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ABSTRACT

Recent advances in DNA sequencing technologies have put
ubiquitous availability of fully sequenced human genomes within
reach. It is no longer hard to imagine the day when everyone
will have the means to obtain and store one’s own DNA sequence.
Widespread and affordable availability of fully sequenced genomes
immediately opens up important opportunities in a number of health-
related fields. In particular, common genomic applications and
tests performed in vitro today will soon be conducted computation-
ally, using digitized genomes. New applications will be developed
as genome-enabled medicine becomes increasingly preventive and
personalized. However, this progress also prompts significant pri-
vacy challenges associated with potential loss, theft, or misuse of
genomic data. In this paper, we begin to address genomic privacy
by focusing on three important applications: Paternity Tests, Per-

sonalized Medicine, and Genetic Compatibility Tests. After care-
fully analyzing these applications and their privacy requirements,
we propose a set of efficient techniques based on private set oper-

ations. This allows us to implement in in silico some operations
that are currently performed via in vitro methods, in a secure fash-
ion. Experimental results demonstrate that proposed techniques are
both feasible and practical today.

Categories and Subject Descriptors: E.3 [Data Encryption]: Se-
cure Multi-party Computation

General Terms: Security.

Keywords: Privacy, DNA, Cryptographic Protocols.

1. INTRODUCTION
Over the past four decades, DNA sequencing has been one of

the major driving forces in life-sciences, producing full genome se-
quences of thousands of viruses and bacteria, and dozens of eukary-
otic organisms, from yeast to man (e.g., [2, 30, 40, 76]). This trend
is only being accentuated by modern High-Throughput Sequenc-
ing (HTS) technologies: the first diploid human genome sequences
were recently produced [52, 74, 78] and a project to sequence 1,000
human genomes has been essentially completed [19, 43, 66]. Dif-
ferent HTS technologies are competing to sequence an individual
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human genome — composed of about 3 billion DNA nucleotides
(or bases) — for less than $1,000 by 2012 [65], and even less than
$100 five years later, reaching the point where human genome se-
quencing will be a commodity costing less than an X-ray or an
MRI scan. Ubiquity of human and other genomes creates enor-
mous opportunities and challenges. In particular, it promises to
address one of the greatest societal challenges of our time: the
unsustainable rise of health care costs, by ushering a new era of
genome-enabled predictive, preventive, participatory, and person-
alized medicine (“P4” medicine). In time, genomes could become
part of the Electronic Medical Record of every individual [38].

However, widespread availability of HTS technologies and ge-
nomic data exacerbates ethical, security, and privacy concerns [11].
A full genome sequence not only uniquely identifies each one of us;
it also contains information about, for instance, our ethnic heritage,
disease predispositions, and many other phenotypic traits [23, 64].
Traditional approaches to privacy, such as de-identification [54],
become completely moot in the genomic era, since the genome
itself is the ultimate identifier. To further compound the privacy
problem, health information is increasingly shared electronically
among insurance companies, health care providers and employers.
This, coupled with the possibility of creating large centralized ge-
nome repositories, raises the specter of possible abuses.

Some federal laws have been passed to begin addressing privacy
issues. The 2003 Health Insurance Portability and Accountability
Act (HIPAA) provides a general framework for protecting and shar-
ing Protected Health Information (PHI) [20, 49, 55]. In 2008, the
Genetic Information Nondiscrimination Act (GINA) was adopted
to prohibit discrimination on the basis of genetic information. with
respect to health insurance and employment [73]. While providing
general guidelines and a basic safety net, current legislation does
not offer detailed technical information about safe and privacy-
preserving ways for storing and querying genomes. In short, tech-
nical issues of security and privacy for HTS and genomic data re-
main both important and relatively poorly understood.

While privacy issues are not yet hampering progress in basic ge-
nomic research, it is not too early to start investigating them, par-
ticularly, in light of their complexity, potential impact on society,
and current efforts to reform the health care system. It remains un-
clear where personal genomic information will be stored, who will
have access to it, and how it will be queried and shared. To re-
main flexible, we can imagine a general framework comprised of
two kinds of basic entities: (1) Data Centers where genomic data
is stored, and (2) Agents/Agencies interested in querying this data.
Granularity of Data Centers could vary. At one end of the spec-
trum, every individual could be her own Data Center and store the
genome on a personal computer, cell phone, or some other device.
At the other extreme, we could envision national or even interna-
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tional Data Centers storing millions (or even billions) of genomic
sequences. Data Centers could also be envisioned at the granular-
ity of family, school, pharmacy, laboratory, hospital, city, county
or state. Likewise, many different types of Agents/Agencies are
conceivable, ranging from individuals and personal physicians, to
family members, pharmacies, hospitals, insurance companies, em-
ployers and government agencies (e.g., the FBI), or international
organizations. Various Agents/Agencies might be allowed to query
different aspects of genomic data and might be required to satisfy
different query privacy requirements. In addition, one could imag-
ine cases (e.g., criminal search or proprietary diagnostic technol-
ogy) where both the genomic data and queries against it must re-
main private.

The main security and privacy challenge is how to support such
queries with low storage costs and reasonably short query times,
while satisfying privacy and security requirements associated with
a given type of transaction. Unfortunately, current methods for
privacy-preserving data querying do not scale to genomic data sizes.
Several cryptographic techniques have been proposed that —
though not addressing the case of fully-sequenced genomes — fo-
cus on private computation over genomic fragments. Specifically,
they allow two or more parties to engage in protocols that reveal
only the end-result of a given computation on their respective ge-
nomic data, without leaking any additional information. The main
thrust of this paper is to adapt and deploy efficient cryptographic
techniques to address specific genomic queries and applications,
described below.

1.1 Applications
As mentioned above, availability of affordable full genome se-

quencing makes it increasingly possible to query and test genomic
information not only in vitro, but also in silico using computational
techniques. We consider three concrete examples of such tests and
corresponding privacy-relevant scenarios.

Paternity Tests establish whether a male individual is the biolog-
ical father of another individual, using genetic fingerprinting. Ad-
vances in biotechnology facilitated DNA paternity tests and stimu-
lated the creation of hundreds of online companies offering test-
ing via self-administered cheek swabs for as little as $79 (e.g.,
http://www.gtldna.net). However, this practice raises several
security and privacy concerns: the testing company must be trusted
with privacy and accuracy of test results, as well as with swabs that
might yield full genome sequencing. We believe that, ideally, any
two individuals, in possession of their genomes should be able to
conduct a privacy-preserving paternity test with no involvement of
any third parties. Only the outcome of the test ought to be learned
by one or both parties and no other sensitive genomic information
should be disclosed.

Personalized Medicine is recognized as a significant paradigm
shift and a major trend in health care, moving us closer to a more
precise, powerful, and holistic type of medicine [77]. With per-
sonalize medicine, treatment and medication type/dosage would be
tailored to the precise genetic makeup of individual patient. For ex-
ample, measurements of erbB2 protein in breast, lung, or colorectal
cancer patients are taken before selecting proper treatment. It has
been showed that the trastuzumab monoclonal antibody is effec-
tive only in patients whose genetic receptor is over-expressed [63].
Furthermore, the FDA has recently recommended testing for the
thiopurine S-methyltransferase (tpmt) gene, prior to prescribing for
6-mercaptopurine and azathioprine — two drugs used for treat-
ing childhood leukemia and autoimmune diseases. The tpmt gene
codes for the TPMT enzyme that metabolizes thiopurine drugs:

genetic polymorphisms affecting enzymatic activity are correlated
with variations in sensitivity and toxicity response to such drugs.
Patients suffering from this genetic disease (1 in 300) only need
6-10% of the standard dose of thiopurine drugs; if treated with the
full dose, they risk severe bone marrow suppression and subsequent
death [1]. Not surprisingly, experts predict that availability of full
genome sequencing will further stimulate development of person-
alized medicine [29].

