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ABSTRACT
Multimedia contents, especially videos, are being exponen-
tially generated today. Due to the limited local storage,
people are willing to store the videos at the remote cloud
media center for its low cost and scalable storage. How-
ever, videos may have to be encrypted before outsourcing for
privacy concerns. For practical purposes, the cloud media
center should also provide the deduplication functionality to
eliminate the storage and bandwidth redundancy, and adap-
tively disseminate videos to heterogeneous networks and dif-
ferent devices to ensure the quality of service. In light of
the observations, we present a secure architecture enabling
the encrypted cloud media center. It builds on top of lat-
est advancements on secure deduplication and video coding
techniques, with fully functional system implementations on
encrypted video deduplication and adaptive video dissemi-
nation services. Specifically, to support efficient adaptive
dissemination, we utilize the scalable video coding (SVC)
techniques and propose a tailored layer-level secure dedupli-
cation strategy to be compatible with the internal structure
of SVC. Accordingly, we adopt a structure-compatible en-
cryption mechanism and optimize the way how encrypted
SVC videos are stored for fast retrieval and efficient dissem-
ination. We thoroughly analyze the security strength of our
system design with strong video protection. Furthermore,
we give a prototype implementation with encrypted end-
to-end deployment on Amazon cloud platform. Extensive
experiments demonstrate the practicality of our system.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information Storage and
Retrieval—Online Information Services; H.5.1 [Information
Systems]: Information Interfaces and Representation—Mul-
timedia Information Systems; E.3 [Data]: Data Encryption
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1. INTRODUCTION
With the explosive growth of multimedia technology and

mobile devices with high-definition cameras, multimedia con-
tents, especially videos, have already dominated the network
traffic and demanded a great amount of hardware storage [8].
To handle such a rapidly growing trend, many existing and
emerging applications based on videos are deployed at public
clouds for its well-known advantages, e.g., availability, scala-
bility, and economy [26]. However, the user privacy could be
violated if content-sensitive videos are not protected prop-
erly in such an outsourcing environment [23]. In fact, current
cloud-based data hosting services are shown to be vulnerable
to security breaches. Data disclosure occurs frequently in re-
cent years [15]. Therefore, addressing the privacy concerns
becomes significant for building a cloud media center.

A plausible approach is to require each user to encrypt
the videos using her secret key before sending them to pub-
lic clouds. As long as the user’s secret key is protected,
video confidentiality can be guaranteed. But this approach
prevents the cloud media center from supporting dedupli-
cation, a crucial function that can greatly save the network
bandwidth and eliminate the storage redundancy in cloud
services [14]. Identical videos encrypted by different users’
secret keys would lead to different ciphertexts, making dedu-
plication infeasible.

To support secure deduplication over encrypted videos,
one might consider utilizing convergent encryption (CE) [10],
which encrypts data with a key deterministically derived
from the data itself (e.g., the hash value), so as to ensure the
identical data will map to identical ciphertexts. However,
CE is vulnerable to off-line brute-force attacks when the
target message space is small or the data is predictable [2].
Besides, CE is under a weak security model, which does
not consider the bounded leakage setting, where a certain
amount of deterministically and efficiently extractable in-
formation of the data could be leaked [25]. Although some
recent designs have improved the security of CE [2,14,17,25],
it remains to be fully explored whether they can directly en-
able an encrypted cloud media center, which should simulta-
neously ensure the strong video confidentiality, provide im-
mediate compatibility with the video structure, and deliver
practical video dissemination services.
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In practice, an encrypted cloud media center should be
able to adaptively disseminate videos to heterogeneous net-
works and devices such as PCs, Mobile phones, Tablets
and SmartTVs [12]. However, such adaptive dissemination
might be disabled after encryption. Alternatively, one can
ask each user to first generate different versions of videos
from the same source, and then send all encrypted versions
to the cloud. Yet, this method will incur a great amount
of bandwidth and storage overhead, and thus increase the
capital of using cloud services. Therefore, how to enable
efficient adaptive video dissemination while supporting se-
cure deduplication over encrypted videos, is the challenge
we aim to tackle in this paper, for which we bring together
techniques from both cryptography and video processing.

We first investigate the applicability of secure deduplica-
tion in the encrypted cloud media center and propose a non-
trivial design to strongly protect video confidentiality. It
takes into consideration the defenses against the adversaries
in the bounded leakage setting, and the adversaries launch-
ing brute-force attacks over predictable videos, respectively.
To support efficient adaptive dissemination, we exploit the
scalable video coding (SVC) techniques [19]. SVC utilizes
the concept of layers and enables multiple versions of the
same video content to be embedded in a single video file,
which can significantly improve the storage efficiency and
dissemination scalability [24]. To make secure deduplica-
tion compatible with the structure of SVC, we propose a
layer-level deduplication strategy tailored for SVC videos,
enabling suitable deduplication for encrypted SVC videos.

Besides, we investigate the encryption of SVC videos [20,
22], and adopt a structure-compatible encryption mecha-
nism and optimize the way encrypted SVC videos are stored
for fast retrieval and efficient dissemination. Our thorough
security analysis shows that video confidentiality is strongly
protected in the proposed system design. We give a full im-
plementation of an encrypted end-to-end cloud media center.
which is deployed at Amazon EC2 instances and leverages
Amazon DynamoDB as the video storage backend. Exten-
sive experiments are conducted to justify the practicality of
our system design.

