
A Framework for Decentralized Access Control

Meenakshi
Balasubramanian

∗
Abhishek Bhatnagar

Namit Chaturvedi Atish Datta Chowdhury Arul Ganesh
Research and Technology Group
Honeywell Technology Solutions

Bangalore - 560076
India

ABSTRACT
We present a framework for decentralized authorization for
physical access control, using smart cards, where access to
individual rooms is guarded by context-dependent policies
that are dynamically evaluated. Policies are specified using a
logical language parameterized by events. A policy analyzer
converts policy specifications into equivalent executable au-
tomata and also generates initialization information about
the contexts used in these policies. While the automata
are stored in users’ smart cards, context initialization in-
formation is disseminated in the system. We also provide
a context modeling mechanism that supports construction
and propagation of contexts in the system. Upon an access
request, user automata are executed at the point of access
in the presence of current context information. This results
in an allow/deny decision. The benefit of this approach lies
in resolving authorizations in a decentralized manner in sit-
uations where the solution needs to scale with increasing
number of users.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Sys-
tems—Embedded controllers; F.4.3 [Theory of Compu-

tation]: Formal Languages—Classes defined by grammars
or automata; F.4.1 [Mathematical Logic]: Model The-
ory; C.3 [Special-Purpose and Application-Based Sys-

tems]: Smartcards

General Terms
Design, Security

Keywords
Authorization, decentralization, physical access control

∗Author names appear in alphabetical order. All email ad-
dresses are FirstName.LastName@honeywell.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’07, March 20-22, 2007, Singapore.
Copyright 2007 ACM 1-59593-574-6/07/0003 ...$5.00.

1. INTRODUCTION
The domain of access control involves solutions to the

problems of authorization, validation, and authentication.
The goal of authorization is to specify and evaluate a set of
policies that control the access of users to resources, result-
ing in grant or denial of access. Validation usually refers to
securely verifying the authorized privileges, and the goal of
authentication is to prove the identity that a user claims. In
this paper, we present an framework for decentralized autho-
rization for physical access control, using smart cards, where
access to resources is guarded by context-dependent policies
that are dynamically evaluated. In this context, resources
are rooms, which can be defined as enclosures guarded by
entrances or doors. In traditional implementations1 of phys-
ical access control, the doors are equipped with card readers,
which are either connected to a central controller, or a lo-
cally cached image of the central controller. When a user
presents the access card to the reader, the latter communi-
cates the card information to the controller and waits for a
reply instructing whether or not to allow access.

In these traditional systems, access cards and card read-
ers are passive devices without any processing power of their
own. The central controller, on the other hand, is a well de-
signed sophisticated device with fail-over capabilities, and
advanced hardware and algorithms to enable fast decision
making. Policies dictating access are predominantly speci-
fied using Access Control Lists (ACLs) that describe static
policies, e.g. “user X is not allowed in room R”. The deci-
sion making process of the central controller includes look-
up of these lists to determine whether or not a user has
privileges to enter a room.

These static policies are in contrast with context depen-
dent policies where the conditions determining access change
dynamically, and must be evaluated at the time of request.
For example, a policy may prohibit a user from entering
into the lobby if all the rooms accessible from the lobby have
reached their maximum limits. In such a situation, a central
controller will have to collate information from each of the
rooms before making a decision about access to the lobby.
It is envisioned that physical access control in buildings, fa-
cilities, and townships of the future will have a significant
reliance on context dependent policies. Therefore, the cen-
tral controller will be burdened with information from all
over the facility, and each piece of information may possibly

1As exemplified in several current commercial physical ac-
cess control solutions.

