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ABSTRACT

Let us consider a scenario that a data holder (e.g., a hospi-
tal) encrypts a data (e.g., a medical record) which relates a
keyword (e.g., a disease name), and sends its ciphertext to
a server. We here suppose not only the data but also the
keyword should be kept private. A receiver sends a query to
the server (e.g., average of body weights of cancer patients).
Then, the server performs the homomorphic operation to
the ciphertexts of the corresponding medical records, and
returns the resultant ciphertext. In this scenario, the server
should NOT be allowed to perform the homomorphic opera-
tion against ciphertexts associated with different keywords.
If such a mis-operation happens, then medical records of
different diseases are unexpectedly mixed. However, in the
conventional homomorphic encryption, there is no way to
prevent such an unexpected homomorphic operation, and
this fact may become visible after decrypting a ciphertext,
or as the most serious case it might be never detected.
To circumvent this problem, in this paper, we propose mis-

operation resistant homomorphic encryption, where even if
one performs the homomorphic operations against cipher-
texts associated with keywords ω′ and ω, where ω 6= ω′,
the evaluation algorithm detects this fact. Moreover, even if
one (intentionally or accidentally) performs the homomor-
phic operations against such ciphertexts, a ciphertext as-
sociated with a random keyword is generated, and the de-
cryption algorithm rejects it. So, the receiver can recognize
such a mis-operation happens in the evaluation phase. In
addition to mis-operation resistance, we additionally adopt
secure search functionality for keywords since it is desir-
able when one would like to delegate homomorphic oper-
ations to a third party. So, we call the proposed primitive
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mis-operation resistant searchable homomorphic encryption
(MR-SHE).

We also give our implementation result of inner products
of encrypted vectors. In the case when both vectors are
encrypted, the running time of the receiver is millisecond
order for relatively small-dimensional (e.g., 26) vectors. In
the case when one vector is encrypted, the running time
of the receiver is approximately 5 msec even for relatively
high-dimensional (e.g., 213) vectors.
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1. INTRODUCTION

1.1 Research Background
Let us consider a scenario that a data holder encrypts a

data and sends its ciphertext to a server. The server com-
putes some statistical values of data without decrypting ci-
phertexts, and sends the ciphertext of the final statistical
value to a decryptor. The decryptor obtains the statisti-
cal value by decryption. This is a typical scenario of ho-
momorphic encryption (HE) such as the Paillier encryption
scheme [28]. Though the Paillier encryption supports ad-
ditive homomorphic operation only, after seminal works by
Gentry [20], several fully homomorphic encryption (FHE)
schemes have been proposed so far. Due to the progress of
(F)HE area, several applications of (F)HE also have been
proposed.

On the other hand, a security drawback of HE also has
been widely recognized so far. That is, anyone can freely
perform homomorphic operations inevitably, and this means
ciphertexts are malleable. Especially, a standard security
level of Public Key Encryption (PKE), which we call se-
curity against adaptive chosen-ciphertext attack (CCA), is
never achieved in HE. By changing the model of HE, Emura
et al. [15, 14] proposed a way to achieve the CCA secu-
rity and the homomorphic property simultaneously, where
it is CCA secure against an adversary who does not have
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the homomorphic operation key1 (and the decryption key
also), and simultaneously the homomorphic operation is al-
lowed to a user who has the homomorphic operation key.
This primitive is called keyed homomorphic public key en-
cryption (KH-PKE), and several constructions have been
proposed so far, e.g., KH-PKE with public verifiability [23,
27], keyed FHE [26], and keyed homomorphic identity-based
encryption (KH-IBE) [14].

1.2 Our Target: Mis-operation Resistant Search-
able Homomorphic Encryption

Though we can somewhat control who will be able to per-
form the homomorphic operation by employing KH-PKE,
there is room for argument on the controllability of the ho-
momorphic operation. For example, let us consider a sce-
nario that a data holder (e.g., a hospital) encrypts a data
(e.g., a medical record) which relates to a keyword (e.g., a
disease name), and sends its ciphertext to a server. We here
suppose not only the data but also the keyword should be
kept private. For example, when the keyword indicates rare
diseases, the keyword might cause identification of the pa-
tient even if the records are encrypted. In case of genetic
diseases, it can leak familial relationships between records,
too. A receiver sends a query to the server (e.g., average
of body weights of cancer patients), in which the operation
contains conditioning by a keyword. Then, the server per-
forms the homomorphic operation only with the ciphertexts
of the medical records containing the keyword specified by
the query, and returns the ciphertext of the average of body
weights of them. In this scenario, the server should NOT
be allowed to perform the homomorphic operation against
ciphertexts related to different keywords. If such a mis-
operation happens, then medical records of different diseases
are unexpectedly mixed. Of course, if all the programs that
will process the ciphertexts are determined in advance, we
do not have a strong motivation to consider such a mis-
operation of ciphertexts. However, from the standpoint of
data engineering, if ciphertexts are stored in a database and
repeatedly used for various purposes for a long time, man-
agement of the provenance of the ciphertexts is not an easy
task because of the security of the ciphertexts, particularly
in the outsourcing setting. Once data is encrypted, no one
except the secret key holder can confirm the provenance of
the data anymore. However, in the conventional HE (and
KH-PKE also), there is no way to prevent such an unex-
pected homomorphic operation, and this fact may become
visible after decrypting a ciphertext, or as the most serious
case it might be never detected.
One may think that considering some tags of ciphertexts

is a reasonable solution since it could distinguish whether
homomorphic operations are allowed or not. However, if
keywords are directly regarded as tags, disease names be-
come known to the server. Therefore, providing a secure
keyword search functionality could be a solution.

1.3 Naive Approach and Its Limitations

1We do not use the word “evaluation key” in order to distin-
guish evaluation keys of FHE schemes which are contained
in public keys for homomorphic operations. As a remark,
though some FHE schemes, e.g., [9], require the evaluation
key, these schemes do not consider the CCA security against
one who does not have the evaluation key.

The most naive approach is to simply combine a cipher-
text of a searchable encryption scheme (public key encryp-
tion with keyword search (PEKS) [6]) and a ciphertext of
a public key HE scheme. However, as pointed out in [3, 5,
34, 11], this simple setting does not achieve an appropri-
ate security condition. For example, even if the public key
encryption scheme is CCA secure, the combined ciphertexts
are not secure against the CCA attack. In other words, since
ciphertexts of the HE scheme are still malleable or cipher-
texts of searchable encryption are replaced to ciphertexts
associated with a different keyword by an adversary, the
server may perform homomorphic operations against them
even the server follows the protocol. Moreover, even if a
(lower-level trusted) server forcibly performs homomorphic
operations against ciphertexts with different keywords, the
decryption algorithm should reject the result, and the re-
ceiver should be able to recognize such a mis-operation hap-
pens in the evaluation phase. So, regardless of trust level of
the server, such a mis-operation should be protected in the
scheme level, and this functionality is not supported in the
simple construction. For considering a CCA security in this
setting, PEKS/PKE has been proposed [3, 5, 34, 11]. How-
ever, since PEKS/PKE does not preserve the homomorphic
property of the underlying PKE scheme, PEKS/PKE is not
applicable for our usage.

For achieving the mis-operation resistance with preserv-
ing keyword privacy, one may think that it is enough to
employ a double encryption methodology, where prepare an
encryption and decryption key pair for each disease name,
and encrypt a ciphertext of a HE scheme by using an en-
cryption key associated with a disease when it is related to
the disease. Then, a server who has a decryption key of a
disease can perform homomorphic operations to ciphertexts
associated with the disease. However, many key pairs need
to be managed. Moreover, if a server has more than one key
pair, then still the server can perform homomorphic opera-
tions against ciphertexts associated with different diseases,
and this fact is not detected.

Verifiable computation, e.g., [17, 4], might be a solution.
That is, if the receiver (client in the verifiable computation
context) can specify a function F that can exclude cipher-
texts associated with different keywords, then the receiver
can recognize whether a mis-operation happens in the eval-
uation phase or not, by verifying whether the output is a
correct evaluation of F . If the keyword is publicly avail-
able and the server can know it, it seems we can directly
employ verifiable computations. However, as mentioned be-
fore we here suppose not only the data but also the keyword
should be kept private. Thus, since secure searchability is
not supported, current verifiable computations are not di-
rectly applicable in our usage to the best of our knowledge.

Indistinguishability obfuscation (iO) [18] (or functional
encryption [8] also) might be applicable where, for exam-
ple, a plaintext space is partitioned into multiple spaces and
homomorphic operations are allowed if the corresponding
plaintexts belong to the same space. Though this could be
a solution, this is not an efficient solution since the cur-
rent efficiency of iO is far from a practical use. Targeted
malleability [8], where homomorphic operations are allowed
with respect to a function F ∈ F , also seems to be a candi-
date to achieve the mis-operation resistance. However, the
evaluation algorithm adds a succinct non-interactive argu-
ment that proves a function F ∈ F is performed, and it
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Mis-operation Resistance

Data holders Server

Receiver

- The evaluation algorithm posts alert to homomorphic operations for ciphertexts associated with different keywords. 

- Even if one intentionally or accidentally performs the homomorphic operations against such ciphertexts, 

the decryption algorithm rejects it, and the receiver can recognize a mis-operation happens in the evaluation phase. 

Figure 1: Framework of MR-SHE

seems non-trivial to instantiate an argument system for a
language that supports the mis-operation resistance.
Another candidate is KH-IBE [14] where a homomorphic

operation key is defined for each identity, and the homo-
morphic operation is allowed against ciphertexts encrypted
by the same identity. Moreover, Abdalla et al. [2] show
that PEKS can be generically constructed by anonymous
identity-based encryption (anonymous IBE). Since the KH-
IBE scheme [14] is constructed by the Gentry IBE scheme [19]
and the Gentry IBE scheme is anonymous, the KH-IBE
scheme is also anonymous with a reasonable setting (See
Def 7.6 as a remark). So, one may expect that PEKS con-
structed from the Gentry-based KH-IBE scheme can work
well to achieve mis-operation resistance. However, the Ab-
dalla et al. construction cannot be used for our purpose.
Briefly, in the Abdalla et al. construction, a random plain-
text (say R) is encrypted by a keyword as the identity, the
corresponding trapdoor is a decryption key of the keyword,
and a ciphertext of searchable encryption is this IBE cipher-
text and R. The test algorithm returns 1 if the decryption
result of the IBE ciphertext by using the trapdoor is R.
That is, the corresponding plaintext R is required for the
test capability, and is directly contained in the ciphertext.
This is meaningless in our usage, i.e., for searching disease
names in a secure way, medical records need to be revealed
to the server. Moreover, even if we can circumvent this
problem, the evaluation algorithm requires the correspond-
ing identity as input. That is, the corresponding keyword
is known to the server. So, we need to invent other way to
construct mis-operation resistant homomorphic encryption
with secure searchability.

