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ABSTRACT
This paper gives a partially-sharing nonces attack on SM2
Digital Signature Algorithm (SM2DSA). Templates, which
are built in the scenario of no secrets known, are used to
detect the collisions on the Most Significant Byte of the
Nonces (MSBN). Targeting a real world smartcard with 8-
bit precharged bus, the power consumption of data moving
procedure after the random number generation is focused,
on which the template building and matching phases are
based. With the templates, we obtain a number of pairs
of nonces whose first bytes are collided, then a lattice at-
tack on SM2DSA is proposed to recover the private key.
Experiments show that our attack works smoothly; our at-
tack is the first implemented lattice attack on SM2DSA in
a smartcard, which can also be extended to the other ECC
algorithms like ECDSA.

Keywords
SM2, Template attack, PCA, Lattice attack

1. INTRODUCTION
SM2 [20], an elliptic curve based cryptosystem, is a Chi-

nese standard for commercial use. A digital signature algo-
rithm, a key exchange protocol and a public key encryption
algorithm are given in [20], which form the SM2 cryptosys-
tem. The SM2 digital signature algorithm1 (SM2DSA for
short), is similar to ECDSA [18].

The nonce k in ECDSA/SM2DSA (DSA) is an ephemer-
al key whose recovery is equivalent to the discovery of the

1See [22] for an English translation.
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private key. If a small fraction of the information about the
nonces is known, then it is also enough for the lattice at-
tacks to break the signature algorithm (like [10, 15, 19, 14]).
We call these attacks partially-known nonces attacks. The
other lattice attacks do not directly use the partial values of
the nonces, but break (EC)DSA with some signatures that
share a part of the nonces (like [8]). The latter attacks are
called partially-sharing nonces attacks in this paper.

Side channel attacks [12] are of great value to evaluate
the security of a cipher running in a cryptographic device;
among them, template attack [5] is one of the most effective
attacks. The lattice attacks mentioned are sound and prac-
tical if the information of the nonces can be obtained from
side channels. This paper gives a partially-sharing nonces
attack on SM2DSA resulted from the information leakage in
the generation procedure of the nonces, utilizing templates.

Unlike most of the previous attacks, this paper will not fo-
cus on reducing the number of known (sharing) bits, but try
to study the attack from a practical issue (like [17]) and aim
to solve the problems that will be practically encountered.

Our contributions. This paper utilizes side channel infor-
mation of the non-cryptographic operation whose security
might not attract much attention of the designers.

Since the lattice-based attacks require that the incorrect
guessed signatures should be very limited, the success rate
is crucial. Our first contribution is proposing a method to
reliably detect the information of MSBN from the moving
of the nonces, which is given in Sect. 3.

The second contribution of this paper is giving the first
partially-sharing nonces attack on SM2DSA (see Sect. 4),
which is also the first lattice attack on SM2DSA in a real
smartcard.

2. PRELIMINARIES
This section introduces the SM2DSA, template attack,

PCA and some basics on lattice.

2.1 SM2 Digital Signature Algorithm
SM2 is an elliptic curve based cryptosystem that defined

over finite fields. Similar to ECDSA, SM2DSA can be de-
fined over prime fields Fp (p > 3) or binary fields F2m . An
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elliptic curve over prime fields2 is the set of points (x, y)
satisfying an equation of the following form:

y2 = x3 + ax+ b mod p,

where a, b ∈ Fp satisfy 4a3 + 27b2 6= 0 mod p. To form
a group, an extra infinity point O is included in this set.
Consequently, the elliptic curve E(Fp) is defined as

E(Fp) = {P = (x, y)|y2 = x3+ax+b mod p. x, y ∈ Fp}∪{O}.

For m ∈ Fp, we refer to [2] the scalar multiplication (point
multiplication) mP of a point P .

Using the notations in [14], SM2DSA (prime fields) is giv-
en as follows:
Key Generation: Choose an elliptic curve E : y2 = x3 +
ax + b over Fp where p is a prime. Select a G ∈ E(Fp) =
(xG, yG) to be a fixed point of order n, where n is a prime.
That is nG = O. For a user A, the private key is dA ∈ Fp.
Signature Generation:
1. Compute w = h(M), here M = ZA ‖ m, m is the
message, ZA is the hash value about the user, h is the hash
algorithm SM3.
2. Randomly choose an integer k ∈ [1, n − 1]. k is called a
nonce.
3. Calculate (x1, y1) = kG.
4. Compute r = w + x1 mod n. If r = 0 or r + k = n, go
to step 2.
5. Compute s = ((1 + dA)−1(k− rdA)) mod n. If s = 0, go
to step 2.
6. Return (r, s) as the signature.