93

context-

based

policies

Topology of

facility

Automaton

(policy + state)

System

Context

Decision

Context modeling mechanism

(context events)

retrieval of log

System

configuration

Card configuration

Generic

interconnect

Wired/ Wireless

Connection

user-carried devices

(e.g. smart cards)

user movement

H

Controller
 Controller

Offline analyzer

Figure 1: Decentralized access control framework: Overview

contribute toward constructing many kinds of contexts for
different users. In the centralized systems of today, particu-
lar solutions enabling dynamic context handling are built in
as instances of specific programs or triggers on the central
controller, and such solutions will not scale with increasing
number of users in the facility.

State of the art physical access control solutions are mov-
ing toward using existing general purpose building networks
for communications between various card readers and the
central controller. Reasons of flexibility and ease of installa-
tion will keep driving this trend. A centralized solution for
context dependent authorization does not suit well with a
generic interconnect. This unsuitability is due to the inher-
ent dependency on the central controller for every decision.

In this paper we present a decentralized framework for
physical access control based on dynamic authorization that
addresses the issues mentioned above. In our framework,
we replace the central controller with a network of smaller
controllers that maintain system information (context) and
introduce per-user active devices with processing power and
memory. Smart cards, Java enabled smart buttons, SIM
cards fit precisely in our definition of small, portable, and
intelligent user devices. Policies are specified in a formal
language, and are analyzed and finally stored as executable
automata in smart cards carried by users. Context infor-
mation is dynamically maintained amongst the controllers
using a context modeling mechanism. Upon access request
a controller and the smart card come together to execute
the policies stored in the user’s card, and decide whether to
grant or deny access based on the context information.

We provide an overview of our framework for decentral-
ized access control in the next section. Section 3 provides a
study of related works. Section 4 gives details on the formal
logical language used to specify the policies, a model for their
execution, and our context modeling mechanism. Section 5
summarizes our approach toward realizing this framework.

We then look at the benefits of our approach, followed by
our conclusion and identification of areas for future efforts.

2. DECENTRALIZED ACCESS CONTROL
FRAMEWORK - OVERVIEW

The proposed system framework for physical access con-
trol is shown in Figure 1. We refer to it as Decentralized
Access Control (DAC) framework. The components of this
framework are:

• User-carried devices: These are active devices with
built in computational capabilities and memories. Ev-
ery user carries one such device and uses it to make
access requests. In this paper we use smart cards [9]
as representatives of these devices.

• Room: A room is an enclosed space in a facility, access
to which is obtained through doors.

• Door: A door refers to an element from the set of
physical entry/exit points to rooms, which are access
control enabled, and hence act as access agents for
rooms. Each door has a reader on either side, and an
actuator responsible for opening the door.

• Reader: This is a device installed on a door, which
can read from and write to the smart cards. Users
request access by either bringing their smart cards in
close vicinity of the readers, or by swiping or inserting
them in appropriate reader slots.

• Controller: Readers of each door are connected to mi-
crocontroller based devices, called controllers. Readers
from many doors may be connected to the same con-
troller. A controller is expected to be connected over
a network with other controllers, and have reasonable

94

processing capabilities and memory. The functionality
of a reader and a controller may also be incorporated
into one integrated unit. In such a case, a door will
have a unit each at both of its sides.

• Interconnect: Controllers are connected to each other
through a network installation that is referred to as the
interconnect, e.g. the IP network of a facility. It may
include wired or wireless communication components.
Devices like special purpose servers, required for log
keeping etc, are also connected with the interconnect.

The smart cards carry information about all access privileges
of the corresponding user. The controllers, in collaboration
or isolation, maintain information about the system context.
Upon an access request, a decision is taken locally by the
virtue of interaction of smart card and a controller. The
interconnect is used to transfer system-level context infor-
mation among pertinent set of controllers.

The topology of the facility is described in terms of rooms
and their neighborhood relationships. Consider the example
facility in Figure 2, which comprises of five rooms, viz. A,
B, C, D, and outside of the facility - W. The topology of
this facility is given in Table 1. Each door in the facility has
readers on either sides that are connected to controllers. By
the virtue of these connections a controller gets associated
with the rooms on either side of the doors it is connected
with. The controller then becomes a participant in main-
taining context information for these rooms. For now we
assume that all of the controllers are connected with each
other over a network. In this figure we show that both the
readers of every door are connected to a controller, however
in practice these connections can be arbitrary with multiple
readers connected to one controller.