Contributions. Our main contributions are listed below:

• We formulate a secure system framework for the en-
crypted cloud media center. It supports secure dedu-
plication while protecting data confidentiality against
malicious users and untrusted cloud. Building on top
of latest literature on secure deduplication [2, 25], our
framework supports the secure video deduplication in
the bounded leakage setting, and defends the off-line
brute-force attacks over predictable videos, respectively.

• We leverage the inherent characteristics of SVC videos
in our design. We utilize an encryption mechanism
which is compatible with the underlying SVC struc-
ture, and optimize the way how encrypted SVC videos
are stored for fast retrieval. Meanwhile, the security
of our system is thoroughly analyzed.

• We implement an end-to-end cloud media center sys-
tem with roughly 17,000 lines of codes, which is fully
deployed at Amazon AWS. We evaluate our system via
various performance metrics on SVC videos with sizes
up to 500MB. The results demonstrate the practicality
of our system.

Blin
d Sign. 

Duplicate Chk. 

Proofs of Own. 

Enc. Data Flow 

User Devices Public Cloud 

Agency 

Figure 1: The proposed system framework.

The rest of this paper is organized as follows. Section 2
presents our problem formulation. Section 3 gives some pre-
liminaries. Section 4 formulates the general secure dedupli-
cation framework. Section 5 gives the detailed construction
for deduplication over encrypted SVC videos under the pro-
posed framework. Section 6 presents the security analysis.
Section 7 gives the implementation and performance eval-
uation. Section 8 describes the related works. Section 9
concludes the whole paper.

2. PROBLEM STATEMENT

2.1 System Model
Our system involves three entities: the cloud media center,

the user, and the agency, as illustrated in Figure 1. Their
roles are described below:

• The cloud media center (abbr. cloud) provides a video
hosting platform, which stores users’ encrypted videos
and adaptively distributes them to cater for heteroge-
neous user devices and network bandwidth. It enforces
secure client-side deduplication, i.e., duplicate check is
performed before users upload videos.

• The user outsources her encrypted videos to the cloud,
and possibly deletes the original ones at local. Later,
the user may access her own videos. Video sharing is
not the focus of this paper, although it can be achieved
along with our design through techniques such as the
attribute-based access control [23].

• The agency, hosted by a third party (e.g., a video
service provider), facilitates our system to safeguard
the confidentiality of user videos against off-line brute-
force attacks. It assists users and cloud to perform the
duplicate check in a controllable fashion, and enables
users to perform the encryption that supports dedu-
plication.

2.2 Threat Models
Our goal is to protect the confidentiality of users’ videos.

We will consider a strong security model for secure dedupli-
cation, i.e., the bounded leakage setting as in [25], where a
certain amount of deterministically and efficiently extractable
information about videos could be leaked. We will also be
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concerned with protection for both predictable and unpre-
dictable videos.

Two types of adversaries are considered in our system: (1)
Malicious outside adversary. The outside adversary may re-
fer to a user who might obtain some knowledge (e.g., a hash
value) of a video and try to earn the ownership of the target
video from cloud. We assume that she will not upload a fake
video to compromise the integrity of other users’ videos. (2)
Honest-but-curious inside adversary. The inside adversary
may refer to cloud or the agency. On the one hand, cloud
faithfully follows the designated deduplication scheme, yet
intends to infer users’ encrypted video contents. It might
also manipulate one user or a number of users to harvest
target video contents. On the other hand, the third-party
agency dutifully executes the assigned functions, but also
tries to extract useful information about users’ videos. In
this paper, we do not consider that cloud modifies or deletes
users’ videos. And we assume that there is no collusion be-
tween cloud and the agency.

3. PRELIMINARIES

3.1 Oblivious Pseudorandom Function
An oblivious pseudorandom function (OPRF) protocol en-

ables two parties, say sender S and receiver R, to jointly and
securely compute a pseudo-random function (PRF) fsk(x),
where sk is the secret key of S and the input x is con-
tributed by R. The OPRF protocol enforces that R only
learns the output value fsk(x) and S learns nothing from
the interactive process [11]. Verifiable OPRF schemes al-
low R to further verify whether the result fsk(·) is correctly
computed under S ’s secret key sk, via utilizing S ’s corre-
sponding public key pk. Deterministic blind signatures can
be used to build verifiable OPRF schemes [7]. In a blind
signature scheme, a user is able to obtain and verify the dig-
ital signature of a message from a signer without revealing
any data information. Meanwhile, the user cannot learn the
signer’s secret key. In this paper, we use the RSA-OPRF
scheme built on RSA blind signatures [4] as a building block
for our proposed system.

3.2 Scalable Video Coding
The SVC technique utilizes the concept of layers and en-

ables multiple versions of the source video content to be em-
bedded in a single file, i.e., a SVC video [19]. Intuitively, a
SVC video is composed of a base layer, which represents the
basic visual experience, and enhancement layers, which can
improve the video by supplementing the base layer in dif-
ferent scalability dimensions (i.e., time, quality, resolution).
In our system, we are particularly interested in the resolu-
tion scalability as the first instantiation. Through employ-
ing various inter-layer prediction methods, SVC removes the
redundancy between different representations of the same
video content [18]. It is noted that at the decoder side, a
lower layer must be present if a higher layer exists but not
the other way around. In other words, if the layers of a SVC
video are discarded from the highest layer, the rest of layers
are still decodable. Thus, a user can adaptively enjoy differ-
ent versions of the same video content through a single SVC
video.