See [14] for the signature verification procedure.

2.2 Template Attack and PCA
Template attack [5] is one of the most powerful side chan-

nel attacks; the attacker uses the information of an interval
(consists of λ points) of the power traces that are value-
correlated. With the assumption that the noise distribution
to be Gaussian, the attacker builds a multivariate normal
distribution N(~µ,Σ) from the ε profiled traces for each val-

ue, the estimators (~̂µ, Σ̂) is a template. Denote each trace
by ~ti = (x1i , x

2
i , · · · , xλi ) (i = 1, 2, · · · , ε), and Xj to be the

random variable of (xj1, x
j
2, · · · , xjε)T (j = 1, 2, · · · , λ). Then

~µ = (E(X1), E(X2), · · · , E(Xλ)) is the mean vector, and
Σ = cov(Xi, Xj) (1 ≤ i, j ≤ λ) is the covariance matrix. In
the first phase of template attack, which is named template
building phase, the attacker profiles the traces and classifies
them according to different processing values, then builds
one template for each value. In the second phase, the tem-
plate matching phase, the attacker uses the maximum like-
lihood principle to determine the value of the target secret.
I.e., the value of the template that maximizes the probability

P (~t, N(~̂µ, Σ̂)) = ((2π)λ det(Σ̂))−
1
2 exp(−1

2
(~t−~̂µ)T Σ̂−1(~t−~̂µ))

will be chosen to be the one matched with the secret im-
plied in~t. Normally, one will calculate the logarithm of this
probability to avoid numerical problems3.

PCA [9] is a linear transformation that transforms the
original points to the points that are orthogonal to each

2This paper only considers the recommended parameters in
[20] which is over Fp (log2 p = 256).
3To avoid the numerical problem when calculating
log(det(Σ)), one can refer to [6].

other and the variances are sorted. During the PCA trans-

formation, ε traces are first normalized, i.e., ~ti ← ~ti − ~̂µ
(i = 1, 2, · · · , ε). Then the covariance matrix of the normal-

ized traces Σ̂′ is calculated, and an eigendecomposition is
applied:

Σ̂′ = U×Λ×UT .

Finally, the normalized traces are multiplied to the columns
of the orthogonal matrix U that correspond to the several
largest eigenvalues in Λ to get the PCA-transformed traces.

2.3 Basics about Lattice
A lattice is a discrete subgroup of Rm whose elements are

integer linear combinations of n (n ≤ m) linearly indepen-
dent vectors. The fundamental parallelepiped P1/2(B) of a

matrix B = (~b1, . . . ,~bm) is {
∑m
i=1 xi

~bi : − 1
2
≤ xi < 1

2
}. The

volume Vol(L) of a lattice L is the m-dimensional volume
of P1/2(B) for any basis B of L. Shortest Vector Problem
(SVP) and Closest Vector Problem (CVP) are two classical
hard problems in computer science. In practice, lattice re-
duction algorithms like LLL [13] and BKZ [21] are used to
solve SVP with dimension not too large.

Hidden Number Problem (HNP). For integer s and
v ≥ 1, bscv denotes the remainder of s on division by v. For
any real number z, let the symbol | · |n be |z|n = minb∈Z |z−
bn|. APP`,n(v) denotes any rational number r satisfying
|v − r|n ≤ n

2`
. The HNP [3, 4] asks to recover α ∈ Zq,

given many approximations ui = APP`,n(αti) where each ti
is known and chosen uniformly at random in [1, n − 1], for
1 ≤ i ≤ d.

This HNP problem can be reduced to a BDD problem
which is a special case of CVP. When we obtain d such
ti, ui, the reduction to BDD can be done as follows. One
constructs the (d + 1)-dimensional lattice spanned by the
following row matrix:

n 0 · · · 0 0

0 n
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 n 0
t1 · · · · · · td

1
2`

 (1)

The target vector is ~u = (u1, u2, . . . , ud, 0). There exists a

lattice vector ~h = (αt1 + nh1, . . . , αtd + nhd,
α
2`

), such that

‖ ~h− ~u ‖≤
√
d+ 1 n

2`
. Hence, finding ~h discloses α.