1.4 Our Contribution
In this paper, we propose homomorphic encryption with

both mis-operation resistant and secure searchability, which
we call mis-operation resistant searchable homomorphic en-

cryption (MR-SHE). MR-SHE supports the following prop-
erties.

Confidentiality: A keyword and data are encrypted si-
multaneously, and no information of the keyword and data
is revealed from the ciphertext, as in PEKS/PKE.

Secure Searchability: A secure keyword search is allowed,
as in PEKS.

Keyed Homomorphic Property: No one, except a user
who has a homomorphic operation key, can perform homo-
morphic operations, and CCA security is guaranteed, as in
KH-PKE.

Mis-operation Resistance: The evaluation algorithm posts
alert to homomorphic operations for ciphertexts associated
with different keywords. Even if one intentionally or acci-
dentally performs the homomorphic operations against such
ciphertexts, the decryption algorithm rejects it, and the re-
ceiver can recognize a mis-operation happens in the evalua-
tion phase.

See Figure 1 for a brief description of MR-SHE. A receiver (a
researcher) setups a key pair (pk, sk), and a data holder (a
hospital) encrypts a medical record M and its disease name
ω by using the public key of the receiver pk, and sends its ci-
phertext to the server. No information of ω and M is leaked
from the ciphertext. For a disease name ω, the receiver
computes a trapdoor tω which can be used for searching
ciphertexts associated with ω, and also computes a homo-
morphic operation key hkω which can be used for performing
homomorphic operations over M to ciphertexts associated
with ω. The receiver secretly sends tω and hkω to a server.
The server searches ciphertexts associated with ω by using
tω, and performs homomorphic operations F to ciphertexts
associated with ω by using hkω.

2 Finally, the server sends
a ciphertext of F (M) to the receiver, and the receiver ob-

2Remark that our scheme inherits linear search complexity
of PEKS.
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tains F (M) by decrypting the ciphertext using sk.3 It is
particularly worth noting that even if the server performs
homomorphic operations against ciphertexts related to ω′

by using hkω, where ω 6= ω′, the evaluation algorithm de-
tects this fact. Moreover, even if one forcibly performs the
homomorphic operations against such ciphertexts, a cipher-
text associated with a random keyword is generated, the
decryption algorithm rejects it, and the receiver can recog-
nize such a mis-operation happens in the evaluation phase.
Technically, we point out that homomorphic operation

keys can be trapdoors for searching whereas decryption keys
are trapdoors in the Abdalla et al. construction [2]. That
is, in our construction, tω = hkω. Then no plaintext is con-
tained in the ciphertext in contrast to the Abdalla et al.
construction. Moreover, we prove that our scheme has con-
sistency where the test algorithm does not output 1 with
overwhelming probability if a ciphertext is tested by a trap-
door of a different keyword. Since the KH-IBE scheme is
anonymous, no information of ω is revealed from the cipher-
text. Moreover, the CCA security against adversaries who
do not have the homomorphic operation key is taken over
from the security of KH-IBE. So, we can prevent unexpected
modifications of ciphertexts by the adversaries, and can pro-
tect information of plaintexts them in the sense of the CCA
security. Note that we need to add a value to homomor-
phic operation keys in order for the server to be allowed to
perform homomorphic operations without knowing the cor-
responding keyword itself, and show that this modification
does not affect the security.
Though the proposed MR-SHE scheme supports multi-

plicative homomorphic operations on the target group of
pairing, additive homomorphic operations over suitably small
integers can also be supported by the lifted ElGamal encryp-
tion approach [13]. Moreover, by employing the Catalano-
Fiore transformation [10] which transforms an additive ho-
momorphic encryption scheme into a scheme which addition-
ally supports one multiplicative homomorphic operation, we
realize inner products of encrypted vectors. We implement it
by using the Pairing-Based Cryptography (PBC) library [1],
and show the running time is still reasonable. We also pro-
pose an algorithm that evaluates multiple ciphertexts by
single execution. This modification allows us to efficiently
implement inner products of vectors.

1.5 Our Scenario: χ2 Test of Independence for
Hidden Keywords

We introduce a scenario that inner products of encrypted
vectors need to be securely computed as follows. The χ2 test
for independence is designed to test the null hypothesis that
there is no association between a pair of factors. Suppose a
researcher, who has (pk, sk), and hospitals (hospital 1 and
2) collaboratively assess dependence between a SNP (Single
Nucleotide Polymorphism) variant and a target disease. To
this end, the researcher and hospitals compute a frequency
table for a case-control study (Table 1). A case group in-
cludes subjects with a target disease (e.g., lung cancer), and
a control group includes non-diseased subjects.

3Note that the receiver can decrypt a ciphertext
Enc(pk, ω,M) sent from a data holder to the server, and can
directly obtain M in the current setting. If this case should
be avoided, then we can simply assume that the server also
has a public key and a secret key, and data holders encrypt
the ciphertext by using the server public key.

Table 1: Frequency table
A a

Case n1A n1a n1 := n1A + n1a

Control n2A n2a n2 := n2A + n2a

nA na n
:= n1A + n2A := n1a + n2a

Let us consider a biallelic locus with allele A and a. Here,
n is the total number of subjects, and other value, e.g., n1A

is the number of subjects affecting the target disease and
having allele A at the locus. Assume that the hospital 1
has a vector x0 := (x0,1, . . . , x0,ℓ) ∈ Z

ℓ
2 where x0,i = 1 if

the subject i affects the target disease, and x0,i = 0 oth-
erwise. Assume that the hospital 2 has a vector x1 :=
(x1,1, . . . , x1,ℓ) ∈ Z

ℓ
2 where x1,i = 1 if the subject i has

allele A at the locus, and x1,i = 0 otherwise. Then, n1A can

be computed as n1A =
∑ℓ

i=1 x0,ix1,i. Since n, n1, n2, nA,
and na are contained in the table, assume that these values
are publicly available among the researcher and hospitals.
That is, if n1A is computed, then all other values can be
computed. From the table, χ2 test statistic is computed as

T = n(n1An2a−n1an2A)2

nAnan1n2
. Greater T indicates stronger de-

pendence between the SNP and the disease. Let us consider
the case that the computation of n1A is delegated to a server
(which is not the fully trusted third party). Since x0 and
x1 are highly sensitive information, these vectors need to be
hidden to the server. Moreover, since disease name is also
sensitive information, such a keyword is also desired to be
hidden to the server. To compute n1A =

∑ℓ
i=1 x0,ix1,i, with-

out revealing x0, x1, and the target disease to the server,
we employ MR-SHE as follows. The hospital 1 and the hos-
pital 2 encrypt x0 and x1, respectively, with the keyword
“lung cancer”, and send the ciphertexts to the server. Here,
we assume that the hospital 1 and the hospital 2 also com-
pute ciphertexts for other target diseases (e.g., glycosuria,
nosocomephrenia, leukemia, and so on), and the server pre-
serves them. When the researcher needs to compute the
χ2 test statistic for “lung cancer”, the researcher computes
the corresponding trapdoor and the corresponding homo-
morphic operation key, and sends the keys with the query
to the server. The server searches the corresponding cipher-
texts by using the trapdoor, and computes a ciphertext of
n1A by using the homomorphic operation key. Then, we can
guarantee that the ciphertext of n1A is computed by two en-
crypted vectors associated with the same disease. Moreover,
no information of diseases is revealed from the ciphertexts.

1.6 Related Work
Shimizu et al. [31] pointed out that tversky index, which

evaluates a distance among chemical compounds, can be
captured by using addition operations, and the Paillier en-
cryption scheme [28] is employed for searching. We remark
that the homomorphic property is used for searching, and is
not used for evaluating encrypted chemical compounds data.
As a similar attempt, secure matching or private database
queries using somewhat HE schemes have been proposed
in [7, 32, 33, 25].

Kiltz [24] proposed a tag-based encryption (TBE) where a
ciphertext is associated with a tag. As an interesting prop-
erty, we pointed out that the Kiltz TBE scheme has a ho-
momorphic property for ciphertexts if they are associated
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with the same tag (even a kind of chosen ciphertext security
is guaranteed). Moreover, a public verification algorithm is
defined where a ciphertext is valid under a tag or not. Sim-
ilarly, Gentry, Sahai and Waters [21] propose identity-based
FHE where homomorphic operations are allowed to cipher-
texts encrypted by the same identity. This scheme does not
require a user-specific evaluation key. On the other hand,
our scheme requires a keyword-specific evaluation key for
keyed homomorphic property, and this setting allows us to
control who can perform the homomorphic operations and
to protect information of plaintext in the sense of the CCA
security. So, these schemes [24, 21] might be applicable for
our usage if neither secure search functionality nor keyed
homomorphic property are required.
Since the receiver can recognize that all ciphertexts of

homomorphic operations are associated with the same key-
word, MR-SHE can be regarded as a kind of verifiable com-
putation [17, 4] with searchability. However, MR-SHE does
not support the verifiability of the computation result un-
like the conventional verifiable computations. For cipher-
texts with the same keyword, the server still may compute
the function that the receiver requires is also regarded as a
mis-operation. Thus, supporting such the verifiability in the
MR-SHE context is an interesting future work of this paper.

