated and view as a step in the natural de-
velopment of cryptographic research. Our contribution is a
natural step in this line of research where newly suggested
methods are being further validated or invalidated.

The rest of this paper is organized as follows: In Section 2,
we review the CCS07-scheme. In Section 3, we present the
scheme is universally forgeable. In Section 4, we show that
the computational assumption for the scheme is not correct.
Finally, we conclude in Section 5.

2. A REVIEW OF THE CCS07-SCHEME
In this section we briefly review the IBSAS scheme in [2,

3]. For more details, refer to [2, 3]. Before presenting the
scheme, we first review bilinear maps and its associated bi-
linear groups.

2.1 Bilinear Pairings
Consider the following setting: G and GT are cyclic groups

of prime order p and g is a generator of G. e : G×G→ GT is
an efficiently computable map with the following properties:

• Bilinear : For all u, v ∈ G and a, b ∈ Zp. e(ua, vb) =
e(u, v)ab.

• Non-degenerate : For all h ∈ G \ {1G}, e(h, h) 6= 1GT .

• Computable: There exists an efficient algorithm to
compute e(u, v) for all u, v ∈ G.

We call an algorithm G that outputs (p,G,GT , e) a bilinear-
group generator and G a bilinear group.

2.2 The IBSAS Scheme
The scheme consists of four algorithms, Setup, Key Deriva-

tion, Signing, and Verification.

- Setup: The algorithm first runs a bilinear-group genera-
tor G on random coins to obtain output (p,G,GT , e)
and chooses a random generators u, v, g ∈ G, and a
random α ∈ Zp, and cryptographic hash functions
H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zp. It returns
mpk = (p,G,GT , e, u, v, g, gα, H1, H2) as its master
public key and msk = α as the corresponding mas-
ter secret key.

- Key Derivation: On input the master secret key msk and
an identity ID ∈ {0, 1}∗, the algorithm returns skID =
H1(ID)α as a user’s private key corresponding to ID.

- Signing: On inputs a user’s secret key skIDi , a message
mi, a list L = ((ID1, m1), ..., (IDi−1, mi−1)), and a
signature σ corresponding to L, the algorithm parses
σ as (X, Y, Z) ∈ G × G × G. (This is skipped for
a first signer, i,e. if i = 1, for whom σ is defined

as (1G, 1G, 1G).) It chooses r ∈ Zp at random. For
a list ((ID1, m1), ..., (IDn, mj)), we let sj denote the
string ID1||m1||...||IDj ||mj for all j = 1, 2, ..., n. The
algorithm computes:

X ′ ← urΠi
l=1H2(sl) ·H1(IDi)

α, Y ′ ← vr ·H1(IDi)
α.

Finally, it returns

(X ·X ′, Y 1/H2(si) mod p · Y ′, Z1/H2(si) mod p · gr).

- Verification: On input public parameters mpk, a list L =
((ID1, m1), ..., (IDn, mn)), and a signature σ corre-
sponding to L, the algorithm first returns 0 if all of
ID1, ..., IDn are not distinct. Then it parses σ as
(X, Y, Z) and verification proceeds as follows. First,
it checks if

e(Y, g)
?
= e(v, Z) · e(

n∏
i

H1(IDi)
1/(Πn

j=i+1H2(sj)), gα).

If not, the algorithm returns 0. If the equation holds,
it computes Z′ ← ZΠn

i=1H2(si) and then checks if

e(X, g)
?
= e(Z′, u) · e(

n∏
i

H1(IDi), g
α).

If the equation does not hold, the algorithm returns 0.
If the equation holds, it returns 1.

3. SECURITY ANALYSIS
In this section we demonstrate that the IBSAS scheme

above is universally forgeable, that is, anyone can forge the
signature of any messages of its choice. Furthermore, we
point out that the hardness assumption for the scheme is
not correct.

3.1 Universal Forgery of the IBSAS Scheme
To show that the IBSAS scheme is universally forgeable,

we construct a concrete forgery method for a signer using
two signatures generated by the signer:

A forger F randomly selects a target identity ID. We
assume that the forger F obtains two signatures σ1 and σ2

for ID on any messages m1 and m2, respectively. This is
a typical attack environment to measure the security of a
signature scheme. Next F freely selects a message m∗ on
which a forged signature will be generated.