C3

W

P

W

P

W

P

W

P

W

P

W

P

W

P

W

P

W

P

W

P

W

P

W

P

A

B
 C
D

W

Door 3
Door 4
Door 2

Door 1

Door 6
Door 5

Reader

Asset center

W

P

C5

C1

C2

C6

C4

Controller

Figure 2: Example facility layout

In addition to the door controllers, the facility may have
other controllers, PCs or devices that participate in gener-
ating system context pertinent to various users. For exam-
ple, Room D has an asset center that contributes an “asset-
issued” and an “asset-returned” context to smart cards ev-
ery time the user issues or returns the asset, respectively.

A facility administrator divides all the users into differ-
ent classes or roles, and defines privileges for each of these
roles. This requires defining the contexts pertinent to vari-
ous roles. These contexts are then used to construct access

Input topology - List of rooms

rooms : A,B,C,D,W;

Input topology - Neighborhood

neighbor A: C,B,D,W;

neighbor B: A,D;

neighbor C: A,D;

neighbor D: A,B,C;

neighbor W: A;

Table 1: Facility topology specification

policies corresponding to each of these roles. Contexts are
defined in terms of events. An event is an occurrence or
a happening of significance to one or more policies, and is
represented in our framework as an identifier label. The
set of events includes user actions, application actions, and
context events. User actions include user behaviors like re-
quest for services; application actions include grant/denial
of services; context events are constructed with the help of
application actions and/or user actions and/or other context
events. For every event representing some context, there is
a dual event that represents the absence of the same con-
text. Hence, for context events, either the event or its dual
is always true. Henceforth, we use the terms context and
context event interchangeably. In our notation, the dual of
a context Z is represented by Zd. Behavior of the system is
modeled as a sequence of events, in the order in which they
occur when the access control application is being executed.

Policies are specified in a formal logical language param-
eterized by events. The offline analyzer module, as shown
in Figure 1, checks for inconsistencies amongst policies, and
converts the specification to an executable format. We use
conventional finite state automaton [17] as the executable
format of choice. The automaton for each role is stored in
the smart card of the user belonging to that role. Smart
cards also act as a storage for events specific to an individ-
ual. For example, user actions like issuance and return of
assets can be recorded on the user’s card as user history.

Given the facility topology, event definitions and the poli-
cies that use these events, the offline analyzer also creates
configuration information for each of the controllers for a)
detecting and/or composing the events, and b) communicat-
ing them to other controllers. This is done using a context
modeling mechanism. The controllers are programmed with
this information, which enables them to co-operate in main-
taining local system contexts. This mechanism ensures that
the context information in the system is up-to-date. When-
ever user cards are presented at a reader connected with a
controller, this mechanism also instructs the controller to
provide the cards with context events that are pertinent to
the user-role. Policies enforce access depending on these
events. For example, we could have a policy which states
that a requesting user may only access the room if an es-
cort has entered it through the same door no longer than 7
seconds ago. In such a case, time and point of entry of the
escort contribute to composition of an event that decides
whether the user will be allowed or denied.

The controllers can buffer and forward their local audit
trail of request and responses at a central server for log keep-
ing. This communication may be given a lower priority as
compared to that for event exchange, hence it will not put
any undue constraint on maintaining the context.

95

We would like to emphasize here that the aim of our
framework is to support policies whose evaluations depend
upon dynamically varying context. Policies themselves are
not dynamic. Users may be expected to re-program their
cards at an agreed upon granularity so that they can reflect
any change in policies. However, this exercise will only be
required if the changes pertain to user specific history con-
text. This is because individual user history is maintained
on user cards. By virtue of segregating user and system con-
texts, we can maintain system contexts within the network
of controllers. System context definitions may be changed
at any time to reflect a change in policy intent without dis-
turbing the cards.