Genetic Tests are routinely used for several purposes, such as new-
born screening, confirmational diagnostics, as well as pre-sympto-
matic testing, e.g., predicting Huntington’s disease [34] and esti-
mating risks of various types of cancer. We focus on genetic com-

patibility tests, whereby potential or existing partners wish to as-
sess the possibility of transmitting to their children a genetic dis-
ease with Mendelian inheritance [56]. Modern genetic testing can
accurately predict whether a couple is at risk of conceiving a child
with an autosomal recessive disease. Consider, for instance, Beta-

Thalassemia minor, that causes red cells to be smaller than average,
due to a mutation in the hbb gene. It is called minor when the mu-
tation occurs only in one allele. This minor form has no severe
impact on a subject’s quality of life. However, the major variant —
that occurs when both alleles carry the mutation — is likely to result
in premature death, usually, before age twenty. Therefore, if both
partners silently carry the minor form, there is a 25% chance that
their child could carry the major variety. Another example is the
Lynch Syndrome (also known as Hereditary Nonpolyposis Colon
Cancer), a genetic condition — most commonly inherited from a
parent — associated with the high risk of colon cancer [45]. Par-
ents with this syndrome have a 50% chance of passing it on to their
children. Since the possibility of inheritance is maximized if both
parents carry the mutations, testing for Lynch Syndrome is crucial.

Note on Non-human Genomes: Although this paper focuses on
human genomes, some aforementioned scenarios apply to other or-
ganisms, e.g., crops and animals [3]. For instance, a paternity test
may certify a purebred dog’s bloodline or genetic tests may de-
termine the quality of a racing horse. In fact, DNA “barcodes”
identifiers are already embedded in genomes of genetically mod-
ified species. Conceivably, future veterinary treatments may also
involve elements of personalized medicine for animals.

1.2 Roadmap
Motivated by the emerging affordability of full genome sequenc-

ing, we combine domain knowledge in biology, genomics, bioin-
formatics, security, privacy and applied cryptography in order to
better understand the corresponding security and privacy challenges.
In particular, we analyze specific requirements of three types of ap-
plications discussed above: Paternity Tests, Personalized Medicine
and Genetic Tests. In the process, we carefully consider today’s
in vitro procedure for each application and analyze its security and
privacy requirements in the digital domain. This type of approach
allows us to gradually craft specialized protocols that incur appre-
ciably lower overhead than state-of-the-art. However, as is well
known, “lower overhead” does not necessarily imply practicality.
Therefore, we demonstrate — via experiments on commodity hard-
ware — that proposed protocols are indeed viable and practical to-

day. Source code of our implementations is publicly available. We
hope that it can help in developing privacy-aware operations on full
genomes and allows individuals (in possession of their sequenced
genomes) to run genetic tests with privacy.

Organization. We overview related work in the next section. Then,
Sec. 3 introduces biological and cryptographic background used
throughout the rest of the paper. The core of the paper is in Sec. 4
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that includes step-by-step design of protocols for each aforemen-
tioned application. It also presents experimental results. Next,
Sec. 5 provides security arguments for proposed protocols, fol-
lowed by the summary and the discussion of future work in Sec. 6.

2. RELATED WORK
Motivated by the sensitivity of genomic information, the security

research community has begun to develop mechanisms to enable
secure computation on genomic data. A number of cryptographic
protocols have been proposed for private searching, matching and
evaluating similarity of strings, including DNA sequences. Also,
prior work has considered specific (privacy-preserving) genomic
operations. This section overviews relevant prior results and high-
lights their potential limitation.

Searching and Matching DNA

Troncoso-Pastoriza, et al. [71] proposed a privacy-preserving and
error-resilient protocol for string searching. In it, one party (e.g.,
Alice), with her own DNA snippet, can verify the existence of a
short template (e.g., a genetic test held by a service provider –
Bob) within her snippet. This technique handles errors and main-
tains privacy of both the template and the snippet. Each query
is represented as an automaton executed using a finite state ma-
chine (FSM) in an oblivious manner. Communication complexity
is O(n · (|Σ| + |Q|)), where n is snippet length, |Σ| – alphabet
size (i.e., 4 for DNA), and |Q| – number of states. Computational
complexity is O(n · |Σ| · |Q|) and O(n · |Q|) cryptographic opera-
tions for Alice and Bob, respectively. However, the number of FSM
states is always revealed to all parties. To obtain error-resilient and
approximate DNA matching, [71] also shows how to construct an
automaton that, given Alice’s string x, accepts all strings with Lev-
enshtein distance [51] at most d from x.

Blanton and Aliasgari [4] improve on [71], reducing Alice’s work
by a factor of |Σ| and Bob’s — by a factor of log(|Q|), incurring,
however, a potentially increased communication complexity (if the
security parameter is smaller than log(|Q|)). This work also in-
troduces a protocol for secure outsourcing of computation to an
external service provider and a modified multi-party protocol.

A set of cryptographic protocols for secure pattern matching are
presented in [27] and [36]. Given a binary string T of length n,
held by Alice, and a binary pattern p of length m, held by Bob,
pattern matching lets Bob learn all locations in T where p appears.
Secure computation guarantees that nothing except m is learned
by Alice, and nothing about T is revealed to Bob (besides n and
locations where p appears). [27] proposes one such protocol, se-
cure in the semi-honest setting, based on homomorphic encryption,
with O(m + n) communication and computation complexities. It
includes another protocol, secure in the malicious setting, based on
secure oblivious automata evaluation, with quadratic complexity
and m rounds. Subsequently, [36] presented an improved protocol,
with malicious security, using homomorphic encryption and incur-
ring O(m + n) complexity.

Another related result is the recent work in [47]. It realizes
secure computation of the CODIS test [69] (run by the FBI for
DNA identity testing), that could not be implemented using pat-
tern matching or FSM. It achieves efficient secure computation of
function M(T, p, e, l) = 1 iff |lmax(T, p) − l| ≤ ε, where T is a
DNA fragment, p a pattern, (ε, l) some additional information, and

lmax(T, p) ≥ 0 is the largest integer l′ for which pl
′

appears as a
substring in T . A general technique for secure text processing is in-
troduced, combining garbled circuits and secure pattern matching.
(The latter is reduced to private keyword search and solved using

Oblivious Pseudorandom Functions (OPRF-s) [24, 35].) The re-
sulting protocol can compute several functions (including CODIS)
on sample T and pattern p, using the number of circuits linear in
the number of occurrences of p. Complexity incurred by the under-
lying keyword search protocol is linear in |T |. However, common
knowledge of some threshold on the number of occurrences needs
to be assumed.

Similarity of DNA Sequences

Another set of cryptographic results focus on privately comput-
ing the edit distance of two strings α, β of size m and n, respec-
tively.1 Privacy-preserving computation of Smith-Waterman scores
[67] has also been investigated and used for sequence alignment.

Jha, et al. [42] proposed techniques for secure edit distance using
garbled circuits [79], and showed that the overhead is acceptable
only for small strings (e.g., a 200-character strings require 2GB
circuits). For longer strings, two optimized techniques were pro-
posed; they exploit the structure of the dynamic programming prob-
lem (intrinsic to the specific circuit) and split the computation into
smaller component circuits. However, a quadratic number of obliv-
ious transfers is needed to evaluate garbled circuits, thus limiting
scalability of this approach. For example, 500-character string in-
stances take almost one hour to complete [42]. Optimized protocols
also extend to privacy-preserving Smith-Waterman scores [67], a
more sophisticated string comparison algorithm, where costs of
delete/insert/replace operations, instead of being equal, are deter-
mined by special functions. Again, scalability is limited: experi-
ments in [42] show that evaluation of Smith-Waterman for a 60-
character string takes about 1,000 seconds.