In practice, embedding technique [11] is widely used to re-

duce CVP to SVP. Given a lattice L with basis B = [~b1,~b2,

· · · ,~bm], and a target vector ~u ∈ span(B), the embed-
ding method is to construct a new lattice L′ with basis

B′ = [~b′1,~b
′
2, · · · , ~b′m+1] = [(~b1, 0), (~b2, 0), · · · , (~bm, 0), (~u, β)],

where β is a parameter to be determined. If the distance
between the target vector and the lattice is small enough,
finding the shortest vector in this embedding lattice implies
solving the CVP instance. In fact, we expect that the vec-

tor (~h − ~u,−β) to be the shortest vector in the embedding

lattice, where ~h is the lattice vector closest to ~u.

Gaussian Heuristic. Let L be a random d-dimensional lat-
tice of Zn. Then with overwhelming probability, all the min-

ima of L are asymptotically close to
√

d
2πe

Vol(L)
1
2 . Thus,
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void GetTRN(BYTE *rand, WORD len)
{

WORD i;
open RNG clock ;
for (i = 0; i < len; i ++)
{

wait until the random number is generated ;
rand[i] = RNGDATA;
}
close RNG clock ;
}

Table 1: Pseudo-code of the random number gener-
ation

it is common in practice to assume that the length of the

shortest vector ~v ∈ L is λ1(L) ≈
√

d
2πe

Vol(L)
1
2 .

3. TEMPLATE BUILDING AND COLLISION
DETECTION

The purpose of this section is to illustrate the way to ob-
tain the pairs of signatures that can be used in the partially-
sharing nonces attack. We first introduce our target smart-
card, and then propose the template attack utilized to obtain
the desired signatures.

3.1 The Target Smartcard
The target smartcard has a 8-bit precharged bus whose

precharged value is 0x00 or 0xFF that will not be changed
unless the smartcard reboots. This means that before trans-
ferring a value, the bus lines will be set to logic 0 or 1 [16].
The two precharged values will be randomly chosen each
time the smartcard powers on, which means for a 8-bit val-
ue v, the power consumption of data moving next time the
smartcard powers on can either be the same as itself or the
same as that of v⊕ 0xFF. Especially, for the value 0x00, the
power consumption while it is sending over the bus can be
the highest or lowest among all the values, which depends
on the precharged value; the same situation happens to the
value 0xFF.

To generate the nonce k required by SM2DSA, a ran-
dom number generator (RNG) is called. Since no partic-
ulars about how to generate the random nonces k are stat-
ed in [20], our target smartcard generates a 8-bit random
number each time with a true random number generator
(TRNG). The function GetTRN() that generates len bytes
of random numbers is given in Tab. 1. After 32 bytes of
random numbers are generated, they are cascaded to be a
big number k with 256 bits. Then k is compared with the
modulus n, if k > n then this k is discarded4 and the random
number generation procedure is carried out again, otherwise
this k is used as the nonce. Note that for the recommend-
ed parameters in [20], n is large enough5 which means that
with very low probability (≤ 2−32) k will be discarded.

Note that the line:

rand[i] = RNGDATA;

4Note that if this case happens then in our attack the cor-
responding power trace should be discarded as well.
5n=0xFFFFFFFE FFFFFFFF FFFFFFFF FFFFFFFF 7203DF6B
21C6052B 53BBF409 39D54123

Figure 1: Random number gener-

ation by sending APDU (top) and

the correlation coefficient between

data and traces (bottom)
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in top figure of Fig.

1

moves the random number from the register RNGDATA to a
variable rand[i] in RAM, and this process may leak informa-
tion about the moving data due to the MOV instruction.

3.2 Building the Templates and Finding the
Partial Collisions of Nonces

Note that our target smartcard supports the APDU (Ap-
plication Protocol Data Unit) for random number generation
which also calls the function GetTRN and outputs the ran-
dom numbers. This is the case for most of the real world
smartcards as well, for example in the PIN verification appli-
cation of EMV specifications [7], a get-challenge command
should be sent from the terminal to the smartcard by an
APDU. The smartcard then generates the random number
and returns it to the terminal as the challenge. To make
our template attack more powerful, i.e., to avoid the strong
assumption that the attacker knows the nonces during the
template building phase, the templates will be built by send-
ing the random number generation APDU instead of the
signing APDU, to the smartcard. The reason for doing this
is that the random numbers, which are needed to build tem-
plates, will be returned from the smartcard, thus no known
secrets are required.