2. DEFINITIONS OF MIS-OPERATION RE-

SISTANT SEARCHABLE HOMOMORPHIC

ENCRYPTION
In this section, we give definitions of mis-operation re-

sistant searchable homomorphic encryption (MR-SHE). A
MR-SHE scheme MR-SHE consists of eight algorithms:
(MR-SHE.KeyGen, MR-SHE.HomKeyGen, MR-SHE.Trapdoor,
MR-SHE.Enc,
MR-SHE.Test, MR-SHE.Dec, MR-SHE.Eval). Let W be the
keyword space,M be the plaintext space, and κ ∈ N be the
security parameter. Note that in our construction given in
Section 3, we set hkω = tω. So, we assume that key gen-
eration algorithms share these keys, and thus our scheme is
stateful. See Section 3 for details. For the sake of simplicity,
we define algorithms when these are run for the first time.

MR-SHE.KeyGen : A key generation algorithm takes as in-
put 1κ, and returns a receiver public key pk and a
receiver secret key sk. We assume that W andM are
contained in pk.

MR-SHE.KeyGen : A key generation algorithm takes as in-
put 1κ, and returns a receiver public key pk and a
receiver secret key sk. We assume that W andM are
contained in pk.

MR-SHE.HomKeyGen : A homomorphic operation key gen-
eration algorithm takes as input pk, sk and a keyword
ω ∈ W, and returns a homomorphic operation key
hkω.

MR-SHE.Trapdoor : A trapdoor generation algorithm takes
as input pk, sk, and a keyword ω ∈ W, and returns a
trapdoor tω corresponding to keyword ω.

MR-SHE.Enc : An encryption algorithm takes as input pk,
ω, and M , and returns a ciphertext C.

MR-SHE.Test : A test algorithm takes as input pk, tω, and
C, and returns 1 or 0.

MR-SHE.Dec : A decryption algorithm takes as input pk,
sk, ω, and C, and returns M or ⊥.

MR-SHE.Eval : An evaluation algorithm takes as input pk,
hkω, and two ciphertexts C1 and C2, and returns a
ciphertext C or ⊥. This algorithm has two function-
alities: 1) checks the integrity and 2) evaluates the
function homomorphically.

We require the correctness property as follows: For all (pk, sk)
← MR-SHE.KeyGen(1κ), and all ω ∈ K and M ∈ M, for
C ← MR-SHE.Enc(pk, ω,M) and tω ← MR-SHE.Trapdoor
(pk, sk, ω),

• MR-SHE.Test(pk, tω, C) = 1 holds, and

• MR-SHE.Dec(pk, sk, ω, C) = M holds.

Moreover, we require the homomorphic property as follows:
For all (pk, sk) ← MR-SHE.KeyGen(1κ), and all ω ∈ K and
M1,M2 ∈M, and all hkω ← MR-SHE.HomKeyGen(pk, sk, ω),

• For C ← MR-SHE.Eval(pk, hkω, C1, C2) where C1 ←
MR-SHE.Enc(pk, ω,M1) and C2 ← MR-SHE.Enc(pk, ω,
M2), MR-SHE.Dec(pk, sk, ω, C) = M1⊙M2 holds, where
⊙ is a binary operation overM.

Next, we define consistency as follows. This guarantees that
the MR-SHE.Test algorithm does not output 1 with over-
whelming probability if a ciphertext is tested by a trapdoor
of a different keyword. Remark that in our scheme a fresh
ciphertext generated by the encryption algorithm and a ci-
phertext output by the evaluation algorithm have the same
form and are identical. So, we simply consider the case that
a ciphertext is computed by the encryption algorithm here.

Definition 2.1 (Consistency). For any probabilistic
polynomial time (PPT) adversary A and the security pa-
rameter κ ∈ N, we define the experiment Expconsist

MR-SHE,A(κ)
as follows.

Expconsist
MR-SHE,A(κ) :

(pk, sk)← MR-SHE.KeyGen(1κ)

(ω, ω′,M)← A(pk)

ω, ω′ ∈ W; ω 6= ω′; M ∈M

C ← MR-SHE.Enc(pk, ω,M)

tω′ ← MR-SHE.Trapdoor(pk, sk, ω′)

if MR-SHE.Test(pk, tω′ , C) = 1 then return 1

else return 0

We say that MR-SHE is consistent if the advantage
Advconsist

MR-SHE,A(κ) := Pr[Expconsist
MR-SHE,A(κ) = 1] is negligi-

ble for any PPT adversary A.

Next, we define data privacy which guarantees that no infor-
mation of plaintext is revealed from ciphertexts. As in KH-
IBE, an adversary is allowed to obtain the evaluation results
even for the challenge ciphertext, and such challenge-related
ciphertexts are not allowed to be inputs of the decryption
oracle Odec. The evaluation oracle Oeval returns the result
of the MR-SHE.Eval algorithm. That is, the oracle returns
⊥ unless two ciphertexts input are associated with the same
keyword. This captures the property that evaluation should
fail when the ciphertexts have non-matching tags.
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Definition 2.2 (Data Privacy). For any PPT adver-
sary A and the security parameter κ ∈ N, we define the
experiment Expdata-privacy

MR-SHE,A(κ) as follows.

Expdata-privacy
MR-SHE,A(κ) :

(pk, sk)← MR-SHE.KeyGen(1κ); D ← ∅

(ω∗,M∗0 ,M
∗
1 , st)← A

O(pk)

b
$
← {0, 1}; C∗ ← MR-SHE.Enc(pk, ω∗,M∗b )

D ← D ∪ {C∗}; b′ ← AO(C∗, st)

if b = b′ then return 1

else return 0

st is state information that an adversary A can preserve
any information, and st is used for transferring state in-
formation to the other stage. O is a set of oracles defined
as O := {OMR-SHE

revhk (pk, sk, ·),OMR-SHE
dec (pk, sk, ·.·),OMR-SHE

trapdoor

(pk, sk, ·),OMR-SHE
test (pk, ·, ·),OMR-SHE

eval (pk, ·, ·, ·)}. Each ora-
cle is defined as follows.

OMR-SHE
revhk : This homomorphic operation key reveal oracle

takes as input a keyword ω ∈ W, and returns hkω ←
MR-SHE.HomKeyGen(pk, sk, ω). We remark that ω∗ is
allowed to be an input of this oracle.

OMR-SHE
dec : This decryption oracle takes as input a keyword

ω ∈ W and a ciphertext C where C 6∈ D, and outputs
the result of MR-SHE.Dec(pk, sk, ω, C). If ω∗ has been
input to the OMR-SHE

revhk oracle, then this oracle returns
⊥.

OMR-SHE
trapdoor : This trapdoor oracle takes as input a keyword

ω ∈ W, and returns tω ← MR-SHE.Trapdoor(pk, sk, ω).
We remark that ω∗ is allowed to be an input of this or-
acle.

OMR-SHE
test : This test oracle takes as input a keyword ω ∈
W and a ciphertext C, and returns the result of MR-SHE.Test
(pk, tω, C) where tω ← MR-SHE.Trapdoor(pk, sk, ω).
We remark that (ω∗, C∗) is allowed to be an input of
this oracle.

OMR-SHE
eval : This evaluation oracle takes as input a key-

word ω ∈ W and two ciphertext C1 and C2, and re-
turns the result of MR-SHE.Eval(pk, hkω, C1, C2) where
hkω ← MR-SHE.HomKeyGen(pk, sk, ω). Moreover, if
either C1 ∈ D or C2 ∈ D, and the return of this or-
acle is not ⊥ (say C), then this oracle updates D ←
D ∪ {C}.

Next, we define keyword privacy which guarantees that no
information of keyword is revealed from ciphertexts. As in
the case of data privacy, we need to guarantee that the ho-
momorphic operations do not affect keyword privacy. We
remark that an adversary chooses a plaintext only when the
homomorphic operation is performed to the challenge ci-
phertext (or its related ciphertexts) due to consistency. Oth-
erwise, the adversary always wins the game as follows: the
adversary computes of a ciphertext using ω∗0 and sends it and
the challenge ciphertext (encrypted by ω∗b where b ∈ {0, 1})
to the evaluation oracle. If the return is not ⊥, then b = 0
and b = 1 otherwise. Moreover, due to the same reason, the
adversary is not allowed to obtain homomorphic operation
keys of ω∗0 and ω∗1 . That is, if the adversary is allowed to

obtain the homomorphic operation keys of ω∗0 and ω∗1 , then
the adversary always win the game since the adversary can
evaluate the challenge ciphertext by using the homomor-
phic operation keys. For example, if the challenge cipher-
text is computed by ω∗0 , then the evaluation algorithm with
hkω∗

0
outputs a ciphertext whereas the challenge ciphertext

is computed by ω∗1 , then the output is ⊥. So, these restric-
tions are necessary when we consider keyword privacy for an
evaluated ciphertext and consistency without contradiction.

Definition 2.3 (Keyword Privacy). For any PPT ad-
versary A and the security parameter κ ∈ N, we define the
experiment Expkeyword-privacy

MR-SHE,A (κ) as follows.

Expkeyword-privacy
MR-SHE,A (κ) :

(pk, sk)← MR-SHE.KeyGen(1κ); D ← ∅

(ω∗0 , ω
∗
1 ,M

∗, st)← AO(pk)

b
$
← {0, 1}; C∗ ← MR-SHE.Enc(pk, ω∗b ,M

∗)

D ← D ∪ {C∗} b′ ← AO(C∗, st)

if b = b′ then return 1

else return 0

Here, O is a set of oracles defined as O := {OMR-SHE
revhk (pk, sk,

·), OMR-SHE
dec (pk, sk, ·, ·),OMR-SHE

trapdoor (pk, sk, ·),O
MR-SHE
test (pk, ·, ·),

OMR-SHE
eval (pk, ·, ·, ·),O′

MR-SHE
eval (pk, ·, ·)}. Each oracle is defined

as follows.

OMR-SHE
revhk : This homomorphic operation key reveal oracle

takes as input a keyword ω ∈ W, and returns hkω ←
MR-SHE.HomKeyGen(pk, sk, ω). We remark that ω∗ is
allowed to be an input of this oracle.

OMR-SHE
dec : This decryption oracle takes as input a keyword

ω ∈ W and a ciphertext C where C 6∈ D, and outputs
the result of MR-SHE.Dec(pk, sk, ω, C). If ω∗ has been
input to the OMR-SHE

revhk oracle, then this oracle returns
⊥.