Somewhat less related techniques include [44] that proposed a
cryptographic framework for executing queries on genomic data-
bases where privacy is attained by relying on two anonymizing and
non-colluding parties. Danezis, et al. [14] used negative databases
to test a single profile against a database of suspects, such that
database contents cannot be efficiently enumerated.

Specialized Protocols

Wang, et al. [75] proposed techniques for computation on ge-
nomic data stored at a data provider, including: edit distance, Smith-
Waterman and search for homologous genes. Program specializa-
tion is used to partition genomic data into “public” (most of the
genome) and “sensitive” (a very small subset of the genome). Sen-
sitive regions are replaced with symbols by data providers (DPs)
before data consumers (DCs) have access to genomic information.
DCs perform concrete execution on public data and symbolic exe-
cution on sensitive data, and may perform queries to DPs on sensi-
tive nucleotides. However, only queries that do not let DCs recon-
struct sensitive regions are allowed by DPs and generic two-party
computation techniques are used during query execution. Portions
of sensitive data are public information. We note that, due to the
current limited knowledge of human genome, parts that are consid-
ered non-sensitive today may actually become sensitive later.

Finally, Bruekers, et al. [6] presented privacy-preserving tech-
niques for a few DNA operations, such as: identity test, common
ancestor and paternity test, based on STR (Short Tandem Repeat;
see Sec. 3.1). Homomorphic encryption is used on alleles (frag-
ments of DNA) to compute comparisons. Testing protocols toler-
ate a small number of errors, however, their complexity increases
with the number of tolerated errors [4]. Also, [6] leaves as an open
problem the scenario where an attacker (honestly) runs the protocol

1
Edit distance is the minimum number of operations (delete, insert, or replace) needed
to transform α into β.
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but executes it on arbitrarily chosen inputs. In this setting, attack-
ers, given STR’s limited entropy, can “lie” about their STR profiles
and run multiple dependent protocols thus reconstructing the other
party’s profile.

Using Current Techniques?

We aim to obtain secure and private computation on fully se-
quenced genomes, in scenarios where individuals possess their own
genomic data. As discussed in Sec. 1, we focus on paternity test-
ing, personalized medicine and genetic compatibility testing. Prior
work has yielded a number of elegant (if not always efficient) cryp-
tographic protocols for secure computation on DNA sequences.
However, we identify some notable open problems:

1. Efficiency: Most current protocols are designed for DNA
snippets (e.g., hundreds of thousands nucleotides) and it is
unclear how to scale them to full genomes (i.e., three billion
nucleotides).

2. Error Resilience: Most prior work attempts to achieve re-
silience to sequencing errors in computation (e.g., using ap-
proximate matching or distance with errors). Not surpris-
ingly, this results in: (i) significant computation and commu-
nication overhead, and (ii) ruling out more efficient and sim-
pler cryptographic tools, i.e., those geared for exact match-
ing. (Whereas, our goal is error-resilience by design.) Also,
as the cost of full genome sequencing drops, so do error rates.
By increasing the number of sequencing runs, the probability
of sequencing errors can be rapidly reduced.

3. Inter-String Distance: Analyzing the distance between se-
quenced strings works for the creation of phylogenetic trees,
parental analysis, and homology studies. However, it does
not suit applications, such as genetic diseases testing, that
require much more complex comparisons.

4. Paternity Testing: To the best of our knowledge, the only
available technique for privacy-preserving genetic paternity
testing is [6]. However, it does not prevent a participant from
manipulating its input to reconstruct the counterpart’s profile.
Also, as shown in Sec. 4.1, overhead can be significantly re-
duced using techniques that obtain error resilience by design.

5. Genetic Testing via Pattern Matching: The use of pattern
matching over full genomes to test for genetic compatibility
and/or personalized medicine is not straightforward. Sup-
pose that a party wants to privately search for certain gene
mutation, e.g., Beta-Thalassemia. The pattern representing
this mutation might be very short — a few nucleotides —
but needs to be searched in the full genome, as restricting the
search to the specific gene would trivially expose the nature
of the test. Therefore, naïve application of pattern matching
would return all locations (presumably millions) where the
pattern appears. This would be detrimental to both privacy
and efficiency of the resulting solution. We could modify
the pattern to include nucleotides expected to appear imme-
diately before/after the mutation, such that, with high proba-
bility, this pattern would appear at most once. However, this
needs to be done carefully, since: (i) nucleotides added to
the pattern must appear in all human genomes, and (ii) the
choice of pattern length should not expose the mutation be-
ing searched. Plus, extending the pattern would also increase
computation and communication overhead.

3. PRELIMINARIES
This section provides some relevant biology and cryptography

background information.

3.1 Biology Background

Genomes represent the entirety of an organism’s hereditary infor-
mation. They are encoded either in DNA or, for many types of
viruses, in RNA. The genome includes both the genes and the non-
coding sequences of the DNA/RNA. For humans and many other
organisms, the genome is encoded in double stranded deoxyribonu-
cleic acid (DNA) molecules, consisting of two long and comple-
mentary polymer chains of four simple units called nucleotides,
represented by the letters A, C, G, and T. The human genome con-
sists of approximately 3 billion letters.

Restriction Fragment Length Polymorphisms (RFLPs) refers to
a difference between samples of homologous DNA molecules that
come from differing locations of restriction enzyme sites, and to
a related laboratory technique by which these segments can be il-
lustrated. In RFLP analysis, a DNA sample is broken into pieces
(digested) by restriction enzymes and the resulting restriction frag-
ments are separated according to their lengths by gel electrophore-
sis. Thus, RFLP provides information about the length (but not
the composition) of DNA subsequences occurring between known
subsequences recognized by particular enzymes. Although it is
being progressively superseded by inexpensive DNA sequencing
technologies, RFLP analysis was the first DNA profiling technique
inexpensive enough for widespread application. It is still widely
used at present. RFLP probes are frequently used in genome map-
ping and in variation analysis, such genotyping, forensics, pater-
nity tests and hereditary disease diagnostics. (For more details,
see [61].)

Single Nucleotide Polymorphisms (SNPs) are the most common
form of DNA variation occurring when a single nucleotide (A, C,
G, or T) differs between members of the same species or paired
chromosomes of an individual [68]. The average SNP frequency in
the human genome is approximately 1 per 1,000 nucleotide pairs.2

SNP variations are often associated with how individuals develop
diseases and respond to pathogens, chemicals, drugs, vaccines, and
other agents. Thus SNPs are key enablers in realizing personalized

medicine [9]. Moreover, they are used in genetic disease and disor-
der testing, as well as to compare genome regions between cohorts
in genome-wide association studies.

Short Tandem Repeats (STRs) occur when a pattern of two or
more nucleotides are repeated and repeated sequences are directly
adjacent to each other. The pattern can range in length from 2 to
50 nucleotides or so. Unrelated people likely have different num-
bers of repeat units in highly polymorphic regions, hence, STRs
are often used to differentiate between individuals. STR loci (i.e.,
locations on a chromosome) are targeted with sequence-specific
primers. Resulting DNA fragments are then separated and detected
using electrophoresis. By identifying repeats of a specific sequence
at specific locations in the genome, it is possible to create a genetic
profile of an individual. There are currently over 10,000 published
STR sequences in the human genome.