Therefore, from the perspective of storage efficiency and
dissemination scalability, it is advantageous to store SVC
videos in the cloud media center to cater for heterogeneous

network bandwidth and different devices. Without loss of
generality, a SVC video SV with n layers can be denoted as
SV = (m1,m2, . . . ,mn), where m1 is the base layer and mi

is the (i− 1)th enhancement layer for i ∈ [2, n] [23].

4. PROPOSED SECURE DEDUPLICATION
FRAMEWORK

In this section, we present our secure deduplication frame-
work that can protect users’ videos in the bounded leak-
age setting, and defend off-line brute-force attacks over pre-
dictable videos, respectively. We start with describing our
design intuition to address the threats mentioned in Sec-
tion 2.2, and then elaborate on the detailed construction.
We note that the framework is suitable for generic data,
e.g., textual files and images.

4.1 Design Intuition
Our system targets secure client-side deduplication over

encrypted videos. First, we consider secure client-side dedu-
plication in a strong security model, i.e., the bounded leak-
age setting first proposed by Xu et al. in [25], where a cer-
tain amount of deterministically and efficiently extractable
information of the plaintext data could be leaked. Under this
setting, CE is not appropriate for use in our system since its
data encryption key is not leakage resilient. Specifically, the
private key in CE is derived from the data plaintext in a
deterministic way and could be leaked before the encryption
process. For similar reasons, using the plaintext hash as a
proxy for the ownership of data can also be insecure under
the leakage setting.

To address the threat posed by the bounded leakage set-
ting, the following treatment inspired by [25] could be adopted.
Firstly, deduplication is achieved by using the hash value
H(V ) of the video V for duplicate check. Secondly, the
video encryption key τ is selected randomly by the initial
uploader, who also creates a one-time message-derived mask
via a keyed hash function, i.e., Fs(·), to hide it, where s is a
random string. Note that because τ is randomly generated,
even the hash value of V is possibly leaked, the video is still
protected as long as τ is hidden from cloud. Moreover, this
type of masking can enable all the subsequent users who
own the same video copies to obtain the random key τ and
further prove to cloud that they indeed own the videos, by
running a proofs-of-ownership (PoW) protocol with cloud.

Although the above treatment is resistant to the bounded
leakage setting, it is not directly suitable for use in our sys-
tem to provide strong protection for video confidentiality.
In particular, the above treatment is vulnerable to off-line
brute-force attacks over predictable videos. This vulnerabil-
ity originates from the fact that the hash value is directly
exposed to cloud for duplicate check and the random encryp-
tion key τ is only protected by V , which will be analyzed in
detail shortly. In order to get rid of this vulnerability while
still maintaining the security strength of the above treat-
ment in the bounded leakage setting, we resort to an agency
for assistance in our system, inspired by [2]. Specifically,
we leverage the agency to securely produce message-derived
tag α and label β via a RSA-OPRF protocol similar to [2].
The message-derived tag α is used for secure duplicate check
and prevents cloud from directly accessing the video hash,
while the message-derived label β is embedded in the mask
during the initial upload and assists the recovery of the ran-
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dom key τ during the subsequent upload. We note that
through this careful enhancement design, our system can
also effectively prevent cloud from mounting off-line brute-
force attacks over predictable videos and thus provide strong
protection for video confidentiality, which will be analyzed
in detail in Section 6.

4.2 Secure Deduplication Framework
We are now ready to present the detailed construction

of the proposed secure deduplication framework. The work
flow is illustrated in Figure 2. As shown, before uploading
a video V , the user first needs to engage in the RSA-OPRF
protocol with the agency to derive the message-derived tag
α and label β of V , i.e., α = OPRFRSAk1

(H(V )) and β =

OPRFRSAk2
(H(V )), where k1 and k2 are two different secret

keys of the agency for signing (we refer readers to Appendix
for the details of the RSA-OPRF protocol). Then α is sub-
mitted to cloud for duplicate check. If it does not exist at
the cloud side, the user is considered as the initial uploader
of V ; otherwise, the user is considered as the subsequent
uploader.

Suppose user u is the initial one who uploads the video V
after duplicate check. User u first encrypts V with a ran-
dom key τ and produces the video ciphertext CV . Then u
generates a masked key r via using a keyed hash function
F (s, V ‖ β) to protect τ , where s is a random string, which
will enable all subsequent users who indeed owns V to re-
cover τ for correct decryption. Besides, τ is encrypted under
u’s private key sk to produce the ciphertext Cτ . Finally, u
sends {CV , s, r, Cτ} to cloud, and H(CV ) is computed by
cloud for the later use of PoW protocol. Suppose u′ is a
subsequent user who tries to upload V after the duplicate
check. User u′ has to run a PoW protocol with cloud to
prove that she indeed owns V . Specifically, u′ will request
(r, s) from cloud, and utilizes V and β to recover the correct
encryption key τ . Then u′ encrypts V with τ to produce
the ciphertext CV and also computes H(CV ). After that,
H(CV ) is sent to cloud for equality checking. After verifi-
cation, u′ is admitted as the owner of CV . Finally, u′ uses
her private key sk′ to encrypt the recovered τ and stores
it at the cloud side. During the retrieval process, the user
first downloads CV and Cτ from cloud, and then uses its
private key sk to decipher Cτ and further decrypt CV with
the recovered τ .