OMR-SHE
trapdoor : This trapdoor oracle takes as input a keyword

ω ∈ W, and returns tω ← MR-SHE.Trapdoor(pk, sk, ω).
We remark that ω∗ is allowed to be an input of this or-
acle.

OMR-SHE
test : This test oracle takes as input a keyword ω ∈
W and a ciphertext C, and returns the result of MR-SHE.Test
(pk, tω, C) where tω ← MR-SHE.Trapdoor(pk, sk, ω).
We remark that (ω∗, C∗) is allowed to be an input of
this oracle.

OMR-SHE
eval : This evaluation oracle takes as input a key-

word ω ∈ W and two ciphertext C1 and C2, and re-
turns the result of MR-SHE.Eval(pk, hkω, C1, C2) where
hkω ← MR-SHE.HomKeyGen(pk, sk, ω). Moreover, if
either C1 ∈ D or C2 ∈ D, and the return of this or-
acle is not ⊥ (say C), then this oracle updates D ←
D ∪ {C}.

We say that MR-SHE is keyword private if the advantage
Advkeyword-privacy

MR-SHE,A (κ) := |Pr[Expkeyword-privacy
MR-SHE,A (κ) = 1] − 1/2|

is negligible for any PPT adversary A.
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3. PROPOSED MR-SHE SCHEME

3.1 High-level Description
First, we briefly introduce the Gentry IBE scheme [19]

and the KH-IBE scheme [14] which is based on the Gentry
IBE scheme as follows. Let a plaintext M be encrypted by
an identity ID and a randomness s. Then, (c1, c2, c3, c4) =
(gs1g

−sID, e(g, g)s,M · e(g, h1)
−s, e(g, h2)

se(g, h3)
sβ) is a ci-

phertext of the Gentry IBE scheme where β = Γhk(c1, c2, c3)
and Γhk is a target collision resistance (TCR) hash func-
tion. The 4th component, e(g, h2)

se(g, h3)
sβ , is used for

integrity check for achieving the CCA security. In the KH-
IBE scheme, c4 is modified to be c4 = e(g, h2)

s (which is ex-
plained later) and a new component τ = f(c5) is added to a
ciphertext where c5 = e(g, h3)

se(g, h4)
sβ , β = Γhk(c1, c2, c3,

c4), and f is a smooth function. The smoothness is in-
troduced for compressing the size of a ciphertext. As in the
Gently IBE, c5 is required for integrity check and for achiev-
ing the CCA security. A decryption key of ID is (rID,i, hID,i)

where hID,i = (hig
−rID,i)1/(α−ID) (i = 1, 2, 3, 4) and α is the

master secret key managed by the key generation center.
Then, a part of decryption key ((rID,3, hID,3), (rID,4, hID,4)) is
regarded as a homomorphic operation key since one who
has the key can run the integrity check of a ciphertext,

where τ = f(e(c1, hID,3h
δ
ID,4)c

rID,3+rID,4δ

2 ) or not, and can
reconstruct a ciphertext after homomorphic operation. In
the meantime, one cannot decrypt the ciphertext since it
requires (rID,1, hID,1). Due to (rID,2, hID,2) and c4, a CCA1
(i.e., lunch-time) security is guaranteed against ones who
have the homomorphic operation key only.
Next, we explain our strategy to construct MR-SHE as

follows. As in the Abdalla et al. construction [2], in our
scheme a keyword is regarded as an identity of the KH-IBE
scheme. In the Abdalla et al. construction a random plain-
text (say R) is encrypted, a decryption key is regarded as a
trapdoor, and the test algorithm returns 1 if the decryption
result of the IBE ciphertext by using the trapdoor is R. So,
R is required to be a part of ciphertext. In the MR-SHE
usage, the corresponding plaintext needs to be hidden. To
overcome this problem, we pointed out the integrity check
can be used for secure searching since this procedure essen-
tially checks whether a ciphertext is valid under a specific
ID or not. This allows us to run the test algorithm with-
out knowing the corresponding plaintext. So, a homomor-
phic operation key of the KH-IBE scheme is regarded as a
trapdoor, and the integrity check equation of the evaluation
algorithm of KH-IBE is employed to be the test algorithm.
Due to this setting, we can encrypt a plaintext M , and M
is not required to be a part of a ciphertext.
Other problem to be solved is that the corresponding iden-

tity ID is required for the evaluation algorithm of the original
KH-IBE scheme. In our usage, if a keyword ω is required
for evaluation, then, no keyword privacy is guaranteed. For
achieving keyword privacy, we add gω to a homomorphic op-
eration key for evaluating ciphertexts without knowing the
corresponding keyword ω. Then the server that runs the
evaluation algorithm can compute gs1g

−sω = (g−1
1 gω)−s by

choosing s
$
← Zp. We emphasize that this modification does

not affect anonymity (and other security requirements). We
will explain the reason later.

3.2 Our Construction
Let G and GT be groups of prime order p, e : G×G→ GT

be a bilinear map,W := Zp be the keyword space,M := GT

be the message space, {Γ = Γhk : G
4 → {0, 1, . . . , p − 1} |

hk ∈ HK} be a TCR hash family, and f : GT → Y is a
smooth function.

In the KH-IBE scheme and the original Gentry IBE scheme,
assume that there is only one key for each identity due to the
security proofs. So, we also assume that keys {(rω,i, hω,i)}i=1,2,3,4

are generated only once, and each algorithm shares these
keys. For example, {(rω,i, hω,i)}i=1,2,3,4 is the decryption
key and a part of this key, {(rω,i, hω,i)}i=3,4, is the homo-
morphic operation key or the trapdoor. So, our scheme is
stateful. For the sake of simplicity, we give algorithms when
these are run for the first time. Our proposed scheme is
given as follows.

MR-SHE.KeyGen(1κ) : Choose hk
$
← HK, g

$
← G, h1, h2, h3,

h4
$
← G, and α

$
← Zp, and compute g1 ← gα. Return

pk = (g, g1, h1, h2, h3, h4, hk, f) and sk = α.

MR-SHE.HomKeyGen(pk, sk, ω) : For i = 3, 4, choose rω,i
$
←

Zp and compute hω,i ← (hig
−rω,i)1/(α−ω), and return

hkω = (gω, (rω,3, hω,3), (rω,4, hω,4)).

MR-SHE.Trapdoor(pk, sk, ω) : For i = 3, 4, choose rω,i
$
←

Zp and compute hω,i ← (hig
−rω,i)1/(α−ω), and return

tω = (gω, (rω,3, hω,3), (rω,4, hω,4)).

MR-SHE.Enc(pk, ω,M) : Choose s
$
← Zp and compute c1 ←

gs1g
−sω, c2 ← e(g, g)s, c3 ← M · e(g, h1)

−s, c4 ←
e(g, h2)

s, δ ← Γhk(c1, c2, c3, c4), and c5 ← e(g, h3)
se(g, h4)

sδ.
Compute τ ← f(c5) and return C = (c1, c2, c3, c4, τ).

MR-SHE.Test(pk, tω, C) : Parse tω as (gω, (rω,3, hω,3), (rω,4,
hω,4)) and C as (c1, c2, c3, c4, τ). Compute δ ← Γhk(c1,

c2, c3, c4). If τ = f(e(c1, hω,3h
δ
ω,4)c

rω,3+rω,4δ

2 ) holds,
then return 1 and 0 otherwise.

MR-SHE.Dec(pk, sk, ω, C) : Parse sk = α and C = (c1, c2, c3,

c4, τ). For i = 1, 2, 3, 4, choose rω,i
$
← Zp and compute

hω,i ← (hig
−rω,i)1/(α−ω). Compute δ ← Γhk(c1, c2, c3, c4),

c′4 ← e(c1, hω,2)c
rω,2

2 , and c5 ← e(c1, hω,3h
δ
ω,4)c

rω,3+rω,4δ

2 .
If c′4 6= c4 or τ 6= f(c5) then return ⊥. Otherwise, re-
turn M ← c3 · e(c1, hω,1)c

rω,1

2 .

MR-SHE.Eval(pk, hkω, C1, C2) : Parse hkω as (gω, (rω,3, hω,3),
(rω,4, hω,4)), C1 as (c1,1, c1,2, c1,3, c1,4, τ1), and C2 as
(c2,1, c2,2, c2,3, c2,4, τ2).

Integrity Check: Compute δ1 ← Γhk(c1,1, c1,2, c1,3,

c1,4), c1,5 = e(c1,1, hω,3h
δ1
ω,4)c

rω,3+rω,4δ1
1,2 , δ2 ← Γhk(c2,1,

c2,2, c2,3, c2,4), and c2,5 = e(c2,1, hω,3h
δ2
ω,4)c

rω,3+rω,4δ2
2,2 .

If τ1 6= f(c1,5) or τ2 6= f(c2,5) then return ⊥.

Homomorphic Operation: Choose s
$
← Zp, and

compute c1 ← c1,1c2,1 · g
s
1g
−sω, c2 ← c1,2c2,2 · e(g, g)

s,
c3 ← c1,3c2,3 · e(g, h1)

−s, c4 ← c1,4c2,4 · e(g, h2)
s, δ ←

Γhk(c1, c2, c3, c4), c5 ← e(c1, hω,3h
δ
ω,4)c

rω,3+rω,4δ

2 , and
τ ← f(c5), and return C = (c1, c2, c3, c4, τ).
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Here, we explain the reason why our modification, adding
gω to a trapdoor and a homomorphic operation key, does not
affect anonymity as follows. In the definition of anonymity,
an adversary chooses challenge keywords ω∗0 and ω∗1 . Even
though, the adversary cannot distinguish whether the chal-
lenge ciphertext is computed by ω∗0 or ω∗1 . That is, the
adversary can compute gω

∗

0 and gω
∗

1 for the first place, and
therefore our modification does not affect anonymity. Nev-
ertheless, one may think that the adversary (or the server)
can check whether a trapdoor (or a homomorphic operation

key) is computed by a keyword ω′ or not by checking gω
′

is
equal to gω or not. This observation is true. However, the
server can do the same thing even if the server is not allowed
to obtain gω since the server is allowed to search ciphertexts.
First, the server chooses a keyword ω′ and computes a ci-
phertext associated with ω′. Second the server runs the test
algorithm by using a trapdoor sent from the receiver. Fi-
nally, the server knows whether the trapdoor is computed by
ω′ or not from the evaluation result. Since we delegate the
search capability to the server, this information leakage is
acceptable, and theoretically impossible to be handled, even
if searchable encryption secure keyword guessing attacks [29,
16] is employed.
One may have a concern if the evaluation algorithm forcibly

performs the homomorphic operation even though C1 :=

(gs1g
−sω, · · · ) and C2 := (gs

′

1 g−s′ω′

, · · · ) are encrypted by
using different keywords ω and ω′, respectively. In this case,
the first component of the ciphertext c1 is represented as

c1 := gs+s′+s′′

1 g−(s+s′′ω−s′ω′) for some randomness s′′ cho-
sen in the evaluation algorithm. Then c1 can be represented

as c1 = gs+s′+s′′

1 g−(s+s′+s′′)ω′′

where ω′′ := −((s + s′)ω +
s′ω′)/(s+s′+s′′) is an unknown keyword. Let a receiver send
a query for ciphertexts associated with ω. Then, it is nat-
ural that the receiver decrypts returned ciphertexts by us-
ing {(rω,i, hω,i)}i=1,2,3,4.