In order to specify the time interval corresponding to the
MOV instructions, we send the APDU that generates 8 bytes
of random numbers for several thousand times and record
the power traces corresponding to the power consumption of
the random numbers generation; one of these power traces
is illustrated in the top figure of Fig. 1. Then we align all
the traces according to the part of the first random byte
and calculate the correlation coefficient between the power
consumption and the data, see the bottom of Fig. 1. We
can see that the points of power traces between 13.6µs to
14.1µs have a relatively strong correlation with the data.
Zooming in this part, we get Fig. 2, and we believe that the
MOV instruction falls in this part.

We also try to align the power traces with the other bytes,
however these bytes show lower correlation than the first and
thus the first byte of the random number generation is used
to mount our attack.6

Now the problems we need to handle are how to decide
the template building and matching strategies.

First, although the MOV instruction leaks the Hamming
weight due to the precharged bus, we cannot distinguish the
values with the same Hamming weight. Fortunately, there
are only one value corresponding to the Hamming weights 0

6Our earlier experiments tried to detect the collisions of the
MSBN by measuring the distances or correlation coefficients
directly from the power consumption patterns (i.e., without
templates), but ended up with failures due to the low success
rate caused by noise.
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and 8, respectively. Thus, we only choose the two templates
that corresponds to 0x00 and 0xFF to build.

Second, the partially-sharing(known) nonces attack is a
lattice attack that does not tolerate mistakes [17], usually
the attack fails due to a single long vector. However, due to
the noise, the values are difficult to be recovered without
false alarm. A simple example is that two power traces
correspond to the same value (e.g. two power traces with
the common value 0x00 are on the top in Fig. 3) might have
a more significant difference than those with different values
(e.g. two power traces with values 0x00 and 0x01 are on the
bottom in Fig. 3). These will result in incorrectly estimating
the values that are transferred, and the corresponding vector
in the lattice might be too long. To overcome this obstacle,
our solution is two-folds:

– A signal processing technique, i.e. PCA, is applied to
the original traces to amplify the difference of the power con-
sumption between values with different Hamming weights.
In [1], Archambeau et al. also proposed to apply PCA to the
traces before the template attack, with the purpose of choos-
ing the most interesting points which benefit the template
attack. Different from their scenario, we have more traces
than the number of points to be considered. As a conse-
quence, we use the original routine as described in Sect. 2.2
to get better results. Moreover, PCA is used in a different
way from that of [1]. In [1], PCA is applied inter-class (as
stated in [24]), i.e., the mean traces obtained according to
different values are used to calculate the covariance matrix
Σ̂′ and the traces to be matched are also transformed ac-
cording to the eigendecompose of this matrix. However, in
our case, we calculate the covariance also intra-class, that is,
we apply PCA to the traces before averaging. In this way,
the noise distribution could be better used. For the traces to
be matched, an independent PCA is applied instead of using
the eigenvectors of the template building phase, in order to
better character the distribution of these traces.

– The templates are used in a way that is different from
the classical manner as that in [5]. In [5], the templates cor-
responding to all the values (or all Hamming weights) are
built, and the target traces are matched with the templates
by the maximum-likelihood principle to decide the value (or
Hamming weight) of the secret. Note that in the case of
stream ciphers or block ciphers, normally the secret key will
keep the same each time we do the encryption. Thus the at-
tacker can use multiple matching traces with the same value
to enhance the success rate. However, in our case, the nonce
varies each time so that we have only a single trace to match
for each value. Remember that we only use two templates;
thus we look through the traces to find the matched value
for each of the two templates, instead of searching over the
templates for each trace. Moreover, we decide not to use the
maximum-likelihood principle that are used commonly in
the template attack. Instead, we use an opposite approach;
the “minimum-likelihood principle” is our decision principle
that detects the values with the lowest Bayesian probabili-
ty. The reason is that in the experiment we found that the
success rate is higher in this case. Specifically, for the power
traces after signal processing, we match them with each of
the two templates corresponding to 0x00 and 0xFF. Then we
sort the traces with the log-likelihood and choose the mini-
mum ones. Usually, we can set a threshold and keep only the
ones below this threshold; these traces are expected to have
the values that are the same as (when the precharged values
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of the template building and matching phases are different)
or the complement of (when the precharged values of the
template building and matching phases are the same) that
of the templates. The signatures chosen according to the
same template can then be paired to be used in the lattice
attack.

Following the above technique, we now describe the de-
tailed steps of our template building and matching phases.
Template Building Phase.
1. Keep on sending the APDU for random number genera-
tion to the smartcard and sort the recorded traces according
to the first byte of the random numbers. For 1,800,000 ran-
dom numbers, we obtain about 7,000 traces for each of the
256 values.
2. Align all the kept traces and then apply PCA to them.