3.2 Cryptography Background
We now overview a set of cryptographic concepts and tools used

in the rest of the paper. For ease of exposition, we omit basic no-
tions and refer to [31, 46, 57] for details on various cryptographic
primitives, such as hash functions, number-theoretic assumptions,
as well as encryption and signature schemes.

Private Set Intersection (PSI) [25]: a protocol between Server

2
NCBI maintains an interactive collection of SNPs, dbSNP, containing all known ge-
netic variations of the human genome [59].
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with input S={s1, . . . , sw}, and Client with input C={c1, . . . , cv}.
At the end, Client learns S ∩ C. PSI securely implements: FPSI :
(S ,C) 7→ (⊥,S ∩ C).
Private Set Intersection Cardinality (PSI-CA) [25]: a protocol
between Server with input S = {s1, . . . , sw}, and Client with in-
put C = {c1, . . . , cv}. At the end, Client learns |S ∩ C|. PSI-CA
securely implements: FPSI-CA : (S ,C) 7→ (⊥, |S ∩ C|).
Authorized Private Set Intersection (APSI) [16]: a protocol be-
tween Server with input S = {s1, . . . , sw}, and Client with input
C={c1, . . . , cv} and Cσ={σ1, . . . , σv}. At the end, Client learns:

ASI
def
= S ∩ {ci | ci ∈ C ∧ σi valid auth. on ci}. APSI securely

implements: FAPSI : (S , (C, Cσ)) 7→ (⊥,ASI).

Adversarial Model. We use standard security models for secure
two-party computation. One distinguishing factor is the adversarial
model that is either semi-honest or malicious. (In the rest of this
paper, the term adversary refers to insiders, i.e., protocol partici-
pants. Outside adversaries are not considered, since their actions
can be mitigated via standard network security techniques.)

Following definitions in [31], protocols secure in the presence
of semi-honest adversaries assume that parties faithfully follow all
protocol specifications and do not misrepresent any information re-
lated to their inputs, e.g., size and content. However, during or after
protocol execution, any party might (passively) attempt to infer ad-
ditional information about the other party’s input. This model is
formalized by considering an ideal implementation where a trusted
third party (TTP) receives the inputs of both parties and outputs the
result of the defined function. Security in the presence of semi-
honest adversaries requires that, in the real implementation of the
protocol (without a TTP), each party does not learn more informa-
tion than in the ideal implementation.

Security in the presence of malicious parties allows arbitrary de-
viations from the protocol. However, it does not prevent parties
from refusing to participate in the protocol, modifying their inputs,
or prematurely aborting the protocol. Security in the malicious
model is achieved if the adversary (interacting in the real proto-
col, without the TTP) can learn no more information than it could
in the ideal scenario. In other words, a secure protocol emulates
(in its real execution) the ideal execution that includes a TTP. This
notion is formulated by requiring the existence of adversaries in the
ideal execution model that can simulate adversarial behavior in the
real execution model.

Although security arguments in this paper are made with respect
to semi-honest participants, extensions to malicious participant se-
curity (with the same computation and communication complexi-
ties) have already been developed for our cryptographic building
blocks: PSI, PSI-CA and APSI. We consider these extensions to be
out of the scope of this paper.

4. GENOME TESTING
We now explore efficient techniques for privacy-preserving test-

ing on fully sequenced genomes. Unlike most prior work (reviewed
in Sec. 2), we do not seek generic solutions for genomic computa-
tion. Instead, we focus on a few specific real-world applications
and, for each, capitalize on domain knowledge to propose an effi-
cient privacy-preserving approach.

Notation. We assume that each participant has a digital copy of her
fully sequenced genome denoted by G = {(b1||1), . . . , (bn||n)},
where bi ∈ {A, G, C, T, –}, n is the human genome length (i.e.,
3 · 109), and “||” denotes concatenation. The “–” symbol is needed
to handle DNA mutations corresponding to deletion, i.e., where a

portion of a chromosome is missing [53]. It is also used when the
sequencing process fails to determine a nucleotide. This data may
be pre-processed in order to speed up execution of specific applica-
tions. For example, parties may pre-compute a cryptographic hash,
H(·), on each nucleotide, alongside its position in the genome, i.e.,
for each (bi||i) ∈ G, they compute hbi=H(bi||i).3

We use the notation |str| to denote the length of string str, and
|A| to denote the cardinality of set A. Finally, we use r ← R to
indicate that r is chosen uniformly at random from set R.

Experimental Setup. The rest of this section includes some exper-
imental results. Unless explicitly stated otherwise, all experiments
were performed on a Linux Desktop, with an Intel Core i5-560M
(running at 2.66 GHz). All tests were run on a single processor
core and all code is written in C, using OpenSSL and GMP li-
braries. Cryptographic protocols use the SHA-1 hash function and
1024-bit moduli. Source code of our experiments is available at
http://sprout.ics.uci.edu/projects/privacy-dna.

4.1 Genetic Paternity Test
A Genetic Paternity Test (GPT) allows two individuals with their

respective genomes to determine whether there exists a biological
parent-child relationship between them. A Privacy-Preserving Ge-

netic Paternity Test (PPGPT) achieves the same result without re-
vealing any information about the two genomes. In the following,
we refer to the two participants as Client and Server. Only Client

receives the outcome of the test.

Strawman Approach

Genomics studies have shown that about 99.5% of any two hu-
man genomes are identical. Humans carry two copies of each chro-
mosome, inherited one from the mother and one from the father.
Thus, genomes carried by two individuals tied by a parent-child re-
lationship show an even higher degree of similarity. As a result,
one immediate computational technique for GPT is to compare the
candidate’s genome with that of the child; the test returns a positive
result if the percentage of matching nucleotides is above a given
threshold τ , i.e., significantly higher than 99.5%.

First-Attempt Protocol. At first glance, protecting privacy is rela-
tively easy: recent proposals for Private Set Intersection Cardinality
(PSI-CA) protocols [17, 25, 48, 72] offer efficient and private two-
party computation of the number of set elements shared by two
parties. Thus, to perform PPGPT, two participants just need to run
PSI-CA on input of their respective genomes.

We select the PSI-CA construction from [17] (shown in Fig. 1)
since it offers the best communication and computation complexi-
ties. Also, we use PSI-CA rather than PSI since semi-honest partic-
ipants only need to learn how similar their genomes are. Whereas,
PSI would also reveal where the two genomes differ and/or where
they have common features.

We emphasize that this approach provides very accurate results,
and is not significantly affected by potential sequencing errors. In
fact, given expected error ratio ε, one can simply modify threshold
τ to accommodate errors. This is because ε is expected to be sig-
nificantly smaller than the difference between τ and the percentage
of nucleotides that any two individuals share.

Unfortunately, since the number of nucleotides in the human ge-
nome is extremely large (about 3 · 109), this technique, though op-
timal in terms of accuracy, is impractical using current commodity

3
In case of insertion mutation in the genome, e.g., an ‘A’ is added between positions
35 and 36, genome pre-processing computes H(A||35||1). Similarly, if insertion
involves multiple nucleotides. Since insertions are rare in human genomes, we do
not consider them in this paper.
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Client, on input C = {c1, . . . , cv} [Common Input: (p, q, g,H,H′)] Server, on input S = {s1, . . . , sw}
Offline

{ŝ1, . . . , ŝw} ← Π(S), with Π
random permutation

Rs ← Zq, R′

s ← Zq , Y = gRs

∀j 1 ≤ j ≤ w, ksj = H(ŝj)
R′

s

Offline

Rc ← Zq , R′

c ← Zq , X = gRc X, {a1, . . . , av} Online

∀i 1 ≤ i ≤ v, ai = H(ci)
R′

c // ∀i 1 ≤ i ≤ v, a′i = (ai)
R′

s

(a′ℓ1
, . . . , a′ℓv ) = Π(a′1, . . . , a

′

v)

∀j 1 ≤ j ≤ w, tsj = H′(XRs· ksj)
Online

{ts1, . . . , tsw}

Y, {a′ℓ1 , . . . , a
′

ℓv
}

oo

∀i 1 ≤ i ≤ v, tcℓi = H′((Y Rc)(a′ℓi
)1/R

′

c )

Out:
∣

∣{ts1, . . . , tsw} ∩ {tcℓ1 , . . . , tcℓv}
∣

∣

Figure 1: PSI-CA protocol from [17]. It executes on common input of two primes p and q (such that q|p − 1), a generator g of a

subgroup of size q and two hash functions, H and H′, modeled as random oracles. All computation is mod p.

hardware, as it requires both parties to perform online computation
over the entire genome. Specifically, PSI-CA entails a number of
(short) modular exponentiations linear in the input size. Table 1
estimates execution times and bandwidth incurred by this naïve ap-
proach. Since Client’s online computation depends on that of the
Server, a single test would consume approximately 10 days.