3. RELATED WORK
Bauer et al [4] also use a formal logical language to specify

access control policies and present a distributed algorithm
that assembles a proof from various pieces of proofs pro-
vided by entities involved in their physical access control
system. Each user carried “smart phone” is equipped with
a theorem prover, which assists in distributed proof gen-
eration for authorization decisions. The distributed proof
generation algorithm is guaranteed to terminate whenever a
centralized prover system also terminates. Our system, on
the other hand, maintains system context in a collaborative
manner, and authorization is done locally. The authoriza-
tion mechanism is based on finite state machines, and is
always guaranteed to terminate in constant time.

Abadi et al [2] work with a formal modal logic to spec-
ify access control policies. While the language is tuned to-
ward specifying distributed policies, the paper does not pro-
vide a decentralized execution mechanism. The ADAM ar-
chitecture [24] presents a distributed execution mechanism
defining user agents and authorization agents and highlights
when and how a response to an access request is arrived at.
However, their architecture does not focus on a formal model
to specify or execute policies.

Abadi presents a partial survey of logic based policy spec-
ification and evaluation in access control [1]. Almost all
the works cited therein follow proof theoretic approaches to
reason about authorization. A comprehensive survey of the
various access control policies, models and mechanisms is
also provided by Samarati and di Vimercati [23]. Bertino
et al [6] emphasize the need for dynamic authorizations in a
collaborative environment. They use workflow management
system as an example to underline the need for a formal
model to specify constraints on policies. This includes dy-
namic constraints i.e. those that cannot be verified from the
definition of the workflow, other than at runtime. Jajodia
et al [15] extend this approach in a more generic and flexi-
ble way. They introduce a formal mechanism of expressing
authorization specifications which is rich enough to incorpo-
rate any application-specific requirements within the fold of
the authorization framework. In another work, Bertino et
al [5] provide a language and a model to capture dynamism
in terms of time. We can represent time as context in our
framework.

These approaches concentrate more on access control as
modeled on computer systems in general and not on physical
access control in buildings in particular. Consequently, their
focus is on languages that provide flexibility in specifying
role based policies, and on guaranteeing unambiguous eval-
uation (decision) with feasible bounds on the run time and

not on decentralized implementation. The functional archi-
tecture of many of these approaches assumes a centralized
authorization resolver that would decide on a grant/denial,
given an access request, a history of the system and the
authorization specification policies. We develop a new pol-
icy language based on MSO logic, which gives us three ad-
vantages. First is that MSO provides a formal groundwork
to support powerful policies, and can uniformly accommo-
date the changing nature of policy requirements. Secondly,
MSO representation make it easy to translate policies into
finite state automata for deployment on small devices. And
lastly, many previous formal approaches exploit proof the-
oretic mechanisms. Subsequently, a theorem proving algo-
rithm is not guaranteed to terminate whereas an automaton
based policy evaluation terminates in constant time.

Context dependent physical access control can be viewed
as a special case of a wider class of ubiquitous computing
applications, which are deployed in smart spaces. Such ap-
plications are characterized by interactions of smart devices
[22, 8]. These devices are classified as clients and sentries,
referring to an arrangement where users carry small, intel-
ligent, and mobile client devices that seek certain services
from a network of stationary sentry nodes [3]. Their inter-
actions are governed by continuously evolving contexts.

The Context Toolkit by Dey et al [10] is one of the initial
works in formalizing context and its use in context-aware
applications. Dey et al present a conceptual framework for
prototyping of context-aware applications that provides con-
siderable understanding of functional abstractions toward
developing a software architecture. They provide a founda-
tion for a general purpose support for various context depen-
dent applications running in tandem, and possibly sharing
resources. Our approach, however, is tuned to the domain
of physical access control.