4 Then, since an artificially-mixed
ciphertext is associated with a random keyword ω′′, the de-
cryption algorithm rejects it with overwhelming probability,
and the receiver can recognize whether a mis-operation hap-
pens in the evaluation phase.

3.3 Security Analysis
Security proofs of following theores are given in the Ap-

pendix.

Theorem 3.1 (Consistency). The proposed MR-SHE
scheme is consistent if f is a smooth function and the dis-
crete logarithm assumption holds.

4Since the receiver has the master key α, the receiver may
obtain the corresponding keyword of artificially-mixed ci-
phertexts, and may be able to decrypt them. For preventing
such a decryption, IBE with anonymity against key gener-
ation center (KGC) that has the master key could be em-
ployed [22]. Moreover, IBE with anonymous ciphertext in-
distinguishability [12], which guarantees that no information
of plaintext is revealed from a ciphertext encrypted by an un-
known identity even against KGC, also could be employed.
However, since the receiver requests the homomorphic oper-
ation to the server for ciphertexts associated with a specific
keyword ω, it seems natural to assume that the receiver de-
crypts returned ciphertexts by using {(rω,i, hω,i)}i=1,2,3,4.
Thus, we assume that no receiver tries to decrypt such
artificially-mixed ciphertexts, and employing such IBEs for
enhancing security is left as a future work of this paper.

Theorem 3.2 (Data Privacy). The MR-SHE scheme
is data private if the truncated decision q-ABDHE assump-
tion holds.

Theorem 3.3 (Keyword Privacy). The MR-SHE
scheme is keyword private if the truncated decision q-ABDHE
assumption holds.

One may expect that MR-SHE can be generically con-
structed from anonymous KH-IBE, as in the Abdalla et al.
construction [2]. However, such a construction is not con-
sistent in the sense of provable security. More precisely, in
the proof of the Abdalla et al. construction we can obtain
a decryption key from an adversary of consistency that can
decrypt the challenge ciphertext since a trapdoor is a de-
cryption key. On the other hand, since a trapdoor is just
a part of a decryption key, we do not decrypt the challenge
ciphertext even if the adversary breaks consistency of our
MR-SHE scheme. It seems some other conditions are re-
quired for a generic construction, and it is an interesting
future work of this paper.

4. EVALUATING MULTIPLE CIPHERTEXTS

BY SINGLE EXECUTION
In the MR-SHE.Eval algorithm, two ciphertexts, C1 and

C2, are input. In this section, we discuss how to evaluate
multiple (i.e., more than two) ciphertexts (C1, C2, . . . , CL)
where L is a polynomial of the security parameter, by single
execution as follows. We call this algorithm MR-SHE.mEval.

MR-SHE.mEval(pk, hkω, {Ci}
L
i=1) : Parse hkω as (gω, (rω,3,

hω,3), (rω,4, hω,4)) and Ci as (ci,1, ci,2, ci,3, ci,4, τi) for
i = 1, . . . , L.

Integrity Check: If there exixt i ∈ [1, L] such that
τi 6= f(ci,5), where δi ← Γhk(ci,1, ci,2, ci,3, ci,4) and

ci,5 = e(ci,1, hω,3h
δ1
ω,4)c

rω,3+rω,4δi
i,2 , then return ⊥.

Homomorphic Operation: Choose s
$
← Zp, and

compute

c1 ← gs1g
−sω

L
∏

i=1

ci,1, c2 ← e(g, g)s
L
∏

i=1

ci,2

c3 ← e(g, h1)
−s

L
∏

i=1

ci,3, c4 ← e(g, h2)
s

L
∏

i=1

ci,4

δ ← Γhk(c1, c2, c3, c4), c5 ← e(c1, hω,3h
δ
ω,4)c

rω,3+rω,4δ

2

and return C = (c1, c2, c3, c4, τ) where τ ← f(c5).

Before analyzing the MR-SHE.mEval agorithm, we inves-
tigate the original MR-SHE.Eval algorithm as follows. In
the MR-SHE.Eval algorithm, a new randomness s ∈ Zp is
chosen. Essentially, this randomness is used for comput-
ing a ciphertext (excluding the fifth component) of M = 1,
(gs1g

−sω, e(g, g)s, e(g, h1)
−s, e(g, h2)

s), which does not affect
the result of homomorphic operation. This randomness is in-
dispensable for achieving the source ciphertext hiding prop-
erty of KH-IBE [14]: for a ciphertext C1, C

′
1, C2 where all ci-

phertexts are computed by the same identity and C1 and C′1
are ciphertexts of the same plaintext, the distributions of the
evaluation result of (C1, C2) and (C′1, C2) are identical. This
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property is employed to replace challenge-related cipher-
texts into harmless ciphertexts in the security proof. Let
D = (C0, C1, . . . , Ck) be the dictionary of challenge-related
ciphertexts. Moreover, other dictionary D′ is managed in
the proof where D′ := ((D′1, D

′′
1 ), (D

′
2, D

′′
2 ), . . . , (D

′
k, D

′′
k )).

Each ofD′i andD′′i (i ∈ [1, κ]) is either a ciphertext with fifth
component being consistent or an index in {0, 1, . . . , i− 1}.
(D′i, D

′′
i ) ∈ D

′ means that Ci ∈ D was the reply to the eval-
uation query (D′i, D

′′
i ). Here, if D′i or D

′′
i is an index j, then

it is interpreted as Cj . By using D′ and the source cipher-
text hiding property, each challenge-related ciphertexts are
newly computed.
Due to the proof methodology above, what we need to con-

sider is (1) the source ciphertext hiding property, and (2) the
size of D′. Fortunately, the source ciphertext hiding prop-
erty trivially holds. Moreover, D′ is represented as D′ :=

((D
(1)
1 , D

(2)
1 , . . . , D

(L)
1 ), . . . , (D

(1)
k , D

(2)
k , . . . . , D

(L)
k )) and its

size is still polynomial of the security parameter. That is,
our modification does not affect the security proof. We use
the MR-SHE.mEval algorithm in our implementations.

5. IMPLEMENTATION RESULTS

5.1 Basic Operations
We employ the PBC library [1] and y2 = x3 +x (Type A,

defined on a 512-bit prime field, to provide 80-bit security
level) as the underlying elliptic curve. Our implementation
environment is: CPU: Xeon E5-2660 v3 @ 2.60GHz, gcc
4.9.2, openssl 1.0.2d, and pbc-0.5.14. We give benchmarks
of basic operations in Table 2.

Table 2: Basic Operations

Operations Time (msec)

Scalar mul. in G (unknonw point) 1.351
Scalar mul. in G (fixed point) 0.191
Exp. in GT (unknonw element) 0.114
Exp. in GT (fixed element) 0.023

Pairing computation 0.840

5.2 Storage Size and Communication Overhead
The sizes of a scalar value in Zp, an element in G, an ele-

ment in GT , and a hash value are 20 bytes, 65 bytes (using
element_to_bytes_compressed()), 128 bytes, and 64 bytes,
respectively. Here, we use SHA512 as Γ and f . With these
values, sizes of datas in our scheme can be estimated (Ta-
ble 3).

Table 3: Sizes of Data in Our Scheme

Components Size (bytes)

M |GT | 128
M (Lifted ElGamal) 1 small integer 4–8
C |G|+ 3|GT | + 1 hash value 513
sk |Zp| 20
pk 6|G| 390
hkω (=tω) 2|Zp|+ 3|G| 235

Ciphertext is commonly communicated among participants
and stored in a server, as shown in Figure 1. Therefore its
size affects both communication overhead and storage size.
The size is 513 bytes, relatively large for the 80-bit security

setting5, and might be a bottleneck for a large scale setting.
However, this is a common problem of public key homomor-
phic encryption schemes, and the solution of this problem
is beyond the scope of this paper. We should remark about
the size of homomorphic keys, because they are stored in
a server once they are generated for keywords. The size of
keys is 235Nω bytes, where Nω is the number of keywords.

5.3 Algorithms
We give benchmarks of algorithms in Table 4 where all

algorithms work in the milliseconds order. In our implemen-
tations, all precomputable pairings, e(g, hi) for i = 1, 2, 3, 4,
are computed in advance.

Table 4: Benchmarks of Algorithms

Algorithm Time (msec) Entity

MR-SHE.KeyGen 9.5 Receiver
MR-SHE.HomKeyGen 1.0 Receiver
(MR-SHE.Trapdoor) (1.0) (Receiver)

MR-SHE.Enc 0.5 Data Holder
MR-SHE.Dec 4.7 Receiver
MR-SHE.Test 2.2 Server
MR-SHE.Eval 8.1 Server

If the input ciphertexts of the MR-SHE.Eval algorithm have
been tested by the MR-SHE.Test algorithm before, then the
ciphertexts are guaranteed that these are associated with
the same keyword. So, in this case the integrity check pro-
cedure of the MR-SHE.Eval algorithm can be skipped, and
theMR-SHE.Eval algorithm can start from the homomorphic
operation procedure. Since the integrity check procedure is
run for two ciphertexts in the MR-SHE.Eval algorithm, the
MR-SHE.Eval algorithm can be run approximately 3.7 msec
in this situation.