Differences compared with prior works. In the pro-
posed deduplication framework, the message-derived tag α is
used for duplicate check, and the random key τ is protected
by a mask derived from the video V and the message-derived
label β. Note that in [25], the hash value of data is directly
exposed to cloud for duplicate check and the random key
is only protected by the data. Therefore, if this approach
is adopted for secure client-side deduplication, cloud can
launch off-line brute-force attacks over predictable videos.
Given the ciphertext CV and knowing that its underlying
video V is drawn from a dictionary DV = {V1, V2, . . . , Vn},
cloud can launch the following two types of off-line brute-
force attacks to recover V . In the first attack, cloud can
simply compare the received (stored) hash H(V ) with the
computed hash of each Vi (i ∈ [1, n]) in DV , and then re-
cover the target video V when two hashes are found equal.
In the second attack, cloud may first use each Vi in DV to
decrypt the masked random key and get a key candidate set
µset = {µ1, µ2, . . . , µn}. Then for each i ∈ [1, n], cloud can

Initial upload

User(u) Cloud

1. α = OPRFRSAk1
(H(V )),

β = OPRFRSAk2
(H(V ))

α
GGGGGGA 2. Check

if α exists

3. τ ← KGen(1λ) ∈ {0, 1}λ
No Duplicate

DGGGGGGGGGGGGGGGGGGGG

4. CV ← Encτ (V )

5. s
$←{0, 1}λ

6. r = hs(V ‖ β)⊕ τ
7. Cτ = Encsk(τ)

(CV , s, r, Cτ )
GGGGGGGGGGGGGGGGGGGGA 8. Compute

H(CV )

Subsequent upload

/*Running PoW*/
User(u′) Cloud

1. α = OPRFRSAk1
(H(V )),

β = OPRFRSAk2
(H(V ))

α
GGGGGGA 2. Check

if α exists

3. τ ← hs(V ‖ β)⊕ r
Duplicate

DGGGGGGGGGGGGGGGG

(s, r)
4. CV ← Encτ (V )
5. Compute H(CV )

H(CV )
GGGGGGGGGGGGGA 6. Verify

H(CV )

If TRUE,
TRUE/

DGGGGGGGGGGGGGG

FALSE
7. C′τ = Encsk′ (τ)

C′τ
GGGGGGGA

Retrieval

User(u) Cloud
Download Req.

GGGGGGGGGGGGGGGGGGGGGGGA

1. τ = Decsk(Cτ )
(CV , Cτ )

DGGGGGGGGGGGGGGG

2. V = Decτ (CV )

Figure 2: Overview of the system work flow. Here
E = (KGen,Enc,Dec) is a deterministic symmetric en-
cryption scheme with λ bits long key length and
hK : {0, 1}∗ → {0, 1}λ is a key-ed hash function. Note
that it is omitted that a user runs KGen to derive the
private key sk at the system setup.

use µi to decrypt the target video ciphertext CV and com-
pare the decryption result with Vi in the dictionary DV to
find the matched target video.
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To securely use server-side deduplication and defend off-
line brute-force attacks over predictable data, Bellare et
al. [2] propose an improved design based on CE. They resort
to a semi-trusted party named key server for obliviously em-
bedding a secret in the data hash used for encryption and
do not consider any data leakage setting. Thus, if directly
applied for secure deduplication in the bounded leakage set-
ting, the data encryption key could be leaked as long as
the hash is leaked [25]. Different from [2], our system tar-
gets client-side deduplication which saves both storage and
bandwidth. Meanwhile, our design randomly selects keys
for video encryption and protects them by masks derived
from both users’ videos and the blind signed hashes. Thus,
the encryption key is well protected in the bounded leakage
setting.

5. STRUCTURE-AWARE DEDUPLICATION
OVER ENCRYPTED SVC VIDEOS

In this section, we exploit the internal structure of SVC
videos to enforce layer-level deduplication under the pro-
posed secure deduplication framework. We first motivate
the importance of layer-level deduplication for SVC videos
and then present the detailed construction.

5.1 Layer-Level Deduplication
The traditional file-level deduplication and block-level dedu-

plication are not suitable for SVC videos. This misfit can be
demonstrated by an intuitive and practical scenario. Sup-
pose that a user, say ua, owns the base layer and an en-
hancement layer for a source content, while another user,
say ub, only owns the base layer for the same source con-
tent. And ua and ub both used some cloud storage service
with deduplication. Then, by file-level deduplication, the
two different SVC videos of ua and ub can not be dedupli-
cated since they have different contents at the file level. On
the other hand, directly splitting a SVC video into blocks
and performing block-level deduplication is not a desirable
choice since the layers in a SVC video are formatted in a
special structure [19,21] and applying block-level deduplica-
tion may destroy the structure of SVC video. To address the
above challenges, we propose to exploit the layered nature of
SVC videos to enforce layer-level deduplication, which treats
each layer of a SVC video as a unit for deduplication.

5.2 Construction
Before presenting our construction of secure layer-level

deduplication over encrypted SVC videos, we give two im-
portant observations that facilitate our design. First, we
note that the base layer is the foundation of a SVC video
and it also serves as the reference basis for higher enhance-
ment layers [19]. This vital observation indicates that two
SVC videos can hardly have duplicate layers if they do not
have the same base layer, which inspires us to utilize the
base layer for the duplicate check for a given SVC video.
Second, users having the same base layer may possess dif-
ferent numbers of enhancement layers for the same source
content under their heterogeneous devices and network en-
vironments.