Ranganathan and Campbell’s first order logic based con-
text modeling [21] deploys ontology based specification of
context predicates such that “it allows different components
in the system to have a common understanding of the se-
mantics of different contexts.” We also incorporate logic pro-
gramming techniques to reason about contexts tuned to our
application. In our framework, the application behavior is
described in terms of pre-defined context events. Each event
is owned by a unique controller, which hosts the logic pro-
gram that reasons about the context. The semantics of an
(application, user, or context) event is useful and meaning-
ful only to the owner of the event. Other controllers can
only subscribe to the values of these events, which may be
True or False signifying the occurrence or absence of the
corresponding event.

4. POLICY SPECIFICATION LANGUAGE,
EXECUTION MODEL, AND CONTEXT
MODELING

The Decentralized Access Control (DAC) framework in-
cludes a language to define complex policies with features to
handle various parameters of dynamism, like user’s history
of movement, context induced by events in various rooms of
the facility etc. Typical examples of context-based policies
are:

• Room count: Certain users cannot enter a room if the
number of users reaches a certain value.

96

• Connected count: If the number of users in a set of
rooms have collectively reached a stipulated number,
access to certain other rooms or specific areas (e.g.
lobby) should be denied, thereby ensuring regulated
movement.

• Supervisor required: A user may enter the room only
if a supervisor or a security guard is already present.

• Escorted access: A user may enter a room (through a
door) only if a designated escort has entered the room
(through the same door) no longer than, say 7 seconds
ago.

• Interlocking of doors: Certain rooms can only be ac-
cessed if a surrounding protective space is first closed.

• Anti-passback: Users who don’t have a record of mak-
ing a legal exit from a room will be denied next time
they try to access the same and/or any other room in
the facility.

• Guard tour: At specified intervals during the days, a
guard is required to tour a facility. He/she must visit
the rooms in a specific order, and must not spend any
longer than specified amounts of time in each.

4.1 Formal logical language
We use Monadic Second Order (MSO) Logic [26] param-

eterized by events of the system as the formal language for
policies. Syntax of the logic is built over a set of first and sec-
ond order variables, which are used to quantify over events
of the system. First order variables quantify over individual
events, while second order variables are used to quantify over
a set of events. We represent a first order variable in lower
case, e.g. x, and a second order variable in upper case, e.g.
X. Policies are formulae of the logic, and are built on top of
certain elementary relations over these first and second or-
der variables using Boolean operations and quantification.
Relations talk about how a variable represents a particular
event and about the order of occurrence of events.

4.1.1 Syntax
The set of events is denoted by Σ, and may include:

1. Labels for the user events such as:

• request -entry -A, allow-entry -A, enumerated for
every room A specified in the topology.

2. Labels for context events, as defined by the adminis-
trator, of the form:

• Amax representing the event corresponding to the
occupancy of room A reaching its maximum al-
lowable value.

• Asuper representing the event that a supervisor is
present in room A.

• Aclosed representing the event that all doors of
room A are closed.

Note that the set of context events will be exhaustively
defined by the administrator to represent all the conditions
required by the policies. For each of the context events, their
duals will also get defined, referring to the events represent-
ing the absence of the respective events. E.g Ad

max is the

dual event of Amax, and represents the event corresponding
to occupancy in room A being less than the maximum.

Events of the system are used to construct atomic formu-
lae. The atomic formulae are given by:

• For each event e ∈ Σ, we have a predicate e(x) which
represents the fact that the label of the event repre-
sented by the variable x is e.

• For the first order variables x, y the predicate x ≤ y
represents the fact that the event corresponding to y
occurs after the event corresponding to x or x refers to
the same event as y in a computation of the system.

• For first order variables x, y, the predicate x < y repre-
sents the fact that the event corresponding to y occurs
immediately after the event corresponding to x in a
computation of the system.