In order to enhance the efficiency, PCA should be only
applied to the “sensitive points” in the traces that are corre-
lated to the values. This can be easily done by calculating
the correlation coefficients between the values and the trace
points, since we know the random numbers. However, this
might cause a problem that in the matching phase, when one
has to do the same transformation, i.e. PCA, to the corre-
sponding part of the analyzed traces, he has no idea about
how to choose the proper points due to the unknown nonces.
As an alteration, we will calculate the standard deviations
of each point of the template traces, and try to find the re-
lation between the standard deviations and the correlation
coefficients (see Fig. 4). We know from Fig. 4 that the peak
of the standard deviations appears at the same point as that
of the correlation coefficients.

Then we select a number of points before and after the
peak of the standard deviation, to which PCA is applied. See
Fig. 5 for the power traces of values with different Hamming
weights after PCA, which shows more significant difference
than those before PCA.
3. For the traces corresponding to the values 0x00 and 0xFF

after PCA transformation, two templates are built by select-
ing a certain number of points with high variances. Since the
eigendecomposition used in our PCA has sorted the eigen-
values, we select the points on the right hand side whose
variances are large.
Template Matching Phase. In the matching phase, the
APDU that corresponds to the signing command is sent to
the smartcard, a power trace of the whole signing procedure
is shown in Fig. 6. The part on the power trace that corre-
sponds to the generation and transfer of k is marked; in the
very beginning of this part, we found a very similar interval
as that in Fig. 2. We believe that this is the part that we
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should use to match the template, thus we keep only this
part of the power trace for each signature.

In order to collect enough signatures, we have to repeat-
edly send the signing APDU to the smartcard. To make the
attack more reasonable, we will not assume that we can col-
lect enough signatures within a single power-on period of the
smartcard. So we only send the APDU 10,000 times to the
smartcard before it powers off. For these traces, we select
the interval that is the same as the template building phase
by calculating the standard deviation and then apply PCA
to them. For the traces after PCA, we match them with
the template. A minimum likelihood principle is applied as
mentioned, and a threshold is chosen to make the false pos-
itives as few as possible. After we find the matching traces,
we pair these signatures and then collect the next 10,000
signatures to repeat the procedure. Since the values we tar-
geted occur with probability 2/256, and we have a strict
threshold so as to reduce the errors, in our experiment there
were only 3 ∼ 4 power traces kept on average for each of the
two templates. As a consequence, we can get about 4 pairs
of signatures with the same MSBN from 10,000 signatures.

4. PARTIALLY-SHARING NONCES ATTACK
ON SM2DSA

In this section, we describe the lattice attack that uses the
partially-sharing nonces acquired in the previous section to
recover the private key.

For a pair of signatures (r1, s1) and (r2, s2) that shares
MSBN, we have:

s1(1 + dA) = k1 − r1dA mod n , (2)

s2(1 + dA) = k2 − r2dA mod n ; (3)

subtracting Eq. (3) from Eq. (2), then:

(s1 − s2 + r1 − r2)dA − (s2 − s1) = k1 − k2 mod n. (4)

We write k1 = 2lkH1 + kL1 , k2 = 2lkH2 + kL2 , where l = 248
and kH is the most significant byte of k. Since in our case
kH1 = kH2 , Eq. (4) can be rewritten as:

(s1 − s2 + r1 − r2)dA − (s2 − s1) = kL1 − kL2 mod n.

Since kL1 , k
L
2 ∈ [0, 2l], we have

− 2l ≤ b(s1 − s2 + r1 − r2)dA − (s2 − s1)cn ≤ 2l (5)

If we can obtain d pairs of signatures (((r11, s
1
1), (r12, s

1
2)), · · · ,

((rd1 , s
d
1), (rd2 , s

d
2))) with collided MSBN, then they all fulfill

Eq. (5); the recovery of private key dA can be seen as an
HNP problem. Denote ti = si1 − si2 + ri1 − ri2, ui = si2 − si1
(i = 1, · · · , d).