Based on these important observations, the main idea
for enforcing secure layer-level deduplication over encrypted
SVC videos is introduced as follows: Before uploading a
SVC video, the message-derived tag α1 of the base layer

and the number of layers are sent to cloud for duplicate
check. If a match for α1 is not found, it is considered that
the SVC video does not contain any duplicate layers and
thus all layers should be uploaded by the user. Otherwise,
a SVC version with the same base layer has already been
stored in cloud and thus the user’s SVC video may con-
tain a certain number of duplicate layers. In this case, if
the user’s SVC video has fewer layers than the SVC version
in cloud, the PoW protocol needs to be run over all layers
of the SVC video. Otherwise, the user only needs to run
the PoW protocol over the duplicate layers contained in her
SVC video and also uploads the additional layers. In our
proposed secure deduplication framework, the construction
with layer-level deduplication includes three phases which
are described as follows:

Interaction with the agency. Before uploading a SVC
video SV = {m1,m2, . . . ,mn} to cloud, the user first needs
to engage in the RSA-OPRF protocol with the agency to
derive the message-derived tag α1 of the base layer and a
message-derived label set {βi}1≤i≤n for all layers, where
α1 = OPRFRSAk1

(H(m1)) and βi = OPRFRSAk2
(H(mi)).

Upload phase. After the interaction with the agency, the
user sends α1 and the number n of layers of SV to cloud
for duplicate check. If a match for α1 is not found, it is
considered as the initial upload of SV . Suppose the initial
uploader u has L layers (i.e., n = L). Then u performs the
dedupable encryption as specified in the secure deduplica-
tion framework over each layer. For each layer mi, u gener-
ates a layer ciphertext Ci, a masked layer key ri along with
a random string si, and a layer key ciphertext Cτi , where
τi is the layer key. Then u sends {Ci, (si, ri), Cτi}1≤i≤L to
cloud. Cloud will compute H(Ci) over each layer ciphertext
Ci for the later use of PoW protocol.

If a match for α1 is found, it is indicated that a SVC ver-
sion with the same base layer is already uploaded by some
user. Thus, the upload request is considered as the subse-
quent upload. Suppose the subsequent uploader u′ has L′

layers (i.e., n = L′) and the already stored SVC version in
cloud has Lc layers. The subsequent upload proceeds as fol-
lows. If L′ ≤ Lc, u′ runs the PoW protocol over all her layers
to earn the ownership from cloud. Recall that the layer keys
{τi}1≤i≤L′ are recovered during the PoW process. Then u′

encrypts each τi using the private key and stores them in
cloud. If L′ > Lc , for the Lc preceding layers (duplicates)
{mi}1≤i≤Lc of the SVC video, u′ needs to run the PoW pro-
tocol over each of them to earn the ownership from cloud,
and produces the ciphertexts {C′τi}1≤i≤Lc of the recovered
layer keys {τi}1≤i≤Lc ; for each additional layer mi, where
Lc < i ≤ L′, u′ produces a layer ciphertext Ci, a masked
layer key ri along with a random string si, and a layer key
ciphertext C′τi , where τi is the layer key. Then u′ stores
{Ci, (si, ri)}Lc<i≤L′ along with {C′τi}1≤i≤L′ in cloud. Note
that for the case that L′ > Lc, cloud updates Lc as L′ when
u′ passes the PoW protocol enforced over all duplicate lay-
ers. Besides, if the number of layers actually owned by u′

is less than the submitted one, cloud would not update Lc
and only marks u′ as the owner of the duplicate layers over
which she passes the PoW protocol successfully. Therefore,
regardless of the number of layers a user submits during a
subsequent upload process, a user is marked as the owner
of a duplicate layer only when she passes the PoW protocol
over it.
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Retrieval phase. During the retrieval process, the user u
requests the number of layers she wants for a certain SVC
video owned by her to cloud. Then the corresponding layer
ciphertexts along with the layer key ciphertexts are returned
to u. After that, u can use her secret key to recover each
layer key and further recovers each layer.

6. SECURITY ANALYSIS
In this section, we give the security analysis of our sys-

tem design in detail. We will demonstrate that our system
addresses the threats from Malicious outside adversary and
Honest-but-curious inside adversary respectively, as men-
tioned in Section 2.2, and meets the security goals.

Firstly, we consider the security against Malicious outside
adversary. The outside adversary wants to use the hash
H(V ) to gain the ownership of the video that does not be-
long to her from cloud. Note that the adversary with H(V )
can generate the message-derived tag α and label β through
the agency. Recall that our PoW approach requires each
subsequent user to compute the hash of encrypted video.
Thus, the adversary should obtain the correct ciphertext,
which means that she needs the plaintext V and the correct
encryption key τ . Note that τ is protected via F (s, V ||β).
Without V , the adversary cannot derive τ , not to mention
the correct ciphertext. Hence, the PoW will fail and cloud
will not be fooled to mark the outside adversary as a legiti-
mate duplicate owner.

Secondly, we consider the security against Honest-but-
curious inside adversary. As stated, the agency could be
semi-trusted, which faithfully produces the message-derived
tag and label via its private keys, but is interested in H(V ).
Accordingly, our system adopts the blind signature (RSA-
OPRF), so the input H(V ) is oblivious to the agency. On
the other hand, we assume cloud is also curious but does
not collude with the agency. Cloud stores the encrypted
video CV , the tag α for duplicate check, and the masked
key τ ⊕F (s, V ||β). We note that cloud is not able to obtain
the plaintext V if the video is unpredictable. As mentioned,
τ is well protected if cloud does not know V or β. Without
τ , cloud cannot decrypt CV .