Offline Online
Time Time Size

Client 4.5 days 4.5 days 358 GB

Server 4.5 days 4.5 days 414 GB

Table 1: Computation and communication costs of the first

straw-man PPGPT protocol.

Improved Protocol. Since about 99.5% of the human genome is
the same, two parties would only need to compare the remaining
0.5%. Unfortunately, there is yet not enough statistical knowledge
to pinpoint where exactly this 0.5% occurs. Nonetheless, experts
claim that, in practice, comparing a properly chosen 1% of the ge-
nome yields an accuracy comparable to analyzing the entire ge-
nome [28]. Running times and bandwidth overhead required by
this improved method are presented in Table 2.

Offline Online
Time Time Size

Client 67 mins 67 mins 3.57 GB

Server 67 mins 67 mins 4.14 GB

Table 2: Computation and communication costs of improved

PPGPT protocol. Computation is performed over 1% of the

human genome.

Efficient RFLP-based PPGPT

We now present a very efficient technique for Privacy-Preserving
Genetic Paternity Testing (PPGPT). To construct it, we take advan-
tage of domain knowledge in genomics and build upon effective in

vitro techniques (RFLP or SNP) rather than generic computational
techniques. First, we design a protocol that implements RFLP-
based GPT. Next, we propose a cryptographic technique for secure
computation of this protocol that realizes PPGPT. Finally, we show
that the technique used for computing RFLP-based GPT can be
easily adapted to perform SNP-based GPT.

As discussed in Sec. 3.1, RFLPs use specific restriction enzymes
(e.g., HaeIII, PstI, and HinfI), to digest a genome into hundreds
of smaller fragments. Following the deterministic and well-known
process, enzymes cut the DNA at each occurrence of a given pattern
(e.g., “CTGCAG” with PstI). Next, a subset of these fragments is
selected using a small number of probes for well-known markers,
which are located in known areas of the genome. In an RFLP-
based paternity test, this process is applied to the DNA of the two
tested individuals. If resulting fragments have comparable lengths,
then the test returns a positive with certain confidence, based on the
exact number of fragments of the same length.

There are a few slightly different ways to select the type and
the number of markers, thus identifying exactly which fragments
to compare. For the sake of reliability, one needs to use markers
that are rare enough (i.e., occur in unrelated individuals with very
low probability) while common enough to occur in at least one of
the tested subjects. Currently, public databases and scientific litera-
ture offer thousands available probes for RFLP in human genomes
[10, 62, 70]. However, to reduce the cost of in vitro tests, only a
small subset of them is actually used [18]. Different laboratories
consider various accuracy/cost trade-offs. Some compare as few as
9-15 DNA markers, returning a positive result whenever fewer than
two fragments do not match [12], with an estimated 99.9% accu-
racy. Meanwhile, others use up to 25 markers and return a positive
whenever fewer than two fragments do not match, thus providing
significantly higher accuracy, i.e., about 99.999% [22, 50].

In the United States, these testing methodologies follow precise
regulations issued by the American Association of Blood Banks
(AABB) and are considered legally admissible as evidence in the
court of law. Since our PPGPT technique closely mimics the in

vitro procedure, it achieves the same level of accuracy. Neverthe-
less, as the cost of RFLP emulation on digitalized genomes is not
significantly affected by the number of selected markers, we can
anticipate increasing the number of markers to improve accuracy.
We could perform tests with 50 markers and show that this only
adds a small cost. However, selection of additional markers is out
of the scope of this paper, as their introduction does not change the
algorithm’s functionality presented below.

RFLP-based Protocol. This protocol involves two individuals, on
private input of their respective fully sequenced genomes. We dis-
tinguish between Client and Server, to denote the fact that only the
former learns the test outcome. The protocol is run on common
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input of: a threshold τ , a set of enzymes E = {e1, . . . , ej}, and a
set of markers M={mk1, . . . ,mkl}. Each participant also inputs
its digitized genome.

1. First, participants emulate the digestion process of each en-
zyme ei ∈ E on their genome. Consider, for instance, the
PstI enzyme: whenever the string CTGCAG occurs, the en-
zyme cuts the genome in two fragments, so that the first ends
with CTGCA and the second starts with G. As a result, ge-
nomes are digested into a large number of fragments of vari-
able length.

2. Next, participants probe the fragments using markers in M .
During this process, each participant selects up to l fragments
{frag1, . . . , fragl} (e.g., l=25), corresponding to M . All
remaining fragments are discarded. Public markers are cho-
sen such that each appears in at most one sequence.

3. Client builds the set FC = {(|frag(c)i |, mki)}li=1. For each

marker i not corresponding to any fragment, frag
(c)
i is re-

placed with the empty string. Similarly, Server builds FS =

{(|frag(s)i |,mki)}li=1

4. Client and Server run the PSI-CA protocol described in Fig. 1,
on respective inputs: FC and FS . Client learns pt= |FC ∩
FS |, i.e., how many of its and Server’s fragments are of the
same size.

5. Client learns the test result by comparing pt to threshold τ .

Why Compare Lengths? It might seem that comparing string
lengths is unreliable since two same-length strings might encode
completely different content, while our protocol would consider
these strings as matching. In practice, however, this well-established
technique yields false positives with extremely low probability. Se-
quences are selected using markers, i.e., according to (part of) their
content. Selection of markers, in turn, guarantees that they appear
only in one specific position in the entire genome. Edges of each
fragment are content-dependent as well, since enzymes digest them
according to a specific pattern of nucleotides. Therefore, two un-
related sequences of the same length would not be compared and
two same-length sequences containing the same marker should be
indeed considered matching.

Furthermore, this approach boosts the resilience of PPGPT a-
gainst sequencing errors. Only errors occurring in the pattern di-
gested by enzymes (or in the markers) influence the result of the
RFLP-based PPGPT. However, since patterns and markers are rel-
atively short compared to the size of the genome, this happens
with very low probability, since sampling errors are uniformly dis-
tributed. However, if we let participants compare hashes of frag-
ments, rather than their length, even a moderate error rate would
severely increase the probability of false negatives, since even a
single sequencing error would affect the final outcome of the test.
Moreover, the main purpose of the PPGPT presented in this paper
is not to improve accuracy of the in vitro test currently used, but to
efficiently and securely replicate it in silico.

PSI-CA or PSI? The use of PSI-CA, rather than PSI, is needed
to minimize information learned by Client from protocol execution.
With PSI, if the number of matches is sufficiently high (even if the
test is negative), Client would learn the lengths of several Server’s
fragments: it could then use this information to perform a paternity
test between the party previously playing the role of Server and any
other individual (although with slightly lower reliability).