For all i = 1, 2, let si = ID||mi and the given signatures

σi = (Xi = uriH2(si)H1(ID)α and Yi = vriH1(ID)α, Zi =
gri). The forger proceeds to generate a forged signature on
the message m∗ as follows:

• For i = 1, 2, the forger F computes wi = H2(si)
−1

(mod p) and

Ti = Xwi
i = (uriH2(si)H1(ID)α)H2(si)

−1

= uriH1(ID)αwi .

• The forger computes w∗ = H2(ID||m∗)−1 (mod p)
and a pair (β1, β2) satisfying the relation,

w1β1 + w2β2 = w∗ (mod p)
β1 + β2 = 1 (mod p)

⇔
(

w1 w2

1 1

) (
β1

β2

)
=

(
w∗

1

)
.

158



We assume that w1 6= w2. Because w1 and w2 are
outputs of a collision-resistant hash function H2, the
case w1 6= w2 occurs with overwhelming probability.
Because the determinant of the above coefficient ma-
trix is nonzero, that is, w1 − w2 6= 0 and (w1 − w2)

−1

(mod p) exists, one can easily computes (β1, β2) using
Linear Algebra as follows;

(
β1

β2

)
=

( 1
w1−w2

−w2
w1−w2−1

w1−w2

w1
w1−w2

) (
w∗

1

)

=

(
w∗−w2
w1−w2−w∗+w1
w1−w2

)
.

• The forger computes X∗ = (T β1
1 T β2

2 )H2(ID||m∗), Y ∗ =

Y β1
1 Y β2

2 , Z∗ = Zβ1
1 Zβ2

2 , and then finally outputs σ∗ =
(X∗, Y ∗, Z∗) as a forged signature on m∗.

Now we show that the presented attack is correct, that is,
σ∗ correctly passes the verification test. Note that

X∗ = (T β1
1 T β2

2 )H2(ID||m∗)

= ((ur1H1(ID)αw1)β1(ur2H1(ID)αw2)β2)H2(ID||m∗)

= (ur1β1+r2β2H1(ID)α(w1β1+w2β2))H2(ID||m∗)

= (ur1β1+r2β2H1(ID)αH2(ID||m∗)−1
)H2(ID||m∗)

= u(r1β1+r2β2)H2(ID||m∗)H1(ID)α,

Y ∗ = Y β1
1 Y β2

2 = (vr1H1(ID)α)β1(vr2H1(ID)α)β2

= vr1β1+r2β2H1(ID)α(β1+β2)

= vr1β1+r2β2H1(ID)α,

Z∗ = Zβ1
1 Zβ2

2 = gr1β1gr2β2 = gr1β1+r2β2 .

Let r = r1β1 + r2β2 (mod p). Then, we obtain that X∗ =

urH2(ID||m∗)H1(ID)α, Y ∗ = vrH1(ID)α, and Z∗ = gr. Be-
cause σ∗ = (X∗, Y ∗, Z∗) has a correct form defined in the
IBSAS scheme, the forged signature σ∗ on the message m∗

and the identity ID is valid.

4. DISCUSSION
The result in [2, 3] is a provable security one. The issue is

that either the proof has a problem or the assumption. Mo-
tivated by this we saw that, though the reduction (not the
proof) of [2, 3] is correct, the computational problem called
M-LRSW problem on which the scheme is based, was not re-
ally hard. Actually, an atomic signature, i.e., a signature of
one user has a similar form to the M-LRSW problem. Like
the signature forgery method in Section 3.1, we can simi-
larly construct a solver to the M-LRSW problem using two
oracle-queries. The main idea of this method is to derive a
system of linear equations related to some public exponents
for messages. First we briefly review the M-LRSW problem
and then present the constant-time solver to the problem.

M-LRSW problem [2, 3]. For (p,G,GT , e) output by a
bilinear group generator G, we define for all a, b ∈ Zp and
g, u, v ∈ G the associated oracle OM-LRSW

g,u,v,a,b (m), which takes
input m ∈ Zp and is defined as

Oracle OM-LRSW
g,u,v,a,b (m)

If m = 0 then return ⊥
r

$← Zp

Return (umrgab, vrgab, gr).