Finally, our system can effectively prevent cloud from
mounting the off-line brute-force attacks over predictable
videos. As mentioned in Section 4.2, if cloud knows a rela-
tively small message space (or a dictionary) underlying an
encrypted video, it can compute all the message hashes in
this dictionary. We note that leveraging the agency can de-
fend off-line brute-force attacks. Firstly, our system resorts
to an agency to assist the generation of message-derived tag
α for duplicate check rather than directly exposing the hash
H(V ) to cloud. Without the private key of the agency, cloud
cannot produce the α for each candidate in the dictionary.
In our system, it is required to interact with the agency to
get α for each trial. Secondly, since cloud has the encrypted
video CV and the masked key τ ⊕ F (s, V ||β) (along with
a random string s), it can try to recover the corresponding
key and obtain the video plaintext. Likewise, cloud can-
not produce the message-derived label β without requesting
the agency. For each trial, cloud needs to interact with the
agency to get β and unmask the key via xoring a mask de-
rived from β and V . In a word, for predictable videos, our
system can prevent the off-line brute-force attacks in a con-
trollable fashion and turn it into online trials against cloud,

which can be significantly slowed down by enforcing several
proper rate limiting strategies [2].

Note that the proposed construction of secure deduplica-
tion over encrypted SVC videos is built under the secure
deduplication framework. And the PoW scheme is enforced
over each duplicate layer. Only the user who indeed owns
the duplicate layers can earn the ownership.

7. EXPERIMENTS

7.1 Implementations
We implement our system prototype with roughly 7,000

lines of c++ code and 10,000 lines of java code. We use
Thrift to create network services between entities with cross-
language Remote Process Call (RPC)1. We use the GMP li-
brary 2 and the Openssl library 3 to perform our cryptogra-
phy, i.e, blind signature, symmetric encryption (AES/CBC-
256), and full-domain hash function (SHA-256). We collect
videos from two benchmarks: VIRAT [16] and DASH [13].
We encode those videos into SVC videos (totally around
100GB) with the JSVM software4, and decode them with
the Open SVC decoder [6]. Meanwhile, we integrate the
Open SVC decoder library to a open source video player
MPlayer5 and re-compile it to play the SVC videos. The
implementations of each entity are described as follows:

• User client: it is developed in c++ and can process
user’s requests and call corresponding services. In the
process of generating the message-derived tag α and
label β, the client communicates with the agency. We
also implement a basic access control mechanism in-
cluding user login and register operations.

• Agency: it is also developed in c++. Once it receives
the blinded input from client, the agency will compute
the signature and response it to the client.

• Application server: it is implemented with java and
has three functions. Firstly, it handles the user’s re-
quest of duplicate check and replies with the result
of querying on the storage server. Secondly, it verifies
the ownership of videos by processing PoW. Lastly, af-
ter getting the download request, it verifies the access
permission and replies the corresponding SVC videos.

• Storage server: it stores the encrypted SVC videos
with tags for duplicate check and ciphertext hashes for
PoW, and the user profiles with encrypted private keys
and video ownerships. Here, we choose DynamoDB6 as
our storage backend. Note that our application server
is running on Amazon EC2, which can efficiently com-
municate with DynamoDB.

SVC encryption. At a high level, each frame of a SVC
video consists of a base layer and several enhancement lay-
ers [19]. To encrypt a SVC video, one straightforward method

1Apache Thrift: http://thrift.apache.org
2The CNU Multiple Precision Arithmetic Library:
https://gmplib.org
3OpenSSL Project: http://www.openssl.org
4Joint Video Team: SVC reference software(jsvm soft-
ware), 2011.
5MPlayer: http://www.mplayerhq.hu/design7/dload.html
6Amazon Web Service: http://aws.amazon.com/
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Figure 3: Different qualities for a given SVC video.

is to perform symmetric encryption for each layer per frame.
However, this method is not directly compatible with the un-
derlying SVC structure [20,22]. From the perspective of the
underlying structure, a SVC video bitstream is divided into
network abstract layer units (NALUs). Each layer (both
base layer and enhancement layers) has its own NALUs,
and the NALUs can be identified to the corresponding lay-
ers from the attached header information [19]. If the whole
layer is encrypted, a user client that requests a video can-
not perform timely decryption until the whole ciphertext of
one layer is downloaded, which in turn affects the timely de-
coding for playback, and degrades the user experience and
service quality.

Instead of performing encryption at the layer level, we
adopt NALU-level encryption inspired from [22], i.e., the
payload of each NALU is encrypted individually and the
related header information is left in cleartext. As a result,
as long as one encrypted NALU is received, the client can
perform decryption and then decoding. The processing of
each layer can be performed in a pipelined fashion at the
user client. For the implementation, the client extracts the
layer’s NALUs in the same layer for each frame, encrypts
them one by one and uploads them to the storage backend.

Storage optimization. The NALUs within the same layer
are grouped as a layer block by the storage server in our
system. When the client wants to download the video, the
storage server needs to fast locate the corresponding layer
block and its NALUs. In the SVC standard [19], the NALUs
are encoded together by adding the start code prefix, i.e.,
0x00000001, between each NALU. Regarding our NALU-
based encryption, using the start code to fetch NALUs may
not meet the performance requirements for fast retrieval.