SNP-based Protocol. SNP-based tests are replacing RFLP-based
tests due to their better performance [7]. While this technique is not
yet considered legally admissible in court, it is expected to eventu-
ally supersede its RFLP-based counterpart. Our RFLP-based pro-

tocol can be extended to perform paternity testing using SNPs: in-
stead of selecting fragments using enzymes and markers, the SNP-
based test selects fragments using a set of known SNPs. Since the
rest of the protocol is unchanged and the size of the set of SNPs is
usually 52 elements [7], the new protocol performs almost identi-
cally to the RFLP-based PPGPT protocol with 50 fragments.

Performance Evaluation. We now measure performance of the
RFLP-based protocol on the Intel Core i5-560M testbed. The (of-
fline) time needed to emulate the enzyme digestion process on the
full genome is 74 seconds. This computation is performed only
once, thus, it does not affect the time required to perform the in-
teractive protocol. Finally, in order to assess the practicality of the
protocol on embedded devices, we also measured its performance
on a modern smartphone — a Nokia N900 equipped with ARM
Cortex A8 CPU running at 600 MHz. Table 3 summarizes the on-
line cost of the RFLP-based protocol, measuring computation and
communication overhead, using different numbers of markers, on
both i5-560M and A8 processors.

Offline (Time) Online (Time/size)
Entity (markers) i5-560M A8 i5-560M A8 Size

Client (25) 3.4 ms 323 ms 3.4 ms 323 ms 3 KB

Server (25) 3.4 ms 323 ms 3.4 ms 323 ms 3.5 KB

Client (50) 6.7 ms 645 ms 6.7 ms 645 ms 6 KB

Server (50) 6.7 ms 645 ms 6.7 ms 645 ms 7 KB

Table 3: Computation and communication costs of RFLP-

based PPGPT technique, testing 25 and 50 fragments.

For the sake of completeness, we compared our results to prior
work on privacy-preserving paternity testing, presented in Figure
3 of [6]. Following a conservative approach, we instantiate: (i)
the cheapest protocol variant, which tolerates no error, and (ii) the
most efficient additively homomorphic cryptosystem among those
suggested, i.e., modified ElGamal [21]. Also, we only count the
number of modular exponentiations. Given that the paternity test
is performed over n alleles (with n ranging from 13 to 67 for in-
creasing accuracy) we estimate the following costs. In step (2) of
the protocol, the party obtaining the test result computes 8n modi-
fied ElGamal encryptions, thus, incurring 24n (short) modular ex-
ponentiations. In the i5-560M testbed, this takes from 43ms to
224ms, depending on n. In step (3), the other party needs to ob-
tain the encrypted sum using homomorphic properties: it does so
by performing 30n exponentiations. This takes between 54 and
262ms on the i5-560M testbed. Even ignoring all other operations
in [6] and without pre-computation, our most accurate test (using
50 markers) is about 5 times faster than the least accurate test in [6]
(using 13 alleles).

4.2 Personalized Medicine
Personalized Medicine (PM) is increasingly used to provide pa-

tients with drugs designed for their specific genetic features. As
discussed in Sec. 1, in the context of PM, drugs are associated with
a unique genetic fingerprint. Their effectiveness is maximized in
patients with a matching DNA [37]. To this end, genomes need to
be compared against the fingerprint and a patient need to surrender
her DNA to a physician or a pharmaceutical company.

One privacy-preserving approach is to let the patient indepen-
dently run specialized software over her genome and identify a
match (or lack thereof) with a given drug’s fingerprint. This way,
the patient would learn whether the drug is appropriate. However,
pharmaceuticals may consider DNA fingerprints of their drugs to
be trade secrets and thus might be unwilling to reveal them. At the
same time, for every new drug, pharmaceuticals are required to ob-
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tain approval from appropriate government entities, e.g., the Food
and Drug Administration (FDA) in case of the United States.

We now introduce a technique for Privacy-Preserving Personal-

ized Medicine Testing (P3MT), involving the following steps:
• Following positive clinical trials, a pharmaceutical company

obtains FDA approval on a specific DNA fingerprint fp and
receives a corresponding authorization, auth.
• The pharmaceutical and the patient engage in a protocol,

where the former inputs (fp, auth) and the latter inputs her
genome.
• At the end of the protocol, the pharmaceutical learns whether

the patient’s genome matches fingerprint fp, provided that
auth is a valid authorization of fp.

Privacy requirements are that: (1) the company learns nothing about
patient genome besides the part matching the (authorized) finger-
print, and (2) the patient learns nothing about fp or auth.

P3MT Instantiation

We now present a specific P3MT instantiation. It involves: (1) an
authorization authority (e.g., the FDA) denoted as CA, (2) a phar-
maceutical — Client, and (3) a patient — Server.

Our cryptographic building block is Authorized Private Set In-
tersection (APSI) [8, 15, 16], hence, our Client/Server/CA nota-
tion. We select one specific APSI construction in [15], illustrated
in Fig. 2, since it currently offers lowest communication and com-
putation complexity. (Moreover, it can be instantiated in the mali-
cious model with only a small constant additional overhead.) For
efficiency reasons, Rc:i’s and Rs are chosen uniformly at random
from W = [1..⌊

√
N/2⌋], rather than from ZN/2, as in the original

version of the protocol. In fact, as proved in [32], the distribution
of gx mod N with x ← W is computationally indistinguishable
from the distribution defined by gx with x ← [1..φ(N)]. This
change does not affect protocol security arguments. Thus, we do
not provide a new proof for APSI in this paper.

P3MT involves two phases: offline and an online.

During the offline phase:
1. CA generates RSA public-private keypair ((N, e), d), pub-

lishes (N, e), and keeps d private.
2. Client prepares a fingerprint of drug D: fp(D) = {(b∗j ||j)},

where each b∗j is expected at position j of a genome suitable
for D.

3. Client obtains from CA an authorization auth(fp(D)), where
auth(fp(D))={σj | σj =H(b∗j ||j)d mod N}.

4. Server runs the offline stage of the APSI protocol in Fig. 2,
on input, G={(b1||1), . . . , (bn||n)}, and publishes resulting
{ts1, . . . , tsn}.

During the online phase:
1. Client and Server run the online part of the APSI protocol in

Fig. 2. Recall that Client’s input is (fp(D), auth(fp(D))),
and Server’s is G.

2. After the interaction, Client obtains fp(D)∩G, and uses this
information to determine whether Server is well-suited for
drug D.

We note that auth is needed to limit the scope of the test on
a patient DNA: the FDA can guarantee that: (i) fp only covers
the appropriate set of required nucleotides, and (ii) pharmaceuticals
cannot input arbitrary portions of a patient genome.

The proposed P3MT protocol is resilient against (randomly dis-
tributed) sequencing errors. The size of the fingerprint input by
Client in the protocol is negligible compared to the size of the entire
genome. Thus, positions corresponding to Client input are affected
by errors with extremely low probability.

Performance Evaluation. To estimate the efficiency of the P3MT
protocol, we consider two genetic tests commonly performed in the
context of personalized medicine: the analysis of hla-B and tpmt

genes. Our choice is also motivated by the size of their fingerprints
that, according to genomics experts, is representative of most per-
sonalized medicine tests.

First, we look at the hla-B*5701 allelic variant, one G→T mu-
tation associated with extreme sensitivity to abacavir, a drug used
in HIV treatment [58]. In diploid organisms (such as humans), mu-
tation may occur in either chromosome inherited from the parents.
Thus, the related fingerprint contains 2 (nucleotide, position) pairs.
We also consider the analysis of tpmt typically done before pre-
scribing 6-mercaptopurine to leukemia patients. As shown in [80],
two alleles are known to cause the tpmt disorder: (1) one presents
a mutation G→C in position 238 of gene’s c-DNA, (2) the other
presents one mutation G→A in position 460 and one A→G in po-
sition 719.4 Therefore, the resulting fingerprint contains these 6
(nucleotide, position) pairs.