Next, we give the benchmarks of MR-SHE.mEval algo-
rithm in Fig 2. Here, L = 4, 8, 16, . . . , 8192 (= 213) is the
number of input ciphertexts in the algorithm.
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Figure 2: Benchmarks of MR-SHE.mEval

Due to our implementation result, the running time of the
MR-SHE.mEval algorithm is asymptotically seven-times faster

5This will be larger when Catalano-Fiore transformation is
employed, because, after computing inner product for ℓ-
dimensional vectors, the resultant ciphertext has 2ℓ + 1 ci-
phertext components. See Section 5.4.2 for details.
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than that of (L − 1)-times executions of the MR-SHE.Eval
algorithm.

5.4 Evaluating Inner Products of Encrypted
Vectors

Next, we give our implementation result of inner prod-
ucts of encrypted vectors. We employ the lifted ElGamal-
like additive homomorphic operations as in [13]. Moreover,
for the case that both vectors are encrypted, we employ the
Catalano-Fiore transformation [10] for supporting one mul-
tiplicative homomorphic operation.

5.4.1 Catalano-Fiore Transformation

Briefly, the Catalano-Fiore transformation is explained as
follows. Let HE := (Enc,Dec) is an additive HE (here we
omit the public/secret keys for the sake of simplicity). For
encrypting a plaintext M ∈ M, where M is a plaintext
space and is required to be a ring (i.e., supporting addi-

tions and multiplications), randomly choose b
$
← M, com-

pute a = M − b (here “−” is subtraction over the ring M)
and Enc(b), and the ciphertext is (a,Enc(b)). Let (a1 :=
M1 − b1,Enc(b1)) and (a2 := M2 − b2,Enc(b2)) be two ci-
phertexts. Then, compute a1a2 and Enc(a1a2)+a1Enc(b2)+
a2Enc(b1) = Enc(M1M2 − b1b2). Here “+” is the addi-
tive homomorphic operation of HE . The resultant cipher-
text is (Enc(M1M2−b1b2),Enc(b1),Enc(b2)). For computing
M1M2, the Dec algorithm computes b1 and b2 by decrypting
(Enc(b1),Enc(b2)), computes b1b2, computesM1M2−b1b2 by
decrypting Enc(M1M2− b1b2), and finally computes M1M2.

5.4.2 Employing the Catalano-Fiore Transformation

Let G := e(g, g). For encrypting a plaintext M ∈ Zt,

randomly choose b
$
← ZT for T ≥ t, compute a = M −

b mod T and C = MR-SHE.Enc(pk, ω,Gb), and the cipher-
text is (a, C). Let (a1 := M1−b1, C1) and (a2 := M2−b2, C2)
be two ciphertexts. The multiplication of these ciphertexts is
(MR-SHE.Enc(pk, ω,GM1M2−b1b2 mod T ), C1, C2), whose first
component is computable byMR-SHE.Enc(pk, ω, a1a2)+a1C2+
a2C1. Here “+” means an evaluation by MR-SHE.Eval, and
the multiplication of a scalar a ∈ ZT and a ciphertext C
means a-times evaluations of C. Then we can obtain M1M2

by decrypting each component and computing these discrete
logarithms.
Using the above multiplicative homomorphic operation,

a vector inner product can be computed as follows. Let
x0 := (x0,1, . . . , x0,ℓ) ∈ Z

ℓ
t and x1 := (x1,1, . . . , x1,ℓ) ∈ Z

ℓ
t

be two ℓ-dimensional vectors, and each encrypted vectors
are ((ai,1, Ci,1), . . . , (ai,ℓ, Ci,ℓ)) for i = 0, 1. Then the inner

product of the encrypted vectors is (
∑ℓ

j=1 MR-SHE.Enc(pk, ω,

Gx0,jx1,j−b0,jb1,j mod T ), {C0,j , C1,j}
ℓ
j=1), which contains 2ℓ+

1 components. Decrypting 2ℓ + 1 components and com-
puting these discrete logarithms, the desired inner product
∑ℓ

j=1 x0,jx1,j can be computed.
As a remark, since the above inner product operation is

over ZT , but we want to compute it over Z, the modulus
T must be larger than the result of inner product. For ℓ-
dimensional vector of plaintext space Zt, the inner product
is at most ℓ(t − 1)2, so we set T = ℓ(t − 1)2 + 1. Then
the maximum value of the discrete logarithm in the inner
product computation is maxdl = 3ℓ(T − 1)2 = 3ℓ3(t − 1)4.
For example, the inner product of 1024-dimensional binary
vectors requires T = 1025 and maxdl ≈ 231.6. We employ

Baby-step Giant-step approach for computing the discrete
logarithm, and limit maxdl to 241 for our experiments.

For preventing that one encrypts non-Zt elements, we can
employ the technique of restrictive PKE [30] which guar-
antees that a plaintext of a ciphertext is in Zt by adding
non-interactive zero-knowledge proofs of membership, as in
the attempt of [31]. In our implementation, simply we as-
sume that x0,x1 ∈ Z

ℓ
t. Moreover, due to the Catalano-Fiore

transformation, a ciphertext additionally consists of a0,j and
a1,j respectively. So, we need to slightly modify the security
definition in order to rule out a trivial CCA attacks, where
an adversary is not allowed to issue a decryption query (a,C)
if C ∈ D. To avoid such an undesirable modification, fully
or somewhat homomorphic property is required. We leave
these topics as future works of this paper.

5.4.3 Implementation Result: Both Vectors are En-
crypted

We show the implementation result of our scenario given
in Section 1.5 in Fig 3 where two vectors associated with
a disease name are encrypted by a public key of the re-
searcher, and the server computes its inner product. In
this setting, the hospitals can fully delegate the computa-
tion of ciphertexts of inner products to the server. Here,
we treat the case of binary vectors (t = 2). Let ℓ be the
dimension of vectors (which is the number of total sub-
jects n in the scenario), and the x-axis indicates log2(ℓ).
We show the cases of ℓ = 4, 8, 16, . . . , 8192 = 213, respec-
tively. IP Time means that the running time of computing
a ciphertext of the inner product (

∑ℓ
j=1 MR-SHE.Enc(pk, ω,

Gx0,jx1,j−b0,jb1,j mod T ), {C0,j , C1,j}
ℓ
j=1). We show the ac-

tual IP Time in Fig 3. Dec after IP means that the running
time to decrypt the ciphertext and obtain the inner product
∑ℓ

i=1 x0,ix1,i mod T . We omit the actual running times of
Dec after IP. Del ratio means how much a receiver (the re-
searcher) can delegate the computation of inner products to
the server, i.e., IP Time/(IP Time+Dec after IP).

25.8 

42.2 

75.3 

142.1 

276.1 

552.6 

1101.4 

2204.6 
4424.1 

8882.6 

17857.2 

35911.1 
38.7 

37.3 

36.6 

36.1 

35.9 

35.3 

35.2 

35.1 

35.0 

34.8 

34.4 

33.8 

0

10

20

30

40

50

60

70

80

90

100

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2 4 6 8 10 12 14

IP Time (msec)

Dec after IP (msec)

Del ratio (%)

R
u

n
n

in
g

 T
im

e
(m

se
c) D

e
le

g
a

tio
n

 R
a

tio
 (%

)

Log
2

(Dimension of Vectors)

Figure 3: Benchmarks (Both Vectors are Encrypted)

A ciphertext of inner products can be efficiently computed
by the server even for high-dimensional vectors. For exam-
ple, for 8192-dementional vectors, the server can compute
the ciphertext of the inner product approximately 35 sec-
onds. One drawback of this setting is the decryption costs
since the number of decryptions depends on the vector di-
mension ℓ due to the Catalano-Fiore transformation, and
the delegation ratio is approximately 35%. Nevertheless,
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our scheme seems efficient in practice. For example, for
8192-dementional vectors, the researcher can decrypt the
ciphertext approximately 70 seconds. For relatively small-
dimensional vectors, e.g., ℓ < 26, both computation of an
inner product of ciphertexts and that of a decryption are
within millisecond order.

5.4.4 Implementation Result: One Vector is Encrypted

Next, we give benchmarks of inner products when a vec-
tor x0 is encrypted but the other vector x1 is not encrypted
in Fig 4. In this setting6, the hospital 1 has a role of
the server. The hospital 2 encrypts a vector with a key-
word, and sends the encrypted vectors to the hospital 1.
The hospital 1 checks whether all components of the en-
crypted vector are associated with the same keyword, runs
the MR-SHE.mEval algorithm, and sends the resultant ci-
phertext to the researcher. Mis-operation resistant property
works for preventing that the hospital 1 performs homomor-
phic operations against ciphertexts associated with different
keywords. Though the hospital 1 cannot delegate the com-
putation of ciphertexts of inner products to the server, one
advantage of this setting is that additive homomorphic prop-
erty is enough to compute inner products, and the researcher
needs to run the decryption algorithm only once (which re-
quires approximately 5 msec) regardless of the dimension of
vectors ℓ. So, the delegation ratio becomes higher accord-
ing to increase of ℓ. Moreover, we do not have to modify
the security definition in contrast to the case of employing
the Catalano-Fiore transformation. So, we can say that the
proposed scheme is practically efficient in this setting.
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Figure 4: Benchmarks (One Vector is Encrypted)

5.5 Evaluation for Tested Ciphertexts
The MR-SHE.mEval algorithm also can skip the integrity

check procedure if the input ciphertexts have been tested
since then the ciphertexts are guaranteed that these are as-
sociated with the same keyword. In this section, we give the
ratio of the integrity check procedure in the MR-SHE.mEval

algorithm and in the computation of the ciphertext of inner
products in Fig 5, and show that how much computations
can be skipped for tested ciphertexts. For theMR-SHE.mEval

algorithm, the x-axis indicates log2(L) where L is the num-
ber of input ciphertexts, and for other cases, the x-axis in-

6This setting is employed by Shimizu et al. [31] for evaluat-
ing a distance among chemical compounds.

dicates log2(ℓ) where ℓ is the dimension of vectors. P and C
means the computation of inner products when a vector x0

is encrypted but the other vector x1 is not encrypted. C and
C means that the computation of inner products when both
vectors are encrypted. Even for the case that both vectors
are encrypted, the occupancy of the integrity check proce-
dure is more than 50 %. In other cases, almost computa-
tions are subject to occupancy by integrity check procedure.
So, in the actual situation, where firstly the server searches
ciphertext and secondly the server performs homomorphic
operations against ciphertexts which have been guaranteed
that they are associated with the same keyword, we can skip
the majority of the computations.