To optimize the storage, we use Key-Length-Value (KLV)
encoding standard7 to package the NALU. As a result, the
storage server can efficiently distinguish each NALU. Ex-
plicitly, NALUs are encoded into Key-Length-Value triplets,
where Key identifies the NALU (its frame ID), Length speci-
fies the NALU’s length, and Value is the NALU itself. Upon
the retrieval of the SVC videos, the storage server can read
the NALUs by the help of lengths, and combine them with
the same frame ID.

7.2 Evaluation

7.2.1 Visual Experience
Figure 3 shows the different qualities (i.e., resolutions) for

a given SVC video after the decryption and decoding at the
user client. As shown, our security design does not affect
the visual scalability of SVC. The more layers the video has,
the higher quality the video is.

7BT.1563: Data encoding protocol using key-length-value:
http://www.itu.int/rec/R-REC-BT.1563-1-201103-I/en
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Figure 4: Ratio of the storage overhead to the SVC
video size, under different numbers of layers, where
n is the number of layers of a SVC video.

7.2.2 Performance
We report our system performance on the aspects of stor-

age overhead, computation costs of different tasks for initial
upload and time savings via deduplication. All measurement
represents the mean of 10 trials.

Storage overhead. Our design incurs little storage over-
head at cloud to support secure deduplication. As we adopt
the layer-level deduplication, storing a SVC video with n
layers, the storage overhead contains the tag α1 (32 bytes)
for duplicate check, n masked encryption key r with seed
s (64 bytes per one) for the access of subsequent users, n
owner key ciphertexts (32 bytes per one) and n hashes of the
layer ciphertexts (32 bytes per one). Recall that we utilize
only the message-derived tag of the base layer for duplicate
check, since two SVC videos can hardly have duplicate layers
if they do not have the same base layer [21].

In total, the storage overhead for a SVC video with n lay-
ers are equal to 32 + 64n + 32n + 32n = 32 + 128n bytes,
which is roughly in linear to the number of layers and inde-
pendent of the video size. The relation between the storage
overhead and the sizes of SVC videos with different number
of layers is displayed in Figure 4. As shown, the storage
overhead is very low, compared with the video sizes under
different number of layers. For example, given a SVC video
with 1MB size and 7 layers, the storage overhead is only 928
bytes, just 0.09% of the video size. And for a fixed number of
layers, the ratio quickly diminishes and becomes negligible
as the video size gets larger.

Computation costs. We measure the time consumed by
different computation tasks during the initial upload. Re-
call that the computation tasks consist of the following four
components: 1. generation of message-derived tag α1 via
RSA-OPRF; 2. SVC video encryption; 3. generation of the
masked key r ( message-derived label β via RSA-OPRF in-
cluded); 4. key τ encryption. We note that the time of key
encryption is negligible compared to other tasks, so we focus
on the first three ones, which are denoted as vEnc, tGen, and
rGen, respectively. Besides, vEnc is regarded as the neces-
sary operation to safeguard the data confidentiality. Thus,
the computation overhead for secure deduplication lies in
the other two components, i.e., tGen and rGen.

Figure 5 depicts the computation costs of the three com-
ponents when different numbers of layers of a 95MB SVC
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Figure 5: Time costs of different computation tasks
for initially uploading different numbers of layers of
a SVC video. There are totally three layers and the
size is 95MB.
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Figure 6: Time costs of different computation tasks
for initially uploading SVC videos with the same
number of layers but with different sizes. Here each
SVC video has three layers.

video is uploaded (totally three layers). The network de-
lays in the RSA-OPRF protocol are not considered. It is
observed that the time spent on vEnc and rGen increases
linearly with the number of layers, since the related opera-
tions should be conducted for each layer. In contrast, tGen
remains constant since it is only related to the base layer.
Figure 6 shows the computation costs for SVC videos with
different sizes but with the same number of layers. When
the video sizes increase, the layer sizes increase as well, so
each computation task will take more time to finish. Even
though, our system is quite practical, e.g., the overall com-
putation cost for a 471MB SVC video is less than 3 seconds.

Time savings. We measure the time savings for the user
by using our secure deduplication system, compared with an
Enc+No-Dedup policy that always sends the encrypted du-
plicate SVC videos (layers) to cloud. Two network settings
are considered, including a fast network (20Mbps) and an
extremely fast network (100Mbps) [1].

Figure 7 compares the running time between our dedupli-
cation design and the Ennc + No− Dedup policy, over dif-
ferent numbers of duplicate layers of a 95MB SVC video.
Note that the running time in the compared policy includes
the layer encryption time and the network transfer time of
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Figure 7: Running time comparisons between our
system and Enc + No− Dedup setting, over different
numbers of duplicate layers for a given 95MB SVC
video, which totally has three layers.
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Figure 8: Running time comparisons between
our system and Enc + No− Dedup setting, over SVC
videos in different sizes but with the same number
(three) of duplicate layers.

the layer ciphertexts, while our system includes all the op-
erations specified above for a user to earn the ownership of
duplicate layers from cloud. For both two network settings,
our design always consumes much less time than the com-
pared policy. The reason is that client-side deduplication is
enforced in our system and duplicate layers would not be
transferred through the network. Besides, it is noted that
although some mechanisms such as the PoW protocol are
involved in our system, the advantages in time savings ren-
dered by deduplication remain unaffected. Figure 8 further
compares the running time between our deduplication de-
sign and the policy over SVC videos in different sizes ranging
from 95MB to 471MB with the same number of duplicate
layers. As shown, for the 95MB SVC video in the 20 Mbps
network setting, the compared policy takes 40.4484 seconds,
while the time for our system is only 0.9681 seconds; in the
100 Mbps network setting, the compared policy takes 8.3025
seconds, while the time for our system is only 0.9676 sec-
onds. On average, the time savings provided by our system
can achieve about 97% in the 20Mbps network setting and
about 88% in the 100Mbps network setting, respectively.
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8. RELATED WORK