In the underlying APSI protocol (Fig. 2), cryptographic opera-
tions on Server genome do not depend on Client input. Therefore,
they can be computed offline, once for all possible tests. Moreover,
we have designed the P3MT protocol to be as generic as possible.
Our protocol runs on the whole Server’s genome — with linear
complexity — in order to address future scenarios where genomics
advances will cause better understanding of many more regions of
human genomes. To reduce offline costs, we apply reference-based
compression [5, 13] – a technique commonly used to efficiently
represent genomic information. In particular, Server input consists
of all differences between its genome and the reference sequence.
We emphasize that this technique does not require any biological
correctness of the reference genome that is only used for compres-
sion [39]. This allows us to reduce the size of Server input to about
1% of the entire genome.

Test Party
Offline Online

Time Time Size

hla-b*5701
Client – 0.82 ms 256 B
Server 206 mins 0.82 ms 4.14 GB

tpmt
Client – 2.46 ms 768 B
Server 206 mins 2.46 ms 4.14 GB

Table 4: Computation and communication costs of P3MT pro-

tocol for hla-b (2-nucleotide fingerprint) and tpmt (6-nucleotide

fingerprint) tests.

Table 4 summarizes execution time and bandwidth costs of the
P3MT protocol used for testing hla-B and tpmt. These costs can-
not be meaningfully compared to prior work, since, to the best
of our knowledge, there is no other technique targeting privacy-
preserving personalized medicine testing. Furthermore, as men-
tioned in Sec. 2, there are no current techniques that enforce finger-
print authorization by a trusted entity, such as the FDA. Also, prior
work is essentially designed for operation on DNA snippets, and it
is unclear how to efficiently adapt it to full genomes. Although a
detailed experimental study is out of scope of this paper, we intend
to include it as part of future work.

4.3 Privacy-Preserving Genetic Compatibility
Testing

Genetic Compatibility Testing (GCT) can predict whether po-
tential partners are at risk of conceiving a child with a recessive
genetic disease. This occurs when both partners carry at least one

4
For more details on tpmt and c-DNA, refer to [60] and [53], respectively.
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Client, on input: (C, Cσ), where [Common input: (N, e, g,H,H′)] Server, on input: S = {s1, . . . , sw}
C = {c1, . . . , cv} and Cσ = {σ1, . . . , σv}
(∀i, σi = H(ci)

d mod N)

Offline

{ŝ1, . . . , ŝw} ← Π(S), with Π
random permutation

Rs ←
[

1..⌊
√
N/2⌋

]

∀j 1 ≤ j ≤ w, ksj = H(ŝj)2Rs

∀j 1 ≤ j ≤ w, tsj = H′(ksj){ts1, . . . , tsw}
oo

Online

∀i 1 ≤ i ≤ v, Rc:i ←
[

1..⌊
√
N/2⌋

]

∀i 1 ≤ i ≤ v, ai = σi · gRc:i {a1, . . . , av} Online
// Y = g2eRs

∀i 1 ≤ i ≤ v, a′i = (ai)2eRs

Y, {a′1, . . . , a′v}
∀i 1 ≤ i ≤ v, tci = H′(a′i · Y −Rc:i) oo

Out: {ci|ci ∈ C and tci ∈ {ts1, .., tsw}}

Figure 2: APSI Protocol from [15] (simplified for semi-honest security). The protocol is run on common input of RSA modulus

N = pq (with p and q safe primes), public exponent e, a random element g in Z
∗

N and two hash functions, H and H′, modeled as

random oracles. All computation is mod N .

gene affected by mutation, i.e., they are either asymptomatic carri-
ers or actual disease sufferers. As in the Beta-Thalassemia exam-
ple discussed in Sec. 1, asymptomatic carriers usually need to learn
whether their potential partner is also a carrier of the same disease,
since this would pose a serious risk to their potential off-spring.

To achieve genetic compatibility testing with privacy we intro-
duce the concept of Privacy-Preserving Genetic Compatibility Test-

ing (PPGCT) that allows participants to run GCT without disclos-
ing to each other: (1) any other genomic information, and (2) which
disease(s) they are carrying or being tested for.

Current biological knowledge of the human genome allows screen-
ing for a genetic disease associated with one SNP in a specific gene.
In other words, most well-characterized genetic diseases are caused
by a mutation in a single gene. However, we anticipate that, in
the near future, researchers will develop tests for more complex
diseases (e.g., diabetes or hypertension) involving multiple genes
and multiple mutations. Therefore, we aim to design PPGCT tech-
niques not limited to single-mutation diseases. Additional motivat-
ing examples for PPGCT include compatibility testing for sperm
and organ donors.

The proposed PPGCT protocol involves two participants: Client

and Server. Client runs on input of a fingerprint of a genetic dis-
ease D̂. Server runs on input of its fully-sequenced genome G. At
the end of the interaction, Client learns the output of the test, i.e.,
whether Server carries disease D̂.

Our cryptographic building block is Private Set Intersection (PSI)
[15, 16, 25, 41]. We select the specific PSI construction in [41],
shown in Fig. 3, since it achieves the best communication and com-
putation complexity. It can also be instantiated in the malicious
model with only a small constant additional overhead.

The PPGCT protocol involves the following steps:
1. Client builds a fingerprint corresponding to her genetic dis-

eases fp(D̂)={(b∗j ||j)}, where each b∗j is expected at posi-

tion j of a genome with disease D̂.
2. Client and Server run the PSI protocol in Fig. 3 on respective

inputs: fp(D̂) and G.

3. Client obtains fp(D̂)∩G, and uses this information to deter-

mine whether Server carries disease D̂.

The change from PSI-CA to PSI is motivated as follows. Depend-
ing on the disease being tested, a positive outcome occurs if the
genome contains either: (1) the entire disease fingerprint, or (2) a
given subset of nucleotides. In case of (1), the test result is positive
only if: fp(D̂) ⊂ G, i.e., fp(D̂) ∩ G = fp(D̂): if this happens,
there is actually no difference between the output of PSI and that of
PSI-CA. However, PSI-CA is preferred over PSI since, if the test
is negative, less information about Server genome is revealed to
Client. In case of (2), cardinality of set intersection is insufficient to
assess the test result, since Client needs to learn which fingerprint
nucleotides appear in Server’s genome.

Similar to its P3MT counterpart, the PPGCT protocol is resilient
to uniformly distributed errors. In particular, since input size of
Client is small, corresponding positions in Server genome are af-
fected by errors with very low probability.

Open Problem: Unfortunately, a malicious Client could potentially
harvest Server’s genetic information (in addition to that needed for
the compatibility test) by inflating its input. For instance, a healthy
Client could learn whether or not Server carries a given genetic dis-
ease, unrelated to the compatibility testing.

Performance. As concrete examples, we use genetic compatibil-
ity tests for two genetic disorders: Roberts syndrome and Beta-
Thalassemia. We chose them since they are fairly common and the
size of their fingerprints is representative of that in most genetic
compatibility tests.

Similar to P3MT, we stress that cryptographic operations per-
formed on Server genome, in the underlying PSI protocol, do not
depend on Client input. Therefore, these operations can be pre-
computed (just once) ahead of time.

First, we consider testing for Roberts syndrome. an autosomal
genetic disorder, characterized by pre- and post-natal growth de-
ficiency, limb malformations, and distinctive skull and facial ab-
normalities. As shown in [33], there are 26 single point muta-
tions (in the esco2 gene) causing this syndrome. Since humans
are diploid organisms, we expect Roberts syndrome fingerprint to
contain about 52 (nucleotide, location) pairs.