In our experiments, we use embedding method as shown
in Sect. 2.3 to solve the CVP. To avoid the fraction in com-
putation and balance the values in coordinates, one needs to
modify the coefficients of the row matrix (1) by some scaling
factor. As a result, we construct a CVP in the lattice below:

1732 · n 0 · · · 0 0

0 1732 · n
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 1732 · n 0
1732 · t1 · · · · · · 1732 · td 4


The target vector is ~u = (1732 ·u1, 1732 ·u2, . . . , 1732 ·ud, 0),
and the parameter β in lattice B′ (Sect. 2.3) is chosen to

be 4n. We expect that the vector ~h = (1732(dAt1 + nh1 −
u1), . . . , 1732(dAtd + nhd − ud), 4dA, 4n) which discloses dA
is the short vector in the embedding lattice. Now, we give
a heuristic theoretical result about the number of signature
pairs needed to recover the private key: The upper bound of

the length of the vector ~h is about
√
d(1732× n

28
)2 + 32n2;

by Gaussian heuristic the expected length of shortest vector

is about
√

d+2
2πe

(16× 1732d × nd+1)
1

d+2 . When the length of

vector ~h is shorter than that of Gaussian heuristic, dA can
be obtained by finding the short vector of the embedding
lattice. Here n ≈ 2256, then we can achieve the bound as
long as d ≥ 45. Since d is relatively small, the lattice basis
reduction algorithm BKZ with blocksize 20 can be seen as an
SVP oracle. That is, the BKZ 20 algorithm will output the
shortest vector for lattice with dimension not much larger
than 50.
Experimental Results. Our smartcard runs SM2DSA at
32MHz; a sampling rate of 1G/s and a 1G band width are
used when we are collecting the power traces.

To enhance the success rate of the attack, similar to [17],
we collect more pairs of signatures than the number calcu-
lated from Gaussian heuristic, say 48. The reason is to avoid
the failure of the attack due to the false detection of the col-
lision, although the probability of falsely detecting is very
low due to our strategy in Sect. 3.

To get 48 pairs of collided signatures, we need about
120,000 signatures in the template matching phase. For our
target smartcard, about one hour is required to run 10,000
signings; thus less than 13 hours are needed to process the
120,000 ones. In the template building phase, only the ran-
dom number generation command should be run, which is
much faster than the signing process. In our experiment, we
need about 12 hours to get the 1,800,000 traces for template
building.

From these 48 pairs of signatures, we randomly choose 45
pairs to form a CVP and then solve the embedding lattice by
BKZ 20 algorithm implemented in NTL library [23]. In the
worst case, there are about

(
48
45

)
= 17296 BKZ reductions

with dimension 45 have to be carried out, but this is still
feasible since one reduction takes about 2.4 seconds with one
core of Intel Xeon CPU W3530 (2.8GHz) and 4G memory.
Actually, we recovered the correct private key immediately
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after we tried the first group of 45 pairs of signatures, and
it turned out that the collided pairs we collected were all
correct when we figured out all the nonces for the 48 pairs
of signatures.

Furthermore, the previous bound obtained from Gaussian
heuristic is an upper bound and we expect that fewer signa-
tures are actually needed to recover the private key. In our
experiment, we found that BKZ actually performed better
than the bound that we estimated: Less than 40 pairs of sig-
natures were enough to recover the private key. This means
that the attacker can collect fewer signature pairs so as to
reduce the processing time.

Note that in the experiment, we found that the private
key came from the second shortest vector of the embedding
lattice, since the shortest vector would always be all zero
but the (d+ 1)-th dimension. Let the (d+ 1)-th dimension
of the second shortest vector be d′A, then the private key is
d′A/4 mod n or n− (d′A/4 mod n).

5. COUNTERMEASURES
Common countermeasures of hiding [16] will make our

attack more difficult to succeed. These countermeasures in-
clude increasing the background noise, balancing the power
consumption, randomizing the internal clock, random delay,
etc. All the countermeasures could be applied to the random
number generation and moving process.

Another countermeasure is to generate the nonce k with
the method as specified in Appendix B.5.1 of [18]. In this
method, a random number with extra 64 random bits will
be produced and then it will be reduced before being used
as the nonce. In this scenario, the information obtained in
our attack is no longer the same as that of the nonces; thus
our attack is invalid in this case.

6. CONCLUSION
This paper implements an attack on SM2DSA by using

the information leaked from the generation of the nonces.
By using the collisions of the first bytes of the nonces de-
tected with the assistance of templates, we give a partially-
sharing nonces attack on SM2DSA with the recommended
parameters. Possible countermeasures are also suggested.

Our attack can also be applied to SM2DSA with the other
parameters and the other elliptic curve based signature al-
gorithms like ECDSA, as long as the transfer of the random
numbers leaks the information of the nonce k.
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