80.0 

66.2 

96.5 99.2 

61.6 
55.9 

54.4 

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

Int ratio (mEval) (%)

Int ratio (P and C) (%)

Int ratio (C and C) (%)

99.398.5

Log
2
(The Number of Ciphertexts)

In
te

g
ri

ty
 C

h
e

ck
 R

a
ti

o
 (

%
)

Log
2

(Dimension of Vectors)

Figure 5: Integrity Check Ratio

6. CONCLUSION
In this paper, we attach great importance to a control-

lability of homomorphic operations, and propose MR-SHE.
A keyword is regarded as a tag, and homomorphic oper-
ations are allowed for ciphertexts when these ciphertexts
are associated with the same keyword. In addition to this,
the evaluation algorithm posts alert to homomorphic op-
erations for ciphertexts associated with different keywords.
Even if one intentionally or accidentally performs the homo-
morphic operations against such ciphertexts, the decryption
algorithm rejects it, and the receiver can recognize a mis-
operation happens in the evaluation phase. Moreover, our
scheme supports secure keyword search. We also construct
a MR-SHE scheme by modifying the Gentry-based KH-IBE
scheme. We also give the implementation results of comput-
ing inner products. Naively supporting fully or somewhat
homomorphic property and supporting the verifiability of
the computation result as in verifiable computations in the
MR-SHE context are future works of this paper.
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Appendix

A.1 Omitted Definitions

Here, we introduce definitions of smooth function, the trun-
cated decisional augmented bilinear Diffie-Hellman exponent
(truncated decisional ABDHE) assumption, and KH-IBE.
Moreover, we give the definition of anonymity of KH-IBE.

Definition 7.1 (Smooth Function [14]). Let f : X →
Y be a hash function. We say that f is ǫ-smooth, if the
quantity Smthf := maxy∈Y Pr

x
$
←X

[f(x) = y] is not larger

than ǫ. We say that f is smooth, if it is ǫ-smooth for a
negligible ǫ.

Smoothness is introduced for compressing the size of the ci-
phertext, and a one-way function (OWF) has the property.
In our implementation, we use SHA512 as the smooth func-
tion.
The truncated decisional ABDHE assumption is defined

as follows.

Definition 7.2 (truncated decision q-ABDHE [19]).
Let G and GT be cyclic groups with prime order p, where

〈g〉 = G, and e : G×G→ GT be a bilinear map. Let g′
$
← G,

α
$
← Zp, and Z

$
← GT , and set g′i := g′

(αi)
and gi := g(α

i).
We say that truncated decision q-ABDHE assumption holds,
if for any PPT adversary A, its advantage AdvABDHE

A (κ) de-
fined by AdvABDHE

A (κ) := |Pr[A(g′, g′q+2, g, g1, . . . , gq, e(gq+1,
g′)) = 0]− Pr[A(g′, g′q+2, g, g1, . . . , gq, Z) = 0]| is negligible

Definition 7.3 (Syntax of KH-IBE [14]). LetM be
a message space, ID be an identity space, and ⊙ be a bi-
nary operation overM. A KH-IBE scheme KH-IBE, which
consists of five algorithms (IBE.Setup, IBE.KeyGen, IBE.Enc,
IBE.Dec, IBE.Eval), is defined as follows:

IBE.Setup: A setup algorithm takes a security parameter 1κ

(κ ∈ N) as input, and returns a public parameter params
and a master secret key msk.

IBE.KeyGen: A key generation algorithm takas params, msk,
and an identity ID ∈ ID as input, and returns a decryption
key skd,ID and a homomorphic operation key skh,ID.

IBE.Enc: An encryption algorithm takes params, ID, and a
message M ∈M as input, and returns a ciphertext C.

IBE.Dec: An decryption algorithm takes params, skd,ID and
C as input, and returns M or ⊥.

IBE.Eval: An evaluation algorithm takes params, skh,ID and
two ciphertexts C1 and C2 as input, and returns a ciphertext
C or ⊥.

Let ID ∈ ID be an identity, params be a public parameter
generated by the IBE.Setup, and CID,M be the set of all ci-
phertexts of M ∈M under the public key ID, i.e., CID,M =
{C|∃r ∈ {0, 1}∗ s.t. C = IBE.Enc(params, ID,M ; r)}.

Definition 7.4 (Correctness [14]). We say that a KH-
IBE scheme for homomorphic operation ⊙ is correct if for
all (params,msk)← IBE.Setup(1k), (1) for all ID ∈ ID and
(skd,ID, skh,ID) ← IBE.KeyGen(params,msk, ID), all M ∈
M, and all C ∈ CID,M , it holds that IBE.Dec(params, skd,ID,
C) = M . (2) For all ID ∈ ID and all (skd,ID, skh,ID) ←
IBE.KeyGen(params,msk, ID), all M1,M2 ∈ M, all C1 ∈
CID,M1

and C2 ∈ CID,M2
, it holds that IBE.Eval(params, skh,ID,

C1, C2) ∈ CID,M1⊙M2
.

Next, we introduce the security notion for KH-IBE, which
we call indistinguishability of message under adaptive chosen
ciphertext and identity attacks (KH-ID-CCA).

Definition 7.5 (KH-ID-CCA [14]). We say that a KH-
IBE scheme is KH-ID-CCA secure if for any PPT adversary
A, the advantage

AdvKH-ID-CCA
KH-IBE,A (κ) =

∣

∣Pr[(params,msk)← IBE.Setup(1k);

(ID∗,M∗0 ,M
∗
1 , st)← A

O(find, params);

b
$
← {0, 1}; C∗ ← IBE.Enc(params, ID∗,M∗b );

b′ ← AO(guess, C∗, st) : b = b′]−
1

2

∣

∣

is negligible in κ. O consists of OKH-IBE
revhk (params,msk, ·),

OKH-IBE
dec (·, ·), OKH-IBE

revdk (params,msk, ·), and OKH-IBE
eval (params,

·, ·, ·) which are defined as follows. Let D be a list which is
set as D = {C∗} right after the challenge stage (D is set as
∅ in the find stage).

The homomorphic operation key reveal oracle OKH-IBE
revhk re-

sponds to a query ID ∈ ID with skh,ID where skh,ID is a part
of (skd,ID, skh,ID)← IBE.KeyGen(params,msk, ID).

The decryption oracle OKH-IBE
dec : For a query (ID, C) and

ID = ID∗, this oracle is not available if A has sent ID∗ to
OKH-IBE

revhk (i.e, A has obtained skh,ID∗) and A has obtained
the challenge ciphertext C∗. Otherwise, this oracle responds
to a query C with the result of IBE.Dec(skd,ID, C) if C 6∈ D
or ID 6= ID∗, or returns ⊥ if C ∈ D and ID = ID∗.

The key generation oracle OKH-IBE
revdk responds to a query ID ∈

ID with skd,ID where skd,ID is the result of (skd,ID, skh,ID)
← IBE.KeyGen(params,msk, ID). A is not allowed to query
ID∗ to the oracle.

The evaluation oracle OKH-IBE
eval responds to a query (ID, C1, C2)

with the result of C ← IBE.Eval(skh,ID, C1, C2). In addition,
in the case ID = ID∗, if C 6= ⊥ and either C1 ∈ D or C2 ∈ D,
then the oracle updates the list by D ← D ∪ {C}.

Next, we define the anonymity of KH-IBE (KH-ANON-CCA).
The security proof of KH-IBE and that of the Gentry IBE
scheme are essentially the same, except the evaluation or-
acle. In the security model of KH-IBE (KH-IBE-CCA),
an adversary is allowed to issue evaluation queries even for
the challenge ciphertext, and such challenge-related cipher-
texts are not allowed to be inputs of the decryption oracle.
Though these evaluation queries do not contradict the KH-
IBE-CCA security of KH-IBE, they contradict anonymity.
That is, an adversary can always win the game if the adver-
sary is allowed to issue a ciphertext of the challenge identity
(either ID∗0 or ID∗1) since the evaluation oracle cannot help
returning ⊥ if the ciphertext is not computed by ID∗b where
b ∈ {0, 1} is the challenge bit. So, we need to restrict such a
query as follows: the adversary sends a plaintext M and the
challenge-related ciphertext when the adversary would like
to obtain the evaluation result of the challenge-related ci-
phertext, and the oracle encrypts M by using ID∗b , evaluates
these ciphertexts, and returns the result to the adversary.
Moreover, due to the same reason, the adversary is not al-
lowed to obtain homomorphic operation keys of ID∗0 and ID∗1.
Under these restrictions, the Gentry-based KH-IBE scheme
is anonymous.
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Definition 7.6 (KH-ANON-CCA). We say that a KH-
IBE scheme is KH-ANON-CCA secure if for any PPT ad-
versary A, the advantage

AdvKH-ANON-CCA
KH-IBE,A (κ) =

∣

∣Pr[(params,msk)← IBE.Setup(1κ);

(M∗, ID∗0, ID
∗
1, st)← A

O(find, params);

b
$
← {0, 1}; C∗ ← IBE.Enc(params, ID∗b ,M

∗);

b′ ← AO(guess, C∗, st) : b = b′]−
1

2

∣

∣

is negligible in κ, where O consists of OKH-IBE
revhk (params,msk,

·), OKH-IBE
dec (·, ·), OKH-IBE

revdk (params,msk, ·), OKH-IBE
eval (params,

·, ·, ·), and O′
KH-IBE
eval (params, ·, ·, ·) which are defined as fol-

lows. Let D be a list which is set as D = {C∗} right after
the challenge stage (D is set as ∅ in the find stage).

The homomorphic operation key reveal oracle OKH-IBE
revhk re-

sponds to a query ID ∈ ID \ {ID∗0, ID
∗
1} with skh,ID where

skh,ID is a part of (skd,ID, skh,ID) ← IBE.KeyGen(params,
msk, ID).