8.1 Secure Deduplication
Convergent encryption (CE) is first proposed by Douceur

et al. [10] for secure deduplication, which enforces data confi-
dentiality while enabling deduplciation. It encrypts/decrypts
a file with a convergent key obtained through computing
the hash value of the file content. Thus, the same file will
always map to the same ciphertext, making deduplication
feasible. Later, Bellare et al. [3] formalize CE under the
name of message-locked encryption (MLE) and explore its
application in secure space-efficient cloud storage, which can
support both client-side and server-side deduplication. Re-
cently, Li et al. [14] present a key management scheme based
on secret sharing to protect the convergent keys in secure
deduplication. The scheme constructs and distributes secret
shares of keys across multiple independent servers. However,
CE is inherently vulnerable to off-line brute-force attacks
over predictable files [2]. The security of CE only holds for
unpredictable files.

To securely use server-side deduplication and resist off-
line brute-force attacks over predictable files in CE, Bellare
et al. [2] resort to a key server (KS) to first provide message-
based keys (i.e., hash values protected under the KS’s secret
key) without disclosing any information on the users’ data.
Then they adopt rate-limiting strategies on KS to mitigate
the online brute-force attacks in practice. Another work
proposed by Puzio et al. [17] employ a server to perform
additional encryption over the convergent-encrypted data
collected from all users. Without knowing the server’s secret
key, cloud cannot launch off-line brute-force attacks over
predictable files. However, their design is only suited for
server-side deduplication and the server has to suffer from
heavy communication overhead.

Apart from the above inherent vulnerability, CE is in-
secure in the bounded leakage setting, where the data hash
(i.e., the convergent key) may be disclosed [25]. Accordingly,
Xu et al. [25] propose a client-side deduplication scheme for
encrypted files in the bounded leakage setting. However,
for predictable data, the proposed scheme does not consider
the defense on the off-line brute-force attacks against the
honest-but-curious cloud. Our system design enhances the
security via the help of the agency.

8.2 Security Protection for SVC Videos
In [22], Wei et al. present a scalable and format-compliant

encryption scheme to protect SVC bitstreams when being
disseminated through an open network. The scheme con-
structs new NALUs to replace the original ones to preserv-
ing the SVC scalability. And the resulting encrypted SVC
bitstream has the original SVC structure without emula-
tion markers or illegal codewords for the standard SVC de-
coder, and thus achieves format-compliance. Deng et al. [9]
propose an efficient block-based encryption scheme for SVC
bitstream encryption. They consider a scenario where a pay
TV broadcaster intends to provide a base layer version of the
broadcasted program for everyone, but only allows autho-
rized users to further get access to the enhancement layers.
Therefore, the base layer is left in the cleartext while the en-
hancmenet layers are encrypted. The encryption of enhance-
ment layers is achieved by employing secure pseudorandom
permutations on macroblocks and subblocks. In [23], Wu et
al. study the problem of attribute-based access control on

SVC videos in cloud-based content sharing networks. Specif-
ically, they present a novel multiple-message ciphertext pol-
icy attribute-based encryption (MCP-ABE) scheme, which
can deliver multiple messages within one ciphertext, com-
pared with the traditional CP-ABE scheme [5]. For a SVC
video, the scheme constructs a key graph, encrypts layers
with the corresponding keys and employs the MCP-ABE to
encrypt the key graph. Users with different privileges can
first decrypt the encryption of the key (sub)graph, and then
decrypt the corresponding encrypted layers. Different from
the above works, we investigate secure deduplication over
encrypted SVC videos.

9. CONCLUSIONS
In this paper, we have designed and implemented an en-

crypted cloud media center that hosts encrypted SVC videos
and supports secure deduplication. We first formulate a
secure deduplication framework with strong protection for
videos, which can protect the confidentiality in the bounded
leakage setting and defend the off-line brute-force attacks
over predictable data, respectively. Under the proposed
framework, we then leverage the layered nature of SVC and
propose the layer-level deduplication over encrypted SVC
videos. We thoroughly analyze the security guarantee of
our system against both malicious outside adversaries and
honest-but-curious inside adversaries. Our implementation
adopts the encryption strategy compatible with the struc-
ture and the format of SVC, and optimizes the way en-
crypted SVC videos are stored to improve the dissemina-
tion efficiency. The extensive experiments on Amazon cloud
platform further demonstrate the practicality of our system.

In future work, we plan to investigate the support for
multiple scalabilities (e.g., time and resolution) of SVC in
our layer-level deduplication construction and extend our
design for more general cases.
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APPENDIX
A. THE RSA-OPRF PROTOCOL

Table 1: The RSA-OPRF protocol. (N, e) and (N, d)
are the agency’s public key and secret key, respec-
tively, which are as in the RSA system. M denotes
the message to be signed. H1 : {0, 1}∗ → Z∗N and
H2 : Z∗N → {0, 1}λ are two hash functions.

User Agency

1. γ
$←Z∗N

2. h← H1(M)
3. x← h · γemodN

x
GGGGGA

4. y ← xdmodN
y

DGGGGG

5.z ← y · γ−1modN
6. If zemodN 6= h then
ret ⊥; Else ret H2(z)
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