Next, we turn to Beta-Thalassemia. As pointed out in [26], more
than 250 mutations in the hbb gene have been found to cause this
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disorder and most of them involve a change in a single nucleotide.
Although reliable techniques to perform this test in silico are not
yet available, it is reasonable to assume that the size of the Beta-
Thalassemia fingerprint would include 2×250 = 500 (nucleotide,

location) pairs.
Table 5 summarizes run time (computational) and bandwidth

requirements for the PPGCT protocol for Roberts syndrome and
Beta-Thalassemia, respectively. Following the same arguments as
in P3MT experiments, we let Server input the portion of its genome
that differs from the reference genome, i.e., about 1%.

Test Party
Offline Online

Time Time Size

Roberts syndrome
Client – 7.26 ms 62.5 KB
Server 67 mins 7.26 ms 4.14 GB

Beta-Thalassemia
Client – 70 ms 6.5 KB
Server 67 mins 70 ms 4.14 GB

Table 5: Computation and communication costs of the PPGCT

protocol for Beta-Thalassemia (500-nucleotide fingerprint) and

Roberts syndrome (52-nucleotide fingerprint) tests.

Performance of the PPGCT protocol cannot be meaningfully com-
pared to prior work. As discussed in Sec. 2, it is not trivial to adapt
current secure pattern matching techniques to genetic compatibility
testing on fully sequenced genomes. An experimental study (in-
cluding the adaptation of such techniques) is left for future work.

5. SECURITY DISCUSSION
We now discuss security properties of protocols presented in this

paper. In general, security of each protocol is based on that of the
underlying building blocks. Therefore (and due to space limita-
tions), we omit proof details and defer them to the extended ver-
sion of this paper. Also, out cryptographic building blocks (PSI-
CA, APSI, and PSI) can be generally used in a black-box man-
ner. One can select any instantiation without affecting security
of our protocols, as long as the chosen construction yields secure
PSI/APSI/PSI-CA functionality. However, we pick specific instan-
tiations to maximize protocol efficiency. As discussed earlier, we
consider semi-honest adversaries (participants). Nevertheless, we
are not restricted to this model, since our cryptographic building
blocks are (provably) adaptable to the malicious participant model,
incurring a small constant extra overhead.

PPGPT. We now show that RFLP-based PPGPT protocol (Sec. 4.1)
is secure against semi-honest adversaries. We assume that PSI-CA
performs secure computation of the FPSI-CA functionality, in the
presence of semi-honest participants. We select the construction
in [17], that is secure under the One-More-DH assumption in the
Random Oracle Model (ROM).
We divide the protocol in two phases. In the first, both Client and
Server privately and independently perform the RFLP-related com-
putation on their respective inputs. (This covers steps 1 to 3 of
PPGPT). At the end of this phase, Client and Server construct sets
FC and FS , respectively. Clearly, during this phase, neither par-
ticipant learns anything about the other’s input. During the second
phase (steps 4-5), participants use FC and FS as their respective
inputs to PSI-CA. Given the security of the latter, Client only learns
|FS ∩ FC |. PSI-CA protocols may reveal |FS | to Client and |FC |
to Server. However, |FS | = |FC | = l, which is already known to
both parties.

P3MT. Similarly, security of the P3MT protocol (in Sec. 4.2), a-
gainst semi-honest Client and Server, stems from security of the
underlying protocol — APSI. That is, if APSI performs secure

computation of the FAPSI functionality in the presence of semi-
honest participants, then P3MT is also secure. This holds since
a semi-honest participant with a non-negligible advantage in dis-
tinguishing between real and simulated executions of P3MT would
have the same advantage in distinguishing between real and simu-
lated executions of APSI. Although one can use APSI as a black
box, for efficiency reasons, we prefer instantiations that allow pre-
computation on Server input. In our instantiation, we select the
APSI construction in [15], proven secure under the RSA and DDH
assumptions (in ROM).

PPGCT. Finally, security of the PPGCT protocol (Sec. 4.3) against
semi-honest adversaries relies on that of the underlying PSI pro-
tocol, to which it is immediately reducible. (In other words, a
semi-honest participant with a non-negligible advantage in distin-
guishing between real and simulated executions of PPGCT would
have the same advantage in distinguishing between real and sim-
ulated executions of PSI.) Again, although one can use PSI as a
black box, for efficiency reasons, we need PSI instantiations that
allow pre-computation on Server input, such as OPRF-based con-
structs [15, 16, 35, 41]. We chose the PSI from [41], proven secure
under the One-More-DH assumption (in ROM).

6. CONCLUSIONS AND FUTURE WORK
This paper identified and explored three popular privacy-sensitive

genomic applications: (i) paternity tests, (ii) personalized medicine
and (iii) genetic compatibility testing. Unlike most previous work,
we focused on fully sequenced genomes. This scenario poses new
challenges, both in terms of privacy and computational cost. For
each application, we proposed an efficient construction, based on
well-known cryptographic tools: Private Set Intersection (PSI), Pri-
vate Set Intersection Cardinality (PSI-CA), and Authorized Private
Set Intersection (APSI). Experiments show that these protocols in-
cur online overhead sufficiently low to be practical today. In partic-
ular, our protocol for privacy-preserving paternity testing is signif-
icantly less expensive — in both computation and communication
— than prior work. Furthermore, all protocols presented in this
paper have been carefully constructed to mimic the state-of-the-art
of (in vitro) biological tests currently performed in hospitals and
laboratories.

Items for future work include, but are not limited to:

• Introducing privacy-preserving genetic paternity testing based
on STR and/or SNP comparison.
• Exploring privacy-preserving techniques to realize genetic

ancestry testing, i.e., to discover whether or not individuals
are related up to a certain degree.5

• Extending the paternity test protocol to allow both partici-
pants to determine whether the other party introduced correct
input according to some auxiliary authorization. (Note that
APSI does not suffice since one of the parties might alter its
input so that the test is negative).
• Investigation of additional privacy-sensitive applications for

fully-sequenced genomes, such as certified forensic identi-
fication, where the subject of investigation must prove the
authenticity of its input; privacy-preserving organ recipients
compatibility, where a subject efficiently identifies a match-
ing sample without revealing information about her genome.
• Extending our experiments to include adaptation of secure

pattern matching and text processing to personalized medi-
cine and genetic compatibility testing on full genomes.
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5
For an example of ancestry testing services, refer to http://23andme.com.
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Client, on input C = {c1, . . . , cv} [Common Input: (p, q, g,H,H′)] Server, on input S = {s1, . . . , sw}
Offline

{ŝ1, . . . , ŝw} ← Π(S), with Π
random permutation
Rs ← Zq

∀j 1 ≤ j ≤ w, tsj = H′(H(ŝj)Rs ){ts1, . . . , tsw}
oo

Online

∀i 1 ≤ i ≤ v, Rc:i ← Zq {a1, . . . , av} Online

∀i 1 ≤ i ≤ v, ai = H(ci)
Rc:i // ∀i 1 ≤ i ≤ v, a′i = (ai)

Rs

{a′1, . . . , a′v}
oo∀i 1 ≤ i ≤ v, tci = H′((a′i)

1/Rc:i )

Out: {ci|ci ∈ C and tci ∈ {ts1, .., tsw}}

Figure 3: PSI Protocol from [41] (simplified for semi-honest security). It runs on common input of two primes p and q (s.t. q|p − 1),

a generator g of a subgroup of size q and two hash functions, H and H′, modeled as random oracles. All computation is mod p.
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