
D-Algebra for Composing Access Control Policy
Decisions∗

Qun Ni
Purdue University, USA

ni@cs.purdue.edu

Elisa Bertino
Purdue University, USA

bertino@cs.purdue.edu

Jorge Lobo
IBM T.J. Watson, USA

jlobo@us.ibm.com

ABSTRACT
This paper proposes a D-algebra to compose decisions from
multiple access control policies. Compared to other algebra-
based approaches aimed at policy composition, D-algebra is
the only one that satisfies both functional completeness (any
possible decision matrix can be expressed by a D-algebra
formula) and computational effectiveness (a formula can be
computed efficiently given any decision matrix). The D-
algebra has several relevant applications in the context of
access control policies, namely the analysis of policy lan-
guages decision mechanisms, and the development of tools
for policy authoring and enforcement.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General—
security and protection; D.4.6 [Operating Systems]: Secu-
rity and Protection—Access Controls; K.6.5 [Management
of Computing and Information Systems]: Security and
Protection

General Terms
Management, Security, Standardization

Keywords
Many-valued Logic, MV-Algebras, Policy Composition, De-
cision

1. INTRODUCTION
In order to satisfy various access control requirements

from different kinds of applications, modern access control

∗The work reported in this paper has been partially sup-
ported by IBM under the OCR project “Privacy and Se-
curity Policy Management”, the NSF grant 0712846 “IPS:
Security Services for Healthcare Applications”, and MURI
award FA9550-08-1-0265 from the Air Force Office of Scien-
tific Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’09 March 10-12, 2009, Sydney, NSW, Australia.
Copyright 2009 ACM 978-1-60558-394-5/09/03 ...$5.00.

policy languages, such as XACML, usually adopt a hier-
archical structure to organize policies (e.g. rules � poli-
cies � policy sets) and sophisticated methods to answer an
access request. Given a request, several rules/policies in
an XACML policy set may be applicable. Some applica-
ble rules/policies may evaluate to “permit” (their effects are
“permit”, referred to as “positive rules”), but others may
evaluate to “deny” (their effects are “deny”, referred to as
“negative rules”). Even more complicated, some rule/policy,
including both positive rules and negative rules, may eval-
uate to “indeterminate”, i.e., whether this rule/policy is ap-
plicable or not cannot be determined due to missing infor-
mation or errors, e.g. values of some attributes used in
the rule/policy cannot be retrieved during evaluation. To
combine these conflicting decisions into one final decision,
XACML allows policy authors to specify, in a policy or a pol-
icy set, a rule/policy combining algorithm from a set of pre-
defined standard algorithms. Examples of such algorithms
include “deny-overrides” and “permit-overrides”. Although
a lot of common sense and practical experience went into
the decisions behind the XACML rule and policy combina-
tion algorithms, the decision model lacks formal semantics
and therefore unintended results may be generated by these
standard policy combination algorithms.

As an example consider a policy set ps1 that consists of
two policies p1 and p2 (see Figure 1). Moreover assume
that r1 and r2 are positive rules in p1 and p2, respectively.
For a given access request, if r1 evaluates to “permit” and
r2 evaluates to “indeterminate”, we would expect the final
result of ps1 for the access request is “permit”. If there
is no error or no missing information r2 can only evaluate
to either “permit” or “not applicable”. If r2 evaluates to
“permit”, the final effect is “permit”, and if r2 evaluates to
“not applicable”, the final effect is “permit” too. However,
based on the standard policy combining algorithm provided
in XACML 2.0 and 3.0 WD 6, ps1 returns “deny”. The rea-
son for such an unintended result is that the meaning of
“indeterminate” is overloaded, which indeed may represent
different access decisions. XACML policy combining algo-
rithms cannot distinguish these different “indeterminate”,
thus may generate such an unintended result. Indeed, as
indicated in Section 4.2, all standard policy combining algo-
rithms suffer from some problems.

The lack of formal semantics in a decision model results
in not only unintended decision composition but also in-
appropriate access control policy decision evaluation. For
instance, the rule evaluation truth table and policy evalua-
tion truth table in XACML, which determine the decision

298

ps1

deny-overrides

p1

deny-overrides

p2

deny-overrides

r1

permit

r2

permit

ps2

deny-overrides

p3

deny-overrides

r1

permit

r2

permit

Figure 1: Policy set ps1 and ps2

of a rule or a policy given an access request, contain some
inappropriate entries (detailed in Section 4.1).

Therefore, there is a strong need to develop a decision for-
malism suitable for modeling decisions in the context of ac-
cess control that addresses the above drawbacks. D-algebra
(D stands for decision) is presented in this paper to meet
the need. The powerset interpretation (P-interpretation)
of D-algebra is able not only to highlight drawbacks from
XACML rule/policy evaluation truth tables and policy com-
bining algorithms but also to provide solutions to problems
identified. Furthermore, D-algebra can go beyond XACML
by supporting other decision combining algorithms, e.g. ma-
jority voting, and expressing and composing decisions other
than those defined by XACML.

In this paper we provide a number of other contributions
as well:

• We give a proof of the functional completeness of the
D-algebras. The importance of functional complete-
ness is that given an arbitrary n dimensional decision
matrix, the corresponding decision function can be ex-
pressed by operations in D-algebra.

• We develop a fine-grained method for the composition
of rule decisions. Unlike the current XACML compo-
sition approach that only allows a single rule combing
algorithm per set of rules in a policy, a decision ex-
pression can precisely control decision composition of
any two rules.

• We show that a rational number interpretation (R-
interpretation) of the D-algebra can be used to pro-
cess popular majority voting schemes. Majority voting
represents a different composition methodology from
standard combination algorithms in XACML and is
elaborated in Section 6.

• We propose an algebra-based PDP (Policy Decision
Point) design. One of the benefits of such design is that
under a collaborating environment all PDPs can pro-
cess user-defined combining algorithms from all partic-
ipants.

The remaining of this paper is organized as follows: Sec-
tion 2 discusses the motivation; Section 3 introduces the D-
algebra, its P-interpretation, and the concepts of its func-
tional and computational effectiveness; Section 4 analyzes
issues concerning the policy decision mechanism of XACML
and presents corresponding solutions; Section 5 discusses
a method for expressing fine-grained decision requirements;
Section 6 shows that the D-algebra can handle popular ma-
jority voting schemes; Section 7 discusses how the D-algebra

can be used in a system for policy authoring and enforce-
ment; Section 8 discussees related work. Section 9 concludes
the paper and outlines future research directions.

2. MOTIVATION
There are intrinsic connections between XACML deci-

sions, many-valued Lukasiewicz logic [15], referred to as L∞,
and D-algebra. In this section, we briefly discuss the moti-
vation of D-algebra.

 L∞ is a many-value logic based on the rational numbers.
Because each rule in XACML may evaluate to multiple dif-
ferent values, such as “permit”, “deny”, “not applicable”, or
“indeterminate” and these values may have to be further
combined to generate a final decision, a L∞ logic would
seem a reasonable choice in that we may be able to use dif-
ferent rational numbers to represent different decisions and
use connectives of L∞ to express decision algorithms.

Although we can exploit the power of the soundness and
completeness theorem [20, 10] for the whole class of L∞ log-
ics, such logics cannot be directly applied to XACML policy
decision-making for three reasons. First, the standard L∞
logic is not functionally complete. That means that some
theorems of L∞ are not expressible by its logic connectives.
In other words, some decision composition algorithms exist
that cannot be expressed by L∞ logic formulae. For in-
stance, first-applicable in XACML cannot be expressed by
 L∞ formulae.

Second, the rational number semantics of L∞ logics is
not an appropriate representation for various decisions of
XACML policies because the representation defines a total
order among decisions prior to any policy composition prin-
ciple. In order to handle the most general case, a fair treat-
ment of each decision is required before the introduction of
any policy composition principle.

Last but not least, L∞ logics is not computationally ef-
fective. By computational effectiveness we mean that for a
functionally complete logics the computational complexity
of its formula construction based on any given 2-D decision
matrix remains tractable w.r.t. the number of decisions.
The importance of computational effectiveness is motivated
by the need of developing automatic tools able to assist pol-
icy authors when constructing composition formulae given
some decision composition requirements. To the best of our
knowledge, the computational effectiveness of many-valued
logics in the sense described above has not been yet investi-
gated.

These drawbacks of L∞ motivate D-algebra, an extension
to the MV-algebra [9] proposed for describing the algebraic
semantics of L∞ logic.

3. D-ALGEBRA
To be general, we use a set, referred to as a decision set, to

formalize access control decisions. The decision set, together
with some operations on it, forms the D-algebra.