• For a first order variable x and a second order variable
X, the atomic formula x ∈ X represents the fact that
the event corresponding to the variable x belongs to
the set of events corresponding to X.

Formulae depicting policies are built from the atomic for-
mulae using the following connectives:

• Boolean operators representing negation and disjunc-
tion are ¬ and ∨ respectively. The operators for con-
junction (∧), implication (⇒), and equivalence (≡) can
be derived from negation and disjunction. Note that
< predicate above can be expressed using ≤ and ¬.

• The operators for all (∀) and there exists (∃) will be
used to quantify over first and second order variables.

To summarize, the syntax of the policy language is MSO
logic tuned for physical access control. Each access control
policy is defined as a formula using the above syntax.

4.1.2 Semantics
Semantics of policies will be defined using words over the

alphabet Σ. Words are finite sequences of events from Σ that
represent behaviors. Consider a formula ϕ. ϕ is interpreted
over a word w as follows: An interpretation of first and
second order variables is a function I that assigns a letter of
Σ to each first order variable and a finite set of letters of Σ
to each second order variable. These letters occur as labels
of positions in a word when a formula (policy) is interpreted
over it. For a formula ϕ, let Vϕ denote the set of variables
that occur free in ϕ, i.e. they are not in the scope of any
quantifier in ϕ. Interpretation is then nothing but a function
I : Vϕ → Σ.

The notion of when a word w satisfies a formula ϕ, un-
der an interpretation I is given by w |=I ϕ and is defined
inductively as follows:

• w |=I e(x) iff I(x) = e.

• w |=I x ≤ y iff either I(x) = I(y) or I(x) occurs before
I(y) in the word w.

• w |=I x ∈ X iff I(x) ∈ I(X).

• w |=I ¬ϕ iff it is not the case that w |=I ϕ.

• w |=I ϕ1 ∨ ϕ2 iff w |=I ϕ1 or w |=I ϕ2.

97

∀x,∀y (x ≤ y ∧ Cd
max(x) ∧ request -entry -C (y) ∧ ¬∃z (x ≤ z ∧ z ≤ y ∧ Cmax(z))

⇒
∃w (y < w ∧ allow-entry -C (w))
)

∧
∀w (allow -entry -C (w)

⇒
∃x,∃y (x ≤ y ∧ Cd

max(x) ∧ request -entry -C (y)∧ ¬∃z (x ≤ z ∧ z ≤ y ∧ Cmax(z))
∧ y < w
)

)

Figure 3: Example policy formula

• w |=I ∃x ϕ iff there exists an interpretation function
I ′ that extends I by assigning an event to the variable
x such that w |=I′ ϕ.

• w |=I ∃X ϕ iff there exists an interpretation function
I ′ that extends I by assigning a set of events to the
variable X such that w |=I′ ϕ.

A sentence is a formula without any free variables — all
variables occurring in the formula are bound by a quantifier.
Sentences can be assigned semantics without any interpre-
tation function. All our policies are sentences in MSO logic.

For example, a simple access control policy over a room
count context specifies that “a regular user can enter room
C only if the number of regular users in C is less than the
stipulated limit.” We can express the formula corresponding
to this policy with the following subset of Σ:
{Cmax, Cd

max, request -entry -C , allow-entry -C }.
Formula corresponding to the above policy, which regu-

lates access of a regular user in room C, is shown in the
box in Figure 3. Semantics of the policy can be understood
from the words that satisfy it. E.g. the policy specifically
rules out an occurrence of Cmax (represented by z) between
the last seen Cd

max (represented by x) and request -entry -C
(represented by y), if the request is to be followed by an
allow -entry -C in a satisfying word. In English, the policy
formula means that entry to the room is allowed if and only
if there was a request for entry and the relevant context
(Cd

max in this case) already held. Exact formulation of such
rules may differ from one policy to another.