The decryption oracle OKH-IBE
dec : For a query (ID, C) this ora-

cle responds to a query C with the result of IBE.Dec(skd,ID, C).
We remark that C ∈ D is allowed to be an input of this or-
acle. In this case, the input identity is not required.

The key generation oracle OKH-IBE
revdk responds to a query ID ∈

ID\{ID∗0, ID
∗
1} with skd,ID where skd,ID is a part of (skd,ID, skh,ID)

← IBE.KeyGen(params,msk, ID).

The evaluation oracle OKH-IBE
eval responds to a query (ID, C1, C2)

where C1, C2 6∈ D, with the result of C ← IBE.Eval(skh,ID,
C1, C2).

The evaluation oracle for the challenge-related ciphertext O′
KH-IBE
eval

responds to a query (M,C), where M ∈ M and C ∈ D,
with the result of C′′ ← IBE.Eval(skh,ID∗

b
, C, C′) where C′ =

IBE.Enc(params, ID∗b ,M) and skh,ID∗

b
← is generated by ex-

ecuting IBE.KeyGen(params,msk, ID∗b). This oracle updates
the list by D ← D ∪ {C′′}. We remark ID∗b has been deter-
mined in the experiment if D 6= ⊥.

A.2 Proofs of Theorems

First, we give the security proof of Theorem 3.1 (Consis-
tency). For the proof, we assume that the discrete logarithm
problem over G is hard. That is, given (g, h,G,GT , e, p)

where g, h
$
← G, it is computationally infeasible to compute

logg h ∈ Zp.

Proof : If either ω = α or ω′ = α, then we can immedi-
ately construct an algorithm that breaks the discrete log-
arithm problem (g, g1 := gα). From now on, we assume
that ω, ω′ 6= α. Let C = (c1, c2, c3, c4, τ) be a ciphertext
generated in the experiment, and for δ ← Γhk(c1, c2, c3, c4),
c5 ← e(g, h3)

se(g, h4)
sδ be a part of ciphertext such that τ =

f(c5) holds, where s is a random number which is used for

computing (c1, c2, c3, c4). Let c
′
5 := e(c1, hω′,3h

δ
ω′,4)c

rω′,3+rω′,4δ

2 .
In the experiment, MR-SHE.Test(pk, tω′ , C) = 1 means ei-
ther (1) c5 = c′5 or (2) c5 6= c′5 and τ = f(c′5).

Case (1):

e(c1, hω′,3h
δ
ω′,4)c

rω′,3+rω′,4δ

2

=e(g, h3)
α−ω

α−ω′
s
e(g, h4)

α−ω

α−ω′
sδ
e(g, g)

s(rω′,3+δrω′,4)(1−
α−ω

α−ω′
)

holds. Here,

c5 =e(g, h3)
se(g, h4)

sδ

=e(g, h3)
α−ω

α−ω′
s
e(g, h4)

α−ω

α−ω′
sδ
e(g, g)

s(rω′,3+δrω′,4)(1−
α−ω

α−ω′
)

holds. Set A := α−ω
α−ω′ . Then,

s logg h3 + sδ logg h4

=As logg h3 +Asδ logg h4 + s(rω′,3 + δrω′,4)(1−A)

holds. From this equation, we obtain

s(1−A)(logg h3 + δ logg h4 − rω′,3 − δrω′,4) = 0

Since ω 6= ω′, 1 − A = 1 − α−ω
α−ω′ 6= 0. Here, we can assume

that s 6= 0 since s
$
← Zp. Assume logg h3 + δ logg h4 −

rω′,3 − δrω′,4 = 0 holds. Then, since logg h3 = −δ logg h4 +
rω′,3 + δrω′,4 we can construct an algorithm that breaks
the discrete logarithm problem as follows. Let (g, h3) be
an instance of the discrete logarithm problem. Then, the
algorithm setups the scheme with one exception that choose

u
$
← Zp and set h4 = gu. Then, the algorithm can compute

logg h3 = −δu+ rω′,3 + δrω′,4. That is, the probability that
the case (1) happens is negligible.

Case (2): The probability that the case (2) happens is
negligible since f is a smooth function.

As a remark, tω′ is honestly generated in the definition of
consistency. Thus, the probability thatMR-SHE.Test(pk, tω′ ,
C) = 1 for a ciphertext C associated with ω where ω 6= ω′ is
negligible. In other word, there exist a trapdoor that breaks
consistency, where logg h3 + δ logg h4 − rω′,3 − δrω′,4 = 0
holds. Since we consider computational security, this does
not contradict consistency.

Next, we give the security proofs of Theorem 3.2 (Data
privacy) and 3.3 (Keyword privacy). Intuitively, Data pri-
vacy directly holds since the underlying KH-IBE scheme is
KH-ID-CCA secure, and the definition of data privacy and
that of KH-ID-CCA is essentially the same. Similarly, key-
word privacy also directly holds if the underlying KH-IBE
scheme is anonymous. Since the KH-IBE scheme is KH-
ID-CCA and KH-ANON-CCA secure under the truncated
decision q-ABDHE (augmented bilinear Diffie-Hellman ex-
ponent) assumption [19], our scheme also relies on the same
assumption. We prove two lemmas where, for data pri-
vacy and keyword privacy, MR-SHE can be constructed from
anonymous KH-IBE in a (almost) generic way. That is, we
need to confirm that OMR-SHE

trapdoor can be simulated by OKH-IBE
revhk .

In our scheme, for a OMR-SHE
trapdoor query ω, OKH-IBE

revhk returns
skh,ω = ((rω,3, hω,3), (rω,4, hω,4)). After obtaining skh,ω,
the simulator can compute tω such that tω = (gω, skh,ω).
Thus, in the following proofs, we assume that OMR-SHE

trapdoor can

be simulated by OKH-IBE
revhk .

Lemma 7.1. If the underlying KH-IBE scheme is KH-
ID-CCA secure, then the MR-SHE scheme is data private.

Proof. Let A be an adversary of the data privacy of MR-
SHE. We construct an algorithm B that breaks KH-ID-CCA
security of KH-IBE as follows. Let C be the challenger of
the KH-ID-CCA game of KH-IBE.
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First, C runs (params,msk) ← IBE.Setup(1k), and gives
params to B, and B forwards params to A as pk.
WhenA issuesOMR-SHE

revhk , OMR-SHE
dec , OMR-SHE

trapdor , andOMR-SHE
eval

queries, B simulates the oracles by using OKH-IBE
revhk , OKH-IBE

dec ,
OKH-IBE

revhk , and OKH-IBE
eval oracles of KH-IBE, respectively.

For aOMR-SHE
test query (ω,C), if ω has been input toOMR-SHE

trapdoor ,
then B directly returns the result of MR-SHE.Test(pk, tω, C).
Otherwise, if ω is not input OMR-SHE

trapdoor and if the challenge
keyword ω∗ is not given by A, then B should not obtain the
corresponding tω since ω might be ω∗. Thus, B computes
a ciphertext C′ ← IBE.Enc(params, ω,M) for a random M ,
and sends (ω,C,C′) to C as a OKH-IBE

dec query. If the response
is⊥, then C is not associated with ω. Thus, B returns 0 toA.
Otherwise, B returns 1 to A. If B can recognize ω 6= ω∗, i.e.,
after the challenge kerword is given by A, then B can simply
send ω as a OKH-IBE

revhk query, obtains skh,ω, computes tω from
skh,ω, and returns the result of MR-SHE.Test(pk, tω, C).
A sends (ω∗,M∗0 ,M

∗
1 ) to B as the challenge of MR-SHE.

B forwards (ω∗,M∗0 ,M
∗
1 ) to C as the challenge of KH-IBE,

obtains the challenge ciphertext C∗, and returns C∗ to A.
B responds queries issued by A as in the previous phase.

Finally, A outputs a bit b′. B outputs b′, and can break the
KH-ID-CCA security with the same advantage of breaking
the data privacy.

Lemma 7.2. If the underlying KH-IBE scheme is KH-
ANON-CCA secure, then the MR-SHE scheme is keyword
private.

Proof. Let A be an adversary of the keyword privacy
of MR-SHE. We construct an algorithm B that breaks KH-
ANON-CCA security of KH-IBE as follows. Let C be the
challenger of the KH-ANON-CCA game of KH-IBE.
First, C runs (params,msk) ← IBE.Setup(1k), and gives

params to B, and B forwards params to A as pk.
When A issues OMR-SHE

revhk , OMR-SHE
dec , OMR-SHE

trapdor , OMR-SHE
eval ,

and O′
MR-SHE
eval queries, B simulates the oracles by using

OKH-IBE
revhk , OKH-IBE

dec , OKH-IBE
revhk , OKH-IBE

eval , and O′
KH-IBE
eval ora-

cles of KH-IBE, respectively.
For aOMR-SHE

test query (ω,C), if ω has been input toOMR-SHE
trapdoor ,

then B directly returns the result of MR-SHE.Test(pk, tω, C).
Otherwise, if ω is not input OMR-SHE

trapdoor and if the challenge
keyword ω∗ is not given by A, then B should not obtain the
corresponding tω since ω might be ω∗. Thus, B computes
a ciphertext C′ ← IBE.Enc(params, ω,M) for a random M ,
and sends (ω,C,C′) to C as a OKH-IBE

dec query. If the response
is⊥, then C is not associated with ω. Thus, B returns 0 toA.
Otherwise, B returns 1 to A. If B can recognize ω 6= ω∗, i.e.,
after the challenge kerword is given by A, then B can simply
send ω as a OKH-IBE

revhk query, obtains skh,ω, computes tω from
skh,ω, and returns the result of MR-SHE.Test(pk, tω, C).
A sends (ω∗0 , ω

∗
1 ,M

∗) to B as the challenge of MR-SHE.
B forwards (ω∗0 , ω

∗
1 ,M

∗) to C as the challenge of KH-IBE,
obtains the challenge ciphertext C∗, and returns C∗ to A.
B responds queries issued by A as in the previous phase.

Finally, A outputs a bit b′. B outputs b′, and can break
the KH-ANON-CCA security with the same advantage of
breaking the keyword privacy.

229