The M-LRSW -advantage of an algorithm A relative to a

bilinear group generator G is defined as AdvM-LRSW
G (A)

def
=

Pr[C = (m′, um′xgab, vxgab, gx) : (p,G,GT , e)
$← G; g, u, v

$←
G; a, b

$← Zp; C
$← AO

M-LRSW
g,u,v,a,b(·)(g, u, v, ga, gb)], where m′ ∈

Zp has not been queried to the oracle.

A Constant-Time Solver of the M-LRSW problem.
A solver A selects two distinct messages m1, m2 and is-
sues them to the M-LRSW oracle, and then obtains two
outputs C1 and C2 where Ci = (mi, Xi = umirigab, Yi =
vrigab, Zi = gri) for i = 1, 2. Then the solver A performs
the followings:

• First A selects a message m′ ∈ Zp such that m′ 6= mi

for i = 1, 2.

• A computes (β1, β2) satisfying the following relation
(modulo p),

m−1
1 β1 + m−1

2 β2 = m′−1

β1 + β2 = 1

⇔
(

m−1
1 m−1

2

1 1

) (
β1

β2

)
=

(
m′−1

1

)
.

Because p is a prime number, there exists multiplica-
tive inverse elements m−1

1 and m−1
2 for nonzero m1, m2

in Z∗p. Furthermore m1 and m2 are distinct, m−1
1 6=

m−1
2 (mod p). Hence the unique solution (β1, β2) for

the above system of linear equations can be easily com-
puted as follows:

β1 =
m′−1−m−1

2
m−1

1 −m−1
2

and β2 =
−m′−1+m−1

1
m−1

1 −m−1
2

(mod p).

• The solver A computes X ′ = ((X
m−1

1
1 )β1(X

m−1
2

2 )β2)m′ ,

Y ′ = Y β1
1 Y β2

2 , and Z′ = Zβ1
1 Zβ2

2 .

• Finally A returns a solution (X ′, Y ′, Z′) on the mes-
sage m′.

It is obvious to show that the present method is correct, that
is, the output (X ′, Y ′, Z′) on the message m′ is valid. Note
that: Let x = r1β1 + r2β2 (mod p). We have

X ′ = ((X
m−1

1 mod p

1 )β1(X
m−1

2 mod p

2 )β2)m′

= (ur1β1+r2β2)m′gab(m−1
1 β1+m−1

2 β2)m′ = uxm′gab,

Y ′ = (vr1gab)β1(vr2gab)β2 = vr1β1+r2β2gab(β1+β2)

= vxgab,

Z′ = Zβ1
1 Zβ2

2 = (gr1)β1(gr2)β2 = gr1β1+r2β2 = gx.

In [2, 3], the hardness of the M-LRSW problem was jus-
tified in the generic bilinear group model of [4]. The generic
group model [14] is used to show that it is not helpful to
use group representation or specific properties of a group
beyond the definition of a group in solving a computational
problem based on the group. The generic bilinear group
model was introduced in [4, 5] to make confidence in new
cryptographic assumptions in bilinear groups by extending
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the generic group model to the bilinear group setting. How-
ever, the problem is intrinsically easy in the definition of a
group as previously shown.

Remark Despite of a similarity of the M-LRSW problem to
the original LRSW problem [10], the above method is not
similarly applied to the LRSW problem. This is because
a random group element is selected and it is used for all
components in output of each oracle query of the LRSW
problem.

5. CONCLUSION
We presented that the IBSAS scheme in [2, 3] is uni-

versally forgeable and the MLRSW problem on which the
security of the scheme is based, is incorrect by concretely
presenting constant-time algorithms.

To date, to the best of our knowledge, there is only known
the identity-based aggregate signature scheme in [8]. How-
ever, this scheme has a drawback that signers should agree
on a fresh nonce in advance and the use of the common nonce
should be ‘one-time’ and so a restriction in a non-interactive
environment.

It remains an interesting open problem to construct an
efficient IBSAS scheme without specific constraints under a
reasonable computation assumption.
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