4.1.3 Template based policy description
MSO logic, being a mathematical language, makes it cum-

bersome for an administrator to configure complex policies
with. We therefore work with a template based approach
for describing policies. Details regarding facility topology
and events are specified by the administrator in a simple
language, which is provided as input to the offline analyzer
of Figure 1. The template based configuration of policies is
done such that it supports role based access control, wherein
roles of users are defined based on the policies that are being
enforced on them. We would like to note that static poli-
cies as specified using ACLs can also be specified - context
becomes empty in such cases. Examples of policies for two
different roles of users for our example facility are given in
Table 2. Table 1 is an example of facility topology as used
in Figure 1.

Different processing stages within the offline analyzer are
shown in Figure 5. The high level policy parser entity is
responsible for parsing this high-level description. As we in-
troduced previously, contexts may comprise of two kinds of
events, those events that are specific to an individual user
by virtue of his/her own actions, and those events that are
observed and constructed by the system for use in one or
more user classes. Individual user actions comprise the his-
tory of the user. Contexts such as anti-passback and asset
issuance are examples of individual user actions. The high
level policy parser parses the specifications of such event
declarations and usages, and constructs (predefined) regular
expressions with respect to the kind of history in question.
In Table 2, the policy of regular user for entry to room B
requires history event h2. ISSUE ASSET X IN D implies that
user must enter room D, and issue an asset X. Therefore, in
order to enter room B, the user history must contain the
sequence request -entry -D , allow -entry -D , request -asset-X ,
issue-asset -X . h2 is therefore written as an MSO logic for-
mula representing the regular expression for this sequence.
h2d implies the absence of h2 - the user should have either
not issued the asset, or issued and returned it. Also, policy
templates starting with CAN ENTER, depending upon the kind
of context that they use, are substituted by corresponding
MSO formulae. For example, the policy of a regular user
for room C is translated into the MSO formula of Figure 3.

Maintenance of system context, on the other hand, is the
responsibility of the network of controllers. Let’s assume
that with respect to room B, the definition of Bmax is sim-
ilar to that of Cmax for room C. For a regular user to enter
room B, Bmax must be false, i.e. Bd

max must be true. Fi-
nal grant/deny decision for room B, however, is taken after
evaluating both the system context and the history h2 of
the user. The offline analyzer, therefore, must also gener-
ate configuration information for the context modeling ma-
chinery that dictates how contexts are handled. The USES

keyword in Table 2 describes dependency of a context event
on other events. Here we assume that application events
user-entry (to a room) and user-exit (from a room) are
events that are generated every time a user enters or leaves
a room respectively. We elaborate on this while explaining
our context modeling approach(Section 4.3).

The SELF keyword is a syntactic sugar. Note that Regular -
escort context is defined once, but is used in connection with
various rooms. We could have defined this context with re-
spect to individual rooms in which we foresee its use. Alter-

98

Define system context # User history based context

EVENT Cmax: IS count event HISTORY h1: ANTI-PASSBACK IN D

USES user-entry IN C HISTORY h2: ISSUE ASSET X IN D

USES user-exit FROM C

PARAM val GEQ 10 # Role based policy for Regular users

PARAM user-class EQ regular

PARAM room EQ C policyclass regular:

CAN ENTER W on h2d

EVENT escort-Timer: IS timer event CAN ENTER A

USES user-entry IN SELF CAN ENTER B ON CONTEXT Bd
max AND h2

USES user-exit FROM SELF CAN ENTER C ON CONTEXT Cd
max

PARAM val EQ 10 CAN ENTER D ON CONTEXT h1d

PARAM user-class EQ regular

Role based policy for Visitors

EVENT Regular-escort: IS timed event

USES escort-Timer policyclass visitor:

PARAM escort-class EQ regular CAN ENTER W

PARAM room EQ SELF CAN ENTER A ON CONTEXT Regular-escort
CAN ENTER B ON CONTEXT Regular-escort
CAN ENTER C ON CONTEXT Regular-escort
Default deny for room D

Table 2: Template based context and policy specifications

natively, we use the keyword SELF for the room parameter,
and instantiate this context for rooms A, B, and C at compile-
time as and when it is encountered in any user’s policy.