Definition 1. Let D be a nonempty set of elements, 0 be a
constant element of D, ¬ be a unary operation on elements
in D, and ⊕,⊗ be binary operations on elements in D. A
D-algebra is an algebraic structure 〈D,¬,⊕,⊗, 0〉 closed on
¬,⊕,⊗ and satisfying the following axioms:

1. x⊕ y = y ⊕ x

2. (x⊕ y)⊕ z = x⊕ (y ⊕ z)

299

3. x⊕ 0 = x

4. ¬¬x = x

5. x⊕ ¬0 = ¬0

6. ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

7. x⊗ y =

{
¬0 : x = y

0 : x 6= y
2

Some readers may be curious about the meaning of ¬0.
If there is an order, either a total order or a partial order,
on D, 0 usually represents the minimal or the least element
in D. ¬0 is another constant of D with a “complementary”
meaning. For instance, if element 0 represents number 0,
where D = [0, 1], then ¬0 represents number 1. If element
0 represents an empty set in a powerset, then ¬0 represents
the largest member in the powerset.

The binary operation ⊕ can be understood as a strong
disjunction (the negation of the strong conjunction in L∞).
One natural question is why D-algebra does not support
absorption law, that is x ⊕ x = x. At first sight it seems
reasonable that two equal decisions yield the same decision.
However, disjunction in a many-valued logic does not always
follow the absorption law. For instance, in majority voting,
the truth degree of the disjunction of two permits is greater
than each independent permit even if each permit has the
same truth degree. Assuming the absorption law actually
limits the expressiveness of D-algebra.

The differences between a D-algebra and a MV-algebra
are the new operation ⊗ and axiom 7. The intuition un-
derlying axiom 7 is that there is a need for an equality test
on two decisions when composing decisions. For instance,
in order to realize the permit-overrides we may have to test
whether one of the operands is permit or not, and ⊗ is in-
troduced for this purpose. If two decisions are equal, ¬0,
the largest or biggest element in D. is returned. Otherwise,
0, the smallest element, is returned. The motivation of such
a definition comes from axiom 3 and 5 which play key roles
in the functional completeness of D-algebra.

We will see that even if all basic operations supported
by D-algebra are commutative, it does not mean that only
policy combining algorithms that are commutative are ex-
pressible by D-algebra. Later, we will see how D-algebra is
used to express a first-applicable algorithm.

In order to write formulas and proofs in a compact form
we also introduce the � and 	 operations in a D-algebra.

Definition 2. Let 〈D,¬,⊕,⊗, 0〉 be a D-algebra. x� y =
¬(¬x⊕ ¬y), and x	 y = x� ¬y where x, y ∈ D. 2

The interpretation of a D-algebra depends on the applica-
tion and relevant composition principles. We take XACML
as an example. If all relevant attribute values are retrievable
and there are no errors, all policy rules in XACML, given a
request, must evaluate to only one of these decisions: “per-
mit”, “deny”, or “not applicable” (due to the no-match of
a rule target or an unsatisfied rule condition). We refer to
such decisions as deterministic decisions. To write XACML
decisions in a compact form, we use the following set nota-
tions: {p} denotes “permit”, ‘{d} denotes “deny”, and {n

a
}

denotes “not applicable”.
During the evaluation of a positive rule, it is possible that

the value of a subject attribute used in the rule condition

cannot be retrieved. Therefore, the decision of this rule is
indeterminate, in that it could be either permit or not appli-
cable; we denote this case by the set {p, n

a
} and refer to it as

a non-deterministic decision. A similar set {d, n
a
} denotes

the non-deterministic decision of “deny” rules. Now suppose
that two non-deterministic decisions {p, n

a
} and {d, n

a
} are

returned for a request and the “deny takes precedence” prin-
ciple is used. It is obvious that the final decision should
be the set of all possible combinations between elements in
these two decisions, that is, {p, d, n

a
}1.

Based on this observation, one possible interpretation of
a D-algebra on XACML decisions, referred to as a
P-interpretation (P stands for “power set”), is as follows:

• D is represented by the power set of the set of deter-
ministic decisions {p, d, n

a
}.

• 0 is represented by ∅.

• ¬x is represented by {p, d, n
a
} − x where x ∈ D.

• x⊕ y is represented by x ∪ y where x, y ∈ D.

• ⊗ is defined by axiom 7.

Someone may be confused by the definition of 0 and ¬0
as access decisions in the P-interpretation. Basically, 0 here
represents the simplest decision that is nothing, for instance,
if there is no rule in a XACML policy, referred to as an
empty policy, the policy decision should be an empty set 2.
There is a difference between an empty set decision and a
“not applicable” decision. An empty set decision for a policy
represents the situation in which there is simply no rule in
the policy while a not applicable decision represents the sit-
uation in which there is at least one rule but not applicable.

On the contrary, ¬0 represents the most complicated de-
cision in D, that is {p, d, n

a
}. The decision, though non-

deterministic, is the most complicated decision an XACML
policy can make, which means the decision can be one of
“permit”, “deny”, or “not applicable” but not sure which of
them should be taken. The P-interpretation obeys all ax-
ioms for a D-algebra and all operations are closed on D.

In the P-interpretation, the equality test of two permits
yields a non-deterministic decision {p, d, n

a
}. Such a situ-

ation may looks strange but indeed is meaningful because
only the non-deterministic decision ensures axiom 5 in the
P-interpretation.

In what follows we will show how the P-interpretation
of D-algebras can be used to analyze the XACML standard
decision-making mechanisms. Sometimes the P-interpretation
of D-algebras may be called a 8-valued D-algebra because
the cardinality of D is 8.

Since in our D-algebra only three operations ⊕, ⊗ and
¬ are introduced, a natural question that arises is: “can
the three operations express all possible decision composi-
tion principles?” This question is equivalent to the question
about the functional completeness of logical connectives for
a corresponding many-valued logic system, that is: “do more
connectives increase the expressiveness of a logic system?”
The following theorem answers the question.

1Interestingly, if the “permit takes precedence” principle is
adopted, the final decision is the same!
2XACML does not give a definition for this situation.

300

Definition 3. The operation set of an algebra is function-
ally complete if and only if any function in the algebra, given
its truth table, is expressible by operations in the set.

Theorem 1. {⊗,⊕,¬} is functionally complete.

The proof of the functional completeness of {⊗,⊕,¬} is
discussed in the next section. 3 Theorem 1 shows the impor-
tance of introducing ⊗ and axiom 7 in the D-algebra. The
reader is reminded that {¬,⊕} is functionally complete for
a Boolean algebra. This is because ⊗ can be expressed using
{¬,⊕}: x⊗ y = ¬(¬(¬x⊕ y)⊕ ¬(x⊕ ¬y)).

3.1 Computational Effectiveness
As mentioned in the introduction, the computational ef-

fectiveness of a D-algebra means that a tractable algorithm
exists for efficiently constructing a formula corresponding to
any given 2-D decision matrix. A decision matrix for an
algebra formula is similar to a truth table for a logic for-
mula. When used to express composition principles, a for-
mula sometime may be a better choice than a decision ma-
trix. For instance, if the number of decisions is very large
and the relevant decision matrix is very sparse, a formula
may be a better choice. Moreover, when decision formulas
have been embedded in policies, a formula usually is a better
choice than its corresponding decision matrix.

In this section, we propose a method for constructing a
decision formula directly from an 8-valued D-algebra. The
construction procedure, albeit not formal, can be considered
as a proof of the first part (the functional completeness of
{⊗,⊕,¬}) of Theorem 1 because all construction steps are
interpretation-independent. In other words, for any inter-
pretation of the D-algebra, the approach for constructing
the proof is the same.

𝑠𝑓∅,∅ 𝑥, 𝑦 decision matrix 𝑠𝑓∅,{𝑝} 𝑥, 𝑦 decision matrix

…

𝑠𝑓∅,{𝑝 ,𝑑 ,𝑛
𝑎

} 𝑥, 𝑦 decision matrix

𝑥 \ 𝑦 ∅ 𝑝 … 𝑝, 𝑑,
𝑛

𝑎
 𝑥 \ 𝑦 ∅ 𝑝 … 𝑝, 𝑑,

𝑛

𝑎
 𝑥 \ 𝑦 ∅ 𝑝 … 𝑝, 𝑑,

𝑛

𝑎

∅ 𝛼 ∅ … ∅ ∅ ∅ 𝛽 … ∅ ∅ ∅ ∅ … 𝛾
 𝑝 ∅ ∅ … ∅ 𝑝 ∅ ∅ … ∅ 𝑝 ∅ ∅ … ∅
… … … … … … … … … … … … … … …

 𝑝, 𝑑,
𝑛

𝑎
 ∅ ∅ … ∅ 𝑝, 𝑑,

𝑛

𝑎
 ∅ ∅ … ∅ 𝑝, 𝑑,

𝑛

𝑎
 ∅ ∅ … ∅

Figure 2: Decision Matrices for Subfunctions

Consider the matrix represented in Table 1. Each row and
each column in the matrix is associated with a unique label
from the set of decisions. For example, an entry (i, j) with
the ith row label and the jth column label in such a ma-
trix represents the decision taken according to the permit-
overrides combination principle when the inputs are the ith
row label and the jth column label. The idea for construct-
ing the corresponding compositing function f(x, y) is to con-
struct 64 subfunctions sfi,j(x, y), one for each cell first,
where i and j represent the row label and the column la-
bel of the cell, respectively. The composed decision of each
subfunction sfi,j(x, y) is the decision in the cell when its in-
put (x, y) corresponds to the cell position, i.e. when i = x
and j = y. Otherwise the composed decision is ∅. Fig-
ure 2 shows decision matrices for subfunction sf∅,∅(x, y),
sf∅,{p}(x, y), and sf∅,{p,d,n

a
}(x, y). In these matrices, only

3The proof that {⊕,¬} is not functionally complete is dis-
cussed in the appendix.

when the input (x, y) corresponds to the relevant position,
the result is different from ∅. We denote such values with
Greek letters such as α, β, or γ. If we can construct these
64 subfunctions, the final decision function is as follows:

f(x, y) = sf∅,∅(x, y)⊕ sf∅,{p}(x, y)⊕⊕ sf{p,q,n
a
},{p,q,n

a
}(x, y)

Table 1: Permit-Overrides Decision Matrix
x�y ∅ {p} {d} {n

a
} {p, d} {p, n

a
} {d, n

a
} {p, d, n

a
}

∅ ∅ {p} {d} {n
a
} {p, d} {p, n

a
} {d, n

a
} {p, d, n

a
}

{p} {p} {p} {p} {p} {p} {p} {p} {p}

{d} {d} {p} {d} {d} {p, d} {p, d} {d} {p, d}

{n
a
} {n

a
} {p} {d} {n

a
} {p, d} {p, n

a
} {d, n

a
} {p, d, n

a
}

{p, d} {p, d} {p}{p, d} {p, d} {p, d} {p, d} {p, d} {p, d}

{p, n
a
} {p, n

a
} {p}{p, d} {p, n

a
} {p, d} {p, n

a
} {p, d, n

a
}{p, d, n

a
}

{d, n
a
} {d, n

a
} {p} {d} {d, n

a
} {p, d}{p, d, n

a
} {d, n

a
} {p, d, n

a
}

{p, d, n
a
} {p, d, n

a
}{p}{p, d}{p, d, n

a
}{p, d}{p, d, n

a
}{p, d, n

a
}{p, d, n

a
}

Now the problem becomes how to construct each subfunc-
tion. Assume that the decision of a cell (φ, ϕ) is ψ, we can
construct a corresponding subfunction as follows:

sfφ,ϕ(x, y) = ψ � (φ⊗ x)� (ϕ⊗ y)

(φ ⊗ x) � (ϕ ⊗ y) evaluates to ¬∅ if and only if x = φ and
y = ϕ and to be ∅ otherwise. Therefore, ψ � (φ⊗ x)� (ϕ⊗
y) evaluates to ψ if and only if x = φ and y = ϕ and ∅
otherwise. For instance, the subfunction of cell (∅, {p}) in
Figure 2 sf∅,{p}(x, y) = β � (∅ ⊗ x) � ({p} ⊗ y). It is easy
to see that the complexity of the construction only depends
on the number of cells in a decision matrix, that is, O(n2)
assuming n to be the number of decisions.

It should be noted that in practice we construct the com-
position function by considering the patterns of the decision
matrix. Usually we can obtain a much terser function than
the lengthy function built by the mechanical steps (see Sec-
tion 4.3). The mechanical steps are useful for some worst
situation, for example when the distribution of decisions in
the matrix is totally random, and for automatically comput-
ing composition functions (see Section 7.1).

Up to now we only discuss composition functions based
on 2-D decision matrices. The same idea can be applied to
higher dimensional decision matrices as well, e.g. 3-D deci-
sion matrices and even m-D decision matrices. The number
of arguments of corresponding functions are the dimensions
of relevant matrices. It is straightforward for us to show that
the complexity of such a function construction is O(nm) as-
suming n to be the number of decisions and m to be the
number of dimensions.

2-D decision matrices are suitable for some general de-
cision combination principles, e.g. permit-overrides, which
can be realized by pair-wisely combining decisions. Higher
dimensional matrices might be useful for some special cases.
For instance, a special combination principle may require
that each decision combination must include 3 rules simul-
taneously and the final decision is “permit” if and only if the
first rule and the second rule evaluate to “permit” and the
third rule evaluates to “deny”.

In this paper, we only focus on composition functions
based on 2-D decision matrices because higher dimensional
decision matrices do not provide obvious benefits. First,
popular combination principles like all standard combina-
tion algorithms in XACML and majority voting can be real-
ized by pair-wisely combining decisions. We actually cannot

301

find a popular combination principle that cannot be realized
pair-wisely. Second, a pair-wise combination might be the
most natural and popular way for human beings to aggre-
gate decisions and can help avoid some tricky issues. For
instance, if a decision combination principle must include
3 rules simultaneously like the example mentioned above,
we have to define some additional rule in order to use this
principle to combine decisions from 4 rules.

4. CASE STUDY: XACML
We now show the application of the D-algebra to XACML 4

based on a P-interpretation. We discuss how we can ap-
ply a P-interpretation to accurately express a rule evalua-
tion truth table and how decision matrices and composition
functions are used to address the problems in standard pol-
icy combining algorithms. The advantage of the D-algebra
becomes clear especially when handling the composition of
non-deterministic decisions.

4.1 Evaluation of Rule, Policy, and Policy Set
To answer a request w.r.t. a XACML policy set ps, all or

some of applicable inner policy sets, policies, and rules con-
tained in ps first evaluate to some intermediate decisions.
Those intermediate decisions are then combined according
to the policy and rule combining algorithms defined in ps to
return the final decision. In what follows, we first present the
XACML evaluation truth tables for rules and policies, then
identify issues in these tables using the P-interpretation,
and finally propose a revised truth table based on the P-
interpretation. XACML specifies that rule evaluation in-
volves a separate evaluation of the rule’s target and con-
dition; the rule truth table used by XACML is shown in
Table 2.

Table 2: Rule Truth Table
Target Condition Rule Value

Match True Effect

Match False Not Applicable

Match Indeterminate Indeterminate

No-match Don’t care Not Applicable

Indeterminate Don’t care Indeterminate

A target defines the set of requests to which the rule is
intended to apply in the form of a logical expression on at-
tributes in the request. The condition element may further
refine the applicability established by the target. “Don’t
Care” in the table means that the condition is simply ignored
and thus is not evaluated. There are two missing cases in
Table 2. The cases of an empty target and an empty con-
dition in a rule are allowed by the XACML standard but
the truth table in the XACML standard does not show how
to process an empty target and an empty condition. The
XACML standard says that if there is no target in a rule,
the value of the empty target should be the same as the value
of the target of the policy containing the rule. If the condi-
tion is missing, its evaluation is true based on the semantics
of the XACML language model. There are two problems
in the truth table. First, even if the target value is “in-
determinate”, the rule value need not be “indeterminate”.
If some attribute values in the target cannot be retrieved

4Issues discussed here apply to both XACML 2.0 and
XACML 3.0 WD 6.

during evaluation, the target evaluates to “indeterminate”.
However, if the value of the condition is false, the rule value
indeed is “not applicable” because whatever the target value
is, either match or no-match, the rule value is always “not
applicable” in this situation. Inappropriate “indeterminate”
here may result in a wrong final composed decision. An-
other problem is that “indeterminate” represents too many
different values which is the key reason behind the inappro-
priate decision result from the policy combining algorithms
(discussed in Section 4.2).

The revised truth table based on the P-interpretation is
shown in Table 3. Values of a target and a condition are two
P-interpretations represented by deterministic decision sets
{m,n} and {t, f} respectively, and an effect is a Boolean
algebra {p, d}5. As discussed before, the rule value, that
is, its decision, is a P-interpretation on a deterministic de-
cision set {p, d, n

a
}. m,n, t, f, p, d, n

a
represent “match”, “no-

match”, “true”, “false”, “permit”, “deny”, and “not applica-
ble” respectively. “−” in Table 3 denotes “don’t care”. “,” in
Table 3 denotes “OR” relation between different condition
evaluation results.

Table 3: Revised Rule Truth Table
Target Condition Effect Rule Value

{n} − − {n
a }

− {f} − {n
a }

{m} ∅, {t} {p} {p}
{m} ∅, {t} {d} {d}
{m} {t, f} {d} {d, n

a }
{m, n} ∅, {t}, {t, f} {d} {d, n

a }
{m} {t, f} {p} {p, n

a }
{m, n} ∅, {t}, {t, f} {p} {p, n

a }

The semantics of Table 3 is easily understood. The case
in which a target value equals to ∅ is not included in Table 3
because in this situation the target value of its containing
policy has already been evaluated and the PDP can simply
follow the corresponding entry to evaluate the rule6.

Compared to Table 2, Table 3 is more precise and differ-
ent “indeterminate” values are clearly distinguished. Careful
readers may notice that some rule values are missing from
Table 3, e.g. {p, d}, {p, d, n

a
}. These values cannot be di-

rectly generated by the rule evaluation but can be generated
by rule composition functions.

XACML provides a policy truth table (Table 4). It is un-
necessary to list the 3 cases which all refer to the case of
the target value equal to “match”. The second case directly
specifies the policy value to be “not applicable” by skipping
the rule combining algorithm. This is not a good design.
On the one hand, to verify all rule values, a PDP has to
evaluate each rule, which is not much different from running
a rule-combining algorithm. On the other hand, the table
prevents a non-standard combining algorithm from adopting
other combining strategies, e.g., “deny”. Another problem is
that a policy with an “indeterminate” target value does not
necessarily evaluate to “indeterminate”, for instance, when
all rule conditions evaluate to “false”, the policy should re-

5We assume that effects of rules cannot be empty or some
wrong values and are always retrievable from a PDP.
6XACML does not clearly define the relation between the
target of a containing policies and targets of inner rules. For
simplicity, we assume in this paper that the scope of a policy
target contains the union of scopes of all inner rules.

302

turn “not applicable” instead of “indeterminate”. A revised
policy truth table is shown in Table 5.

Table 4: Policy Truth Table
Target Rule Value Policy Value

Match At least one rule Specified by the rule-

value is its Effect combining algorithm

Match All rule values Not Applicable

are “Not Applicable”

Match At least one rule value Specified by the rule

is “Indeterminate” -combining algorithm

No-match Don’t care Not Applicable

Indeterminate Don’t care Indeterminate

Table 5: Revised Policy Truth Table
Target Policy Value

{m}, {m, n} Specified by the rule-combining algorithm

{n} {n
a }

XACML also provides a policy set truth table which is
the same as Table 4 except that the term “rule” is replaced
by the term “policy”. Both cases, revised according to our
approach, are covered in Table 5.

4.2 Rule/Policy Combining Algorithms
XACML defines five standard rule combining algorithms

and six standard policy combining algorithms. However,
due to the overloaded meaning of “indeterminate”, all pol-
icy combining algorithms, including deny-overrides, permit-
overrides, first-applicable, and only-one-applicable, can gen-
erate inappropriate decisions. The deny-overrides rule com-
bining algorithm and permit-overrides rule combining algo-
rithm behave as expected because different “indeterminate”s
are distinguishable at rule level. Unfortunately, “indetermi-
nate”s becomes indistinguishable at policy level.

As mentioned in the previous section, the key reason be-
hind inappropriate decisions is that the “indeterminate” de-
cision adopted in XACML represents too many different non-
deterministic decisions. Clearly, “indeterminate” {p, n

a
} is

different from “indeterminate” {d, n
a
}. Even though at rule

level the combining algorithms can distinguish between these
two different “indeterminate”s by using local information,
the local information is lost at policy level because of the
vague “indeterminate”. The problem of the deny-overrides
algorithm is shown in the introduction. The reason behind
this problem is that a policy combining algorithm cannot
distinguish indeterminate {p, n

a
} from indeterminate {d, n

a
}

and has to adopt a conservative approach by assuming all
“indeterminate”can possibly take the d (“deny”) value which
is not sufficiently precise and leads to inappropriate deci-
sions. Because the problem of permit-overrides is similar to
that of the deny-overrides algorithm, its discussion is omit-
ted.

The problem of first-applicable algorithm is that when
it encounters an “indeterminate” the algorithm immediately
returns “indeterminate”. However, if the first “indetermi-
nate” is {p, n

a
} and a next rule returns {p}, it is reasonable

that “permit” instead of “indeterminate” should be returned
in this case. If no error happens and the first “indetermi-
nate” is actually {p}, then “permit” should be returned. If
no error happens and the first “indeterminate” is actually
{n
a
}, then “permit” should be returned as well.

Even without considering the inappropriate representa-
tion of “indeterminate”, the only-one applicable policy com-
bining algorithm does not have a good design. The main
problem is that the algorithm verifies whether a policy is
applicable or not only by the target of the policy: “In the
entire set of policies in the policy set, if no policy is consid-
ered applicable by virtue of its target, then the result of the
policy-composition algorithm SHALL be not applicable. If
more than one policy is considered applicable by virtue of its
target, then the result of the policy-composition algorithm
SHALL be Indeterminate.” [18]

There is one potential problem with such a target-based
strategy. Assume that policy p1 contains rules r1, r2 and
r3; suppose that those rules have the scopes shown in Fig-
ure 3 (such scopes are allowed by XACML). Let q denote
an access request. Obviously, based on the algorithm, p1 is
applicable to q. However, no rule in p1 is really applicable
to q. Moreover, even if there is a rule target matching q, if
the rule condition is false, the rule is still not applicable to q.
Thus the correct answer of p1 in these two cases should be
“not applicable” instead of “applicable”. If there is a policy
p2 following p1 which evaluates to “permit”, the composi-
tion decision from p1 and p2 is “indeterminate” based on the
XACML only-one applicable algorithm but should be “per-
mit” based on our analysis. The key observation is that a
policy target can only be used to exclude the not applicable
case (if a policy target evaluates to “no match”) and cannot
be used to identify any other cases. In order to obtain an
appropriate answer, the algorithm should look at each inner
rule in the policy: a policy is applicable to a request if and
only if there exists at least one rule in the policy applicable
to the request. The XACML version certainly has better
efficiency, but we believe that for some situation users may
want to get a more precise answer.

Rule r1 Target
Rule r2 Target

Rule r3 Target

Policy P1 Target

q

Figure 3: Target Scope

Another problem of the algorithm appears in the return
value when two or more applicable policies exist. The algo-
rithm returns “indeterminate”. In this case a PDP cannot
distinguish a policy set that returns a regular “indetermi-
nate” decision such as {p, n

a
} from a policy set that returns

an “indeterminate” decision due to the violation of a com-
position principle that is two or more policies in the policy
set are applicable. These two “indeterminate” values really
have very different semantics. To precisely capture the sub-
tle difference, we need a new deterministic decision“error” in
the 8-valued P-interpretation, which in turn becomes a 16-
valued P-interpretation 7. One possible effect of the “error”
decision during rule and policy composition is that the “er-
ror”decision overrides any other decisions and propagates up
to the highest level PDP. The behavior of the “‘error” deci-
sion is similar to the exception concept in modern program-
ming languages. In what follows, we stick to the 8-valued

7Due to space reason we do not adopt a 16-valued P-
interpretation. The structure is very similar to the 8-valued
interpretation.

303

P-interpretation.

4.3 Standard Composition Functions
A systematic solution, based on the P-interpretation, is

presented for each standard combining algorithm. Instead of
writing pseudo algorithms, we construct composition func-
tions. The benefits of this approach are discussed in Sec-
tion 7. For space reasons, we only use the permit-overrides
as an example to show the procedure for constructing a
composition function. For other composition algorithms, we
only present the composition function without giving a de-
tailed discussion.

The permit-overrides principle specifies the following de-
cision precedence (order) for each deterministic decision:
{p} > {d} > {n

a
}. If any two of these deterministic de-

cisions have to be combined, the stronger one will replace
the weaker one. For non-deterministic decisions, all possible
conditions should be considered. For instance: the composi-
tion result of decision {p, n

a
} and decision {d, n

a
} is {p, d, n

a
}.

Based on this discussion, it is straightforward to generate
the decision matrix (see Table 1) for the permit-overrides
principle.

By analyzing the decision matrix, we can find that the
composition function fpo(x, y) of permit-overrides principle
is similar to that of the ⊕ operation except for two cases:

• If either x or y is {p}, we must subtract by using op-
eration 	 the set {d, n

a
} from the final decision set

because {p} is the “strongest” decision.
• If neither x nor y contains {n

a
}, we must subtract the

set {n
a
} from the final decision set because {n

a
} is the

“weakest” decision.

– However, there is an exception of this case. If
either x or y is ∅, we should not subtract the set
{n
a
} from the final result because no decision is

even weaker than the “weakest” decision.

The composition function of permit-overrides (fpo) is thus
as follows:
fpo(x, y) = (x⊕ y)

	(((x⊗ {p})⊕ (y ⊗ {p}))� {d,
n

a
})

	(¬((x� y)⊗ {
n

a
})� {

n

a
} � ¬((x⊗ ∅)⊕ (y ⊗ ∅)))

Because the difference between permit-overrides and deny-
overrides is a permutation of “permit” and “deny”, the com-
position function fdo of deny-overrides is as follows:
fdo(x, y) = (x⊕ y)

	(((x⊗ {d})⊕ (y ⊗ {d}))� {p,
n

a
})

	(¬((x� y)⊗ {
n

a
})� {

n

a
} � ¬((x⊗ ∅)⊕ (y ⊗ ∅)))

Because of the existence of non-deterministic decisions,
the first-applicable composition function ffa actually is much
more complicated than what it may look like. Two spe-
cial values that may be generated intermediately are {p, d},
e.g., ffa({p, n

a
}, {d}), and {p, d, n

a
}, e.g. ffa({p, n

a
}, {d, n

a
}).

{p, d} and {p, d, n
a
} can only appear as left operands (an

evaluation precedence must strictly follow the order of each
rule in a policy) and are similar to {p} and {d}: they sim-
ply override any possible right operands. Indeed, ffa looks
daunting and is really a good example to show that a deci-
sion matrix sometime is a better way to go about the con-
struction of composition functions.

ffa(x, y) = (x � (x ⊗ y)) ⊕ (y � (x ⊗ {
n

a
})) ⊕ (x � (y ⊗ {

n

a
}))

⊕(x � (x ⊗ {p})) ⊕ (x � (x ⊗ {d}))

⊕(x � (x ⊗ {p, d})) ⊕ (x � (x ⊗ {p, d,
n

a
}))

⊕({p} � (x ⊗ {p,
n

a
}) � (y ⊗ {p}))

⊕({p, d} � (x ⊗ {p,
n

a
}) � ((y ⊗ {d}) ⊕ (y ⊗ {d,

n

a
})))

⊕({p, d,
n

a
} � (x ⊗ {p,

n

a
}) � ((y ⊗ {d,

n

a
}))

⊕({d} � (x ⊗ {d,
n

a
}) � (y ⊗ {d}))

⊕({p, d} � (x ⊗ {d,
n

a
}) � ((y ⊗ {p}) ⊕ (y ⊗ {p,

n

a
})))

⊕({p, d,
n

a
} � (x ⊗ {d,

n

a
}) � ((y ⊗ {p,

n

a
}))

The only-one applicable principle requires that one of the
two operands must evaluate to “not applicable”. As men-
tioned earlier, the current 8-valued P-interpretation cannot
precisely capture such a situation if there are two applicable
policies. For space reasons, we will not expand our 8-valued
P-interpretation to a 16-valued one in this paper. By con-
trast, we introduce a “shortcut” version to handle this situa-
tion. If we reasonably assume that each policy must contain
at least one rule, then we may assign decision value ∅ to this
situation. If each policy must contain at least one rule, no
policy can evaluate to ∅ and thus the PDP becomes aware
that there is a principle violation that there are two appli-
cable policies. Noticing that ∅ has the highest precedence
(representing an error status) and the composition must be
∅ once both x and y are not {n

a
}, we have the following

composition function for the only-one applicable principle.

foo(x, y) = (x� (y ⊗ {
n

a
}))⊕ (y � (x⊗ {

n

a
}))

One reason to introduce ordered-deny-overrides and order-
permit-overrides is to guarantee a deterministic result when
obligations are involved. The ordered versions of
deny-overrides and permit-overrides are not new composi-
tion operations; they are just guidelines on the order ac-
cording to which a PDP applies composition operations to
the policies. In fact, the pseudo algorithms provided by the
XACML standard are for the ordered versions, even if their
names do not indicate that they are ordered.

4.4 User-defined Composition Function
XACML supports user-defined rule/policy combining al-

gorithms. It is straightforward to construct a user-defined
composition function using P-interpretation because the pro-
cedure for standard composition functions is not different
from that for a user-defined composition function. For in-
stance, a strong AND principle requires that given a set of
rules, only if all rules are evaluated to the same decision, the
final decision is such a decision, otherwise the final decision
is an error (a violation of the principle). If we use ∅ to rep-
resent the error decision and do not allow an empty policy,
the following concise composition function implements the
strong AND principle.

fsa(x, y) = x� (x⊗ y)

It is usually the case that a composition function built by
carefully observing the patterns in the final decision matrix
or investigating the “strength” relation between determin-
istic decisions can be terse and elegant compared to func-
tions built by mechanical steps. Since a combining prin-
ciple is often described by some special decision patterns

304

or some “strength” relations, a concise composition function
can usually be built without much effort. However, a clear
and simple description of a combination principle may not
always generate a terse function such as first-applicable. In
this situation, we may need a formal language to help users
to generate functions or decision matrices (detailed in Sec-
tion 7.1).

5. COMPLEX DECISION EXPRESSIONS
Unlike XACML which can only specify a rule combining

algorithm for a total rule set, our D-algebra can model a
much more fine-grained manipulation on each rule in a rule
set by a decision expressions, e.g. (r1 ⊗ ¬(r2 	 r3) ⊕ (r4 �
¬r5)). In practice, specific applications or contexts may re-
quire a special composition methodology that is different
from the application of the same composition function to all
rules. For instance, the Chief Security and Privacy Officer
(CSPO) of a company may define a binding set of base reg-
ulations for all departments in the company. These regula-
tions can in turn be refined by the various departments [19].
One way to address this requirement is to let the CSPO
define some applicable (mandatory) policies to be followed
by all the departments. However, these mandatory policies
cannot authorize access requests themselves because they
are not sufficiently fine-grained. Each department can then
define its own fine-grained terminal policies. The decision
for a request is then obtained by composing the decisions
from all applicable policies with at least one decision from
the terminal policies in one department. In other words, if all
applicable mandatory policies allow the access request and
at least one terminal policy allows the request, the request
is authorized. The D-algebra is flexible enough to construct
a decision expression to express such requirement:

pm1∧pm2∧ ...∧pmn∧ ((ptd11 ∗ptd12...)∨ (ptd21 ∗ptd22...)∨ ...)

where ∧ is the infix version of the deny-overrides function, ∨
is the infix version of the permit-override function, ∗ repre-
sents any valid operation or composition function, pmi rep-
resents mandatory policies, and ptdij represents the j-th ter-
minal policy in the i-th department. The expression specifies
that in order to obtain a final “permit” decision all manda-
tory policies must evaluate to “permit” or “not applicable”
and at least one departmental decision is “permit”. Another
good example is represented by positive norms and nega-
tive norms [4], the discussion of which is omitted for space
reasons. It should be noted that XACML can support the
CSPO scenario through the use of multi-level policy sets.
However, the approach is inefficient and cannot be applied
at a rule level in XACML. The ability to manipulate decision
composition at a rule level enables departmental policy au-
thors to write more flexible policies without assistance by a
CSPO and increases the modularity of policy specifications.

6. MAJORITY VOTING
Majority voting is a popular decision making mechanism,

including simple majority voting, absolute majority voting,
and super majority voting. The simple majority voting is a
form of voting in which, given two options, the option receiv-
ing more votes than the other wins. The absolute majority
voting usually requires that more than half of all the mem-
bers of a group (including those absent and those present
but not voting) must vote in favour of a decision in order

for it to be passed. A super majority or a qualified majority
is a requirement for a decision to obtain a specified level or
type of support which exceeds a simple majority in order to
have effect, e.g. two-thirds majority.

A notable feature of all aforementioned non-majority vot-
ing combining principles is that they can be handled with-
out memorizing decisions from the processed rules. In other
words if we have multiple rules we can handle two of them
first and process the third with the result from the first two,
and so on. During this procedure, results from rules that
are overwritten by other rules are discarded because these
discarded results have no effect on the final result. The final
result of majority voting, however, requires that the final re-
sult must take into account the decisions of each calculation
step. In other words decisions that result from all rules are
to be memorized because all of them may impact the final
result.

6.1 Majority Voting and Rational Number In-
terpretation

The simple majority voting has the following two proper-
ties. First, it assigns the same unambiguous value to every
logically possible list of individual decisions. In the context
of rule composition, each rule has the same weight on a fi-
nal decision, referred to a truth degree. Second, the final
decision depends on the accumulation of truth degrees on
individual decisions. In other words, all votes matter and
we need to memorize them during counting. Thus we need
an operation able to accumulate evaluation results8.

The rational number interpretation (R-interpretation) for
D-algebra is the right tool that satisfies these two properties.
The rational number interpretation is actually the standard
semantics of Lukasiewicz logics Lm.

• Dm is represented by some finite set {k/(m − 1)|0 ≤
k ≤ m− 1}, where k,m ∈ N and m > 1.

• 0 is represented by 0.

• ¬x is represented by 1 - x.

• x⊕y is represented by min{1, x+y} where x, y ∈ Dm.

• ⊗ is defined by axiom 7.

⊕ here represents strong disjunction in Lm while stan-
dard Lm also supports weak disjunction (∨), that is x∨ y =
max{x, y}, and implication (→), that is x→ y = min{1, 1−
x + y}. Due to the functional completeness of D-algebra,
these two operations are not necessary because they can be
represented by using only the ¬ and ⊕ operations. For in-
stance, x→ y = ¬x⊕ y = min{1, 1− x+ y}.

Now we can see that two important properties of the sim-
ple majority voting can be satisfied by such a R-interpretation.
The same unambiguous value is assigned to each yes/no vot-
ing. Given n Yes/No/Abstain voting, each vote has the same
truth degree of 1/n for either “Yes”, “Abstain”, or “No”. The
required accumulation operation is provided by the strong
disjunction ⊕. The final decision depends on the compari-
son between the final truth degree of “Yes” votes (Vy) and
the truth degree of “No” votes (Vn), e.g. if Vy > Vn, then
“Yes”. It is trivial to implement comparison like > by using
implication → operation.

8Such operation seems trival but among many popular
many-valued logics only Lukasiewicz logics Lm supports it.

305

The difference between a strong majority voting and a
simple majority voting is the last step. The final decision in
a strong majority voting depends on the comparison between
the final truth degrees of different preferences with a con-
stant truth value 0.5, e.g., if Vy > 0.5, then “Yes”. Similarly,
to handle super majority voting like three-fifths majority or
two-thirds majority, we just need different thresholds (con-
stant truth values) to make a final decision.

We are investigating an interpretation that combines both
the powerset interpretation and the rational number inter-
pretation and prepare to discuss it in our future work.

6.2 Simple Majority Voting on XACML Poli-
cies/Rules

As a popular judgment aggregation method, the simple
majority voting can be applied to combining XACML rules
as well. However, the distinguishing feature of XACML
rule composition is that we have multiple non-deterministic
votes other than deterministic Yes(permit) / No(deny) /
Abstain(not applicable) votes. Later, we show that non-
deterministic intermediate results make tricky final deci-
sions. For space reason, we only discuss the simple majority
voting at rule level. The idea, however, can be applied to
policy level and to other majority voting such as absolute
majority voting or super majority voting.

Since results from the evaluation of XACML rules can only
be one of {p}, {d}, {n

a
}, {p, n

a
}, {d, n

a
}, we use a 5-tuple

(v0, v1, v2, v3, v4) to represent a truth degree of each rule,
where v0, v1, v2, v3, v4 represent the truth value of {p}, {d},
{n
a
}, {p, n

a
}, or {d, n

a
} respectively. For instance, consider

10 rules. Given an access request, if rule r1 evaluates to
permit {p}, the truth degree of r1 is (1/10, 0, 0, 0, 0). If rule
r2 evaluates to {d, n

a
}, its truth degree is (0, 0, 0, 0, 1/10).

An operation between two truth tuples is extended by per-
forming the operation on the elements of these two truth tu-
ples, e.g. (v0, v1, v2, v3, v4)⊕(v′0, v

′
1, v

′
2, v

′
3, v

′
4) = (v0⊕v′0, v1⊕

v′1, v2⊕v′2, v3⊕v′3, v4⊕v′4). To represent the simply majority
voting on XACML rules, all rules are connected by strong
disjunction ⊕. For instance, r1 ⊕ r2 = (1/10, 0, 0, 0, 1/10).
Since such an extension of operations still follows all axioms
of Definition 1, it is just an extended R-interpretation.

One way to make a final decision for either “permit” or
“deny” is simply comparing v0 with v1. It, however, may
result in some problem. For example, assume the final truth
tuple is (4/10, 3/10, 1/10, 0, 2/10), there are two possibly
applicable deny rules evaluated to non-deterministic val-
ues {d, n

a
} due to reasons like irretrievable attribute val-

ues. What if they evaluate to “deny” when all relevant at-
tribute values can be retrieved? In this case, the final deci-
sion should be “deny” rather than “permit”. Thus, the final
decision must also take into account truth values from non-
deterministic votes. A possible way to make a final decision
is as follows:

• A final decision is “permit” if and only if v0 > v1 + v4.

• A final decision is “deny” if and only if v1 > v0 + v3.

• Otherwise a final decision is some non-deterministic
value depending on the votes on non-deterministic de-
cisions, e.g. {p, n

a
}.

The truth value of v3, “not applicable”, is useful in some
special situation. For instance, in a sensitive context, a rule

combining principle may require that non-deterministic de-
cisions be disallowed and an effective decision be made only
if at least 80% rules are applicable. In this situation v3 < 0.2
is a necessary condition to make a final decision. Indeed the
possibility of manipulating truth values of different elements
in a final truth tuple makes it possible to satisfy a quite large
range of decision aggregation mechanisms.

Note that our approach makes it possible to use majority
voting on some level of XACML and use different compo-
sition principles at other level, e.g., majority voting at rule
level and deny-override at policy level or vice versa.

6.3 Generalized Majority Voting
A generalized majority voting may introduce weights on

different rules. Different weights on different rules are essen-
tially represented by different truth degree on their evalua-
tion results. Different choices of weights may need different
interpretations. For instance, assume that three rules r1, r2
and r3 have weights 1, 2, and 3 respectively. The current
R-interpretation can handle such a case well: the truth de-
grees of r1, r2 and r3 are 1/6, 2/6, and 3/6. Basically the
truth degree of rx is “weightx / sum of weights”. However, if
real number weights are used, we need a real number inter-
pretation of D-algebra that is similar to R-interpretation.

7. PRACTICAL CONSIDERATIONS
When we adopt D-algebra as a formal tool for the aggre-

gation of access control decisions, we may encounter some
practical issues. For instance, we may want to improve de-
cision combination efficiency. Since in our approach differ-
ent rule/policy composition principles are represented by
algebraic expressions, various mature evaluation strategies
from programming languages can be applied directly to im-
prove evaluation efficiency. For instance, short-circuit evalu-
ation can be used in first-applicable, permit-override, deny-
override, only-one-applicable, and majority voting etc. A
detailed discussion of possible optimizations is omitted due
to space reason. In this section, we focus on two other issues:
methods to help policy authors write composition functions
and an algebra-based PDP design.

7.1 Constructing Composition Functions
An access control policy language designed based on a D-

algebra should be accompanied by a composition function
library, which consists of functionally complete operations,
standard composition functions, and user-defined composi-
tion functions. To write a correct policy, policy authors have
to choose an appropriate composition function. There will
be situations in which standard functions, such as permit-
overrides, might not be sufficient. Therefore we need method-
ologies to assist policy authors in constructing a user-defined
composition function correctly and efficiently. We thus sug-
gest three such different methodologies.

• Experienced policy authors can write composition func-
tions directly by using the functionally complete oper-
ation set or standard composition functions. Usually
it is not hard to obtain a terse function if there exists
some pattern in the decision requirements.

• If the decision matrix of the user-defined function has
a reasonable size, it is usually better for policy authors
to specify a decision matrix rather than directly writ-
ing the function. By the mechanical step introduced

306

in Section 3.1, a corresponding function can be con-
structed automatically.

• To help constructing a composition function for a large-
size decision set, a Decision Specification Language
(DSL), currently under development, allows policy au-
thors to specify decision composition rules. Based on
these rules, a decision matrix can be automatically
constructed and a composition function can be in turn
defined based on this matrix.

DSL is a declarative language that allows one to specify
decisions. A decision specification consists of a set of DSL
statements which are order-insensitive. The current version
of the language includes the following statements.

• declare statement, e.g., choose an interpretation and
define the semantics of basic operations.

• override statement, e.g., if decision x overrides decision
y, the composed decision is x.

• contradiction statement, e.g., if decision x contradicts
decision y, the final decision is an error decision.

• containment/order statement (can be conditional), e.g.,
if decision x contains decision y, the final relation is z.

Two simple statements that describe the permit-overrides
principle are presented as follows:

<statement type = "override">
<source>permit</source>
<destination>deny</destination>

<\statement>
<statement type = "override">

<source>deny</source>
<destination>not applicable</destination>

<\statement>

7.2 An Algebra-based PDP Design
XACML allows a party to define its own combining al-

gorithm. Since the algorithm is not a standard one, in a
distributed but collaborative environment the party might
not be able to share this policy with other parties since not
all PDPs might understand the algorithm’s identifier in the
file. One possibility is to keep standardizing more algorithms
and adding more algorithm identifiers, but by using the D-
algebra we can standardize the mechanism to describe the
combining algorithms once and eliminate the need of stan-
dardizing new algorithms. The key points of our design are
as follows (See Figure 4):

• We can revise the XACML policy structure by replac-
ing the rule combining algorithm identifier with the
followings.

– Either a function id to compose decisions from
the rules in the policy or a composition expression
constructed by composition functions applied on
all rules in the policy. One of them must be spec-
ified. It should be noted that the composition
expression is provided only for experienced policy
authors.

– If a user-defined function is provided, it is initially
either specified as DSL statements or defined by a
decision matrix. In both cases, it will be compiled
into an algebraic expression before being stored in
a policy repository.

• A PDP consists of a target and rule evaluator and a
decision composer. The target and rule evaluator is
the same as that used in an XACML PDP. The deci-
sion composer replaces the software modules that rep-
resent the hard-coded rule-combining algorithms in an
XACML PDP. The composer only needs to “under-
stand” three basic operations, that is, {¬,⊕,⊗}.

Target,
Obligations

Rule Set
r1(...)
r2(...)
r3(...)

Composition Function e.g.
or

Complex Composition Expression:
(r1 r2) r3

Target and
Rule

Evaluator

Decisions
r1: {p}
r2: {d}

r3:{p,na}

Decision Composer

Decision

Optional
User-defined Function:

)()(),(yxyxyx

Policy Structure Function
Library

Policy
Repository

Requests

Figure 4: An Algebra-based PDP Design

There are several advantages in such a design. Since stan-
dard functions are built by these three simple and elegant
operations, the composer only needs to know these three op-
erations and how to evaluate an expression based on these
operations. The implementation of the composer might be
more complex than that of one combining algorithm; how-
ever the implementation is much simpler than that of several
standard combining algorithms. Accordingly the correctness
of its implementation is easier to verify than that of the
implementation of complex standard combing algorithms.
More importantly, the capability of a composer is much more
flexible than the capability of hand-coded combining algo-
rithms. When a new standard composition function has to
be introduced and used, there is no need to modify the code
of the composer. What we need is just to specify a new
composition function definition in policies. We also need
not to worry that an updated PDP or a third party PDP
cannot understand new standard composition functions or
user-defined functions because all these new functions will be
described in terms of well understood standard operations.
Last but not least, unlike standard algorithms provided by
XACML, the algebra based composer can help reduce er-
rors during policy composition. Deterministic and complete
obligations, once required, can be guaranteed as well. The
correctness of algebra-based composition is provable.

Some careful reader may argue that the efficiency of eval-
uating an expression during policy enforcement can be a
problem for time crucial tasks. However, efficiency when
dealing with a new composition function can be achieved by
immediately building a decision matrix based on the func-
tion. Rule/policy composition now becomes a table lookup
operation which usually is much faster than the execution
of standard rule/policy combining algorithms.

8. RELATED WORK
The notion of many-valued logic (MVL) as a research

topic was introduced by the Polish logician and philosopher
 Lukasiewicz [14] in 1920. The 1950s saw a sudden boom of
invaluable research results on MVL. An analytical character-
ization of the class of truth degree functions definable in the

307

infinite valued propositional Lukasiewicz system, L∞, was
proposed by McNaughton [17]. The first proof of complete-
ness on L∞ [17] was presented by Rose et al. [20]. Chang [9]
devised the algebraic semantics, MV-algebras, of the L∞,
based on which an elegant proof of completeness theorem
was then given [10]. The first proof of functional complete-
ness for Lm (m > 2) using rational number semantics that
added a unary operation T to the logic was given by Rosser
et al. [21]. Several issues on the functional completeness
of Lm (m > 2) were later investigated by Jobe [13]. The
properties of Sheffer stroke functions for L3 and L∞ were
investigated by Martin [16] and Graham [12], respectively.

In this paper, we provide another proof of functional com-
pleteness for L∞ by adding a binary operation ⊗. The proof
is based on MV-algebras. Compared to the proof by Rosser
et al. [21], the value of our proof is that the new binary
operation ⊗ and the P-interpretations are more natural for
handling policy decision problems by treating them fairly.
More importantly, our proof itself provides the basis for the
computational effectiveness of D-algebra. It seems to be
known that Lm (m > 2) is functionally incomplete but we
were not able to find a formal proof. Therefore, a formal
proof regarding MV-algebra is given in this paper as well.
Our P-interpretation is closely related to Fitting’s work [11]
on the generalization of Kleene’s 3-value Logic.

Using algebras as formal tools to formalize policy composi-
tion is not a new idea. Bonatti et al. [6] formalized policies
as customized Horn clauses and introduced six operators,
namely addition, subtraction, closure, scoping restriction,
overriding, and template, to describe policy expressions. Be-
cause some operators are closely intertwined with predicates
that are similar to the predicates used in policies, the final
decisions cannot be generated by only manipulating interme-
diate decisions from each policy. To address this issue, they
adopted the approach of translating a policy expression into
a logic program in order to compute the final authorization
decisions. Such an approach has one major limitation. Only
positive decisions can be supported which greatly limits the
expressiveness and practical application of their approach.
considered. All their operators, except the template oper-
ator, can be described naturally by our 3 operations under
the XACML context. The function intended to be achieved
by the template operator can be achieved more naturally by
decision expressions (see Section 5).

Inspired by [5, 6], Wijesekera et al. [23, 22] proposed an-
other algebra to compose decisions from access control poli-
cies. Policies in such approaches are described as transfor-
mations of non-deterministic assignments of permission sets
to subjects, that is, if a subject s is assigned a set x of per-
mission sets by a policy, only one permission set in x can be
really assigned to s but how to choose the permission set is
non-deterministic. This semantics is quite different from the
standard notion of access control policies and is more typi-
cal of meta-policies on access control policies or constraints
on permissions assignments, e.g., separation of duty con-
straints. Although we can point out that this work suffers
from limitation on its expressiveness, e.g. only positive and
negative decisions are supported, we cannot directly com-
pare their proposal with our approach due to the different
notion of policies.

Backes et al. [3, 2] proposed an algebra for composing
policies written in E-P3P [1]. Such an algebra supports pos-
itive decisions, negative decisions, and obligations fulfilled

on decisions. The algebra has some limitations. It does not
address conflicts in that it requires policies to be conflict-
free, referred to as well-formed policies. Moreover, the alge-
bra is not functionally complete though permit, deny, and
not applicable decisions are supported. Raub et al. [19] ex-
tended the algebra by Backes et al. [2] by a better obligation
formalization, but their approach still suffers from similar
problems.

Bruns et al. [7, 8] proposed a policy language PBel based
on Belnap logic, a four-valued Belnap logic. PBel probably
is the closest proposal to D-algebra. “grant”, “deny”, “unde-
fined”, and“conflict”, four values in PBel, correspond to {p},
{d}, {n

a
}, and {p, d}, respectively, in our P-interpretation.

The intention of PBel is similar to that of D-algebra, that
is to provide a functionally complete set of logical connec-
tives to combine access control policy decisions. However,
due to its limited decision set, PBel can neither express deci-
sions resulted from uncertainties (e.g. “indeterminate” from
XACML) due to errors nor identify subtle issues in XACML,
not even to mention solutions to these issues. Limited by
the expressiveness of Belnap logic, PBel cannot support ma-
jority voting either.

9. CONCLUSIONS
In this paper, we have proposed a many-valued decision

algebra which is both functionally complete and computa-
tionally effective. The importance of the algebra is justified
by its application to policy combination and PDP design.
We are working on implementing the decision specification
language and developing a toolkit for evaluating policy ex-
pressions based on the algebra. Issues concerning decision
composition for hierarchies are also being investigated.

10. REFERENCES
[1] P. Ashley, S. Hada, G. Karjoth, and M. Schunter.

E-p3p privacy policies and privacy authorization. In
WPES, pages 103–109, 2002.

[2] M. Backes, M. Dürmuth, and R. Steinwandt. An
algebra for composing enterprise privacy policies. In
P. Samarati, P. Y. A. Ryan, D. Gollmann, and
R. Molva, editors, ESORICS, volume 3193 of Lecture
Notes in Computer Science, pages 33–52. Springer,
2004.

[3] M. Backes, B. Pfitzmann, and M. Schunter. A toolkit
for managing enterprise privacy policies. In
E. Snekkenes and D. Gollmann, editors, ESORICS,
volume 2808 of Lecture Notes in Computer Science,
pages 162–180. Springer, 2003.

[4] A. Barth, A. Datta, J. C. Mitchell, and
H. Nissenbaum. Privacy and contextual integrity:
Framework and applications. In SP ’06: Proceedings
of the 2006 IEEE Symposium on Security and Privacy
(S&P’06), pages 184–198, Washington, DC, USA,
2006. IEEE Computer Society.

[5] P. A. Bonatti, S. D. C. di Vimercati, and P. Samarati.
A modular approach to composing access control
policies. In ACM Conference on Computer and
Communications Security, pages 164–173, 2000.

[6] P. A. Bonatti, S. D. C. di Vimercati, and P. Samarati.
An algebra for composing access control policies. ACM
Trans. Inf. Syst. Secur., 5(1):1–35, 2002.

308

[7] G. Bruns, D. S. Dantas, and M. Huth. A simple and
expressive semantic framework for policy composition
in access control. In P. Ning, V. Atluri, V. D. Gligor,
and H. Mantel, editors, FMSE, pages 12–21. ACM,
2007.

[8] G. Bruns and M. Huth. Access-control policies via
belnap logic: Effective and efficient composition and
analysis. In CSF, pages 163–176. IEEE Computer
Society, 2008.

[9] C. C. Chang. Algebraic analysis of many valued logics.
Transactions of the American Mathematical Society,
88(2):467–490, jul 1958.

[10] C. C. Chang. A new proof of the completeness of the
lukasiewicz axioms. Transactions of the American
Mathematical Society, 93(1):74–80, 1959.

[11] M. Fitting. Kleene’s logic, generalized. J. Log.
Comput., 1(6):797–810, 1991.

[12] R. L. Graham. On n-valued functionally complete
truth functions. The Journal of Symbolic Logic,
32(2):190–195, 1967.

[13] W. H. Jobe. Functional completeness and canonical
forms in many-valued logics. The Journal of Symbolic
Logic, 27(4):409–422, 1962.

[14] J. Lukasiewicz. O logice trojwartosciowej. Ruch
filozoficzny, 5:170–171, 1920.

[15] J. Lukasiewicz. Aristotle’s Syllogistic from the
Standpoint of Modern Formal Logic. Garland Pub.,
New York, USA, first edition, 1987.

[16] N. M. Martin. The sheffer functions of 3-valued logic.
The Journal of Symbolic Logic, 19(1):45–51, 1954.

[17] R. McNaughton. A theorem about infinite-valued
sentential logic. The Journal of Symbolic Logic,
16(1):1–13, 1951.

[18] OASIS. eXtensible Access Control Markup Language
(XACML) 2.0. Available at
http://www.oasis-open.org/.

[19] D. Raub and R. Steinwandt. An algebra for enterprise
privacy policies closed under composition and
conjunction. In ETRICS, pages 130–144, 2006.

[20] A. Rose and J. B. Rosser. Fragments of many-valued
statement calculi. Transactions of the American
Mathematical Society, 87(1):1–53, 1958.

[21] J. B. Rosser and A. R. Turquette. Many-Valued
Logics. North-Holland Publishing Co., Amsterdam,
Netherland, first edition, 1952.

[22] D. Wijesekera and S. Jajodia. Policy algebras for
access control: the propositional case. In ACM
Conference on Computer and Communications
Security, pages 38–47, 2001.

[23] D. Wijesekera and S. Jajodia. A propositional policy
algebra for access control. ACM Trans. Inf. Syst.
Secur., 6(2):286–325, 2003.

APPENDIX
A. PROOFS OF INCOMLETENESS
{⊕,¬} is not functionally complete.

Proof. Because a D-algebra is a MV-algebra, we just
need to prove that {⊕,¬} is not functionally complete for
a D-algebra. Let D = {∅, {0}, {1}, {0, 1}}, in what follows,
we will show that any possible unary operations f(x) con-

structed by {⊕,¬} on D can only generate a small set of re-
sult decisions, much smaller than 44 = 256, the total number
of decision matrices for a unary operation.

The idea of the proof is similar to steps used to build a
least Herbrand model for a logic program. In the beginning,
we only have one variable x, two operations, a constant se-
quence set that consists of 4 constant sequences that repre-
sent ∅, {0}, {1}, {0, 1} respectively, and one domain sequence
set that consists only one sequence (∅, {0}, {1}, {0, 1}) in the
beginning. Note that order matters for sequences. The el-
ements of the domain sequence set are the input of f(x).
Then recursively apply the two operations on the elements
in both the constant sequence set and the domain sequence
set. In each step, the result sequences will be inserted into
the domain sequence set that is used as the input of next
step. It is fairly quick to reach a fix point.

The constant sequence set: { (∅, ∅, ∅, ∅), ({0}, {0}, {0}, {0}), ({1},
{1}, {1}, {1})}, ({0, 1}, {0, 1}, {0, 1}, {0, 1}) }

Step 0: the domain sequence set {(∅, {0}, {1}, {0, 1})}.
Step 1: the domain sequence set {(∅, {0}, {1}, {0, 1}), (∅, ∅, ∅, ∅),

({0}, {0}, {0}, {0}), ({1}, {1}, {1}, {1}), ({0, 1}, {0, 1}, {0, 1}, {0, 1}),
({0, 1}, {1}, {0}, ∅), ({0}, {0}, {0, 1}, {0, 1}), ({1}, {0, 1}, {1}, {0, 1})}.

Step 2: the domain sequence set {(∅, {0}, {1}, {0, 1}), (∅, ∅, ∅, ∅),
({0}, {0}, {0}, {0}), ({1}, {1}, {1}, {1}), ({0, 1}, {0, 1}, {0, 1}, {0, 1}),
({0, 1}, {1}, {0}, ∅), ({0}, {0}, {0, 1}, {0, 1}), ({1}, {0, 1}, {1}, {0, 1}),
({1}, {1}, ∅, ∅), ({0}, ∅, {0}, ∅), ({0, 1}, {0, 1}, {0}, {0}),
({0, 1}, {1}, {0, 1}, {1}) }.

Step 3: the domain sequence set {(∅, {0}, {1}, {0, 1}), (∅, ∅, ∅, ∅),
({0}, {0}, {0}, {0}), ({1}, {1}, {1}, {1}), ({0, 1}, {0, 1}, {0, 1}, {0, 1}),
({0, 1}, {1}, {0}, ∅), ({0}, {0}, {0, 1}, {0, 1}), ({1}, {0, 1}, {1}, {0, 1}),
({1}, {1}, ∅, ∅), ({0}, ∅, {0}, ∅), ({0, 1}, {0, 1}, {0}, {0}),
({0, 1}, {1}, {0, 1}, {1}) , (∅, ∅, {1}, {1}), (∅, {0}, ∅, {0}) }.

Step 4: the domain sequence set {(∅, {0}, {1}, {0, 1}), (∅, ∅, ∅, ∅),
({0}, {0}, {0}, {0}), ({1}, {1}, {1}, {1}), ({0, 1}, {0, 1}, {0, 1}, {0, 1}),
({0, 1}, {1}, {0}, ∅), ({0}, {0}, {0, 1}, {0, 1}), ({1}, {0, 1}, {1}, {0, 1}),
({1}, {1}, ∅, ∅), ({0}, ∅, {0}, ∅), ({0, 1}, {0, 1}, {0}, {0}),
({0, 1}, {1}, {0, 1}, {1}) , (∅, ∅, {1}, {1}), (∅, {0}, ∅, {0}),
({0}, ∅, {0, 1}, {1}), ({1}, {0, 1}, ∅, {0})}.

Step 5: the domain sequence set {(∅, {0}, {1}, {0, 1}), (∅, ∅, ∅, ∅),
({0}, {0}, {0}, {0}), ({1}, {1}, {1}, {1}), ({0, 1}, {0, 1}, {0, 1}, {0, 1}),
({0, 1}, {1}, {0}, ∅), ({0}, {0}, {0, 1}, {0, 1}), ({1}, {0, 1}, {1}, {0, 1}),
({1}, {1}, ∅, ∅), ({0}, ∅, {0}, ∅), ({0, 1}, {0, 1}, {0}, {0}),
({0, 1}, {1}, {0, 1}, {1}) , (∅, ∅, {1}, {1}), (∅, {0}, ∅, {0}),
({0}, ∅, {0, 1}, {1}), ({1}, {0, 1}, ∅, {0})}.

Because the domain sequence set in step 5 is the same as
that in step 4, we reach a fix point here. We are done! The
number of different decision matrices from all possible unary
functions that can be built from {⊕,¬} indeed is quite small.

Step two: {⊗,⊕,¬} is functionally complete, please look
at Section 3.1.

309