We observe that although the syntax used in our tem-
plate based approach is well structured and necessary, an
administrator in charge of managing the facility may find
it cumbersome. For this reason a graphical user interface
will be useful. This will help us to provide a practical tool
to implement sophisticated policies without compromising
or misinterpreting the intent. Such an interface, however, is
under development at present.

4.2 Execution model
In order for the policies specified in MSO to be opera-

tional in terms of enforcing access control rules, they have to
be converted into computational/executable models. These
models can then be stored at appropriate locations for ex-
ecution. We work with conventional finite state automata
[17] as machine models for executing policies. Formal theo-
retical techniques are available for converting MSO formulae
into automata [26]. Policies are analyzed and converted into
their equivalent finite state automata by an offline analyzer
algorithm (Figure 5). These automata act as rule engines ex-
ecuting the policies. They are constructed to allow precisely
those behaviors that satisfy the policies. All the policies cor-
responding to the role of a user are collected together and
converted into executable automata which are then stored
in the user’s smart card. Upon access request, the controller
initiates execution of policies in the smart card that results
in a unique access decision (allow/deny) being taken based
on the response from the card.

A finite state automaton over an alphabet Σ is defined to
be a tuple, A = (Q, Σ,→, I, F) where

• Q is a finite set of states.

• I, F ⊆ Q are sets of initial and final states respectively,
and

• → ⊆ (Q × Σ × Q) is the transition relation.

Semantics of finite state automata is presented in terms of
its runs on a given input. Input is a word over Σ. Given a
word w = a1a2 . . . an as input, a run of A on w is a sequence
of states q0, q1, . . . qn such that q0 ∈ I and (qi, ai, qi+1) ∈ →
for i varying from 0 to n. A run is said to be valid/accepting
if qn ∈ F . The language accepted by A is denoted by L(A)
and is defined as the set of all those words on which A has a
valid run. Languages accepted by finite state automata are
popularly called regular languages [17].

In the context of access control, a word on which the au-
tomaton has an accepting run represents a behavior of the
system. Language accepted by this automaton will be the
set of all possible behaviors (in terms of sequences of events)
as dictated by the policies. Figure 4 shows the automaton
of the MSO formula shown in Figure 3 of the regular user
policy for room C.

1
 3
2

4

10:
C
max

x0:
request-entry-C
,
C
max

01:
allow-entry-C

00:
request-entry-C

01:
 allow-entry-C

00:
 request-entry-C

11:
C
max

01:
allow-entry-C

11:
C
max

init

xx:
all events

10:
C
max

11:
C
max

d
d

d

Figure 4: Automaton for a regular user policy that

only depends on system context, and no individual

user history

In this figure, states with double circles represent final
states. Other states are rejecting states, which is to say that
if a run ends on these states then the word is not accepted.
The user automata are run only during the interaction of a

99

smart card and a controller. Once a user removes his/her
card from the reader, the automaton should rest in a final
state. For example, starting from a final state 2, a request -
entry -C will take the above automaton to state 4, wherefrom
the controller will check for the presence of a transition to
a final state upon allow-entry -C . In this case, it will find
it and hence, open the door, and bring the automaton back
to final state 2. However, while in state 2, if Cmax event is
seen the automaton will be taken to final state 1. This will
happen if the occupancy of the room reaches its limit before
the user can request entry. A subsequent request -entry -C
will still keep in state 1, and now the controller will not find
any final state that it can transition to on an allow -entry-
C (note that 3 is not a final state). Hence that transition
will not happen and in effect, entry will be denied, and the
automaton will continue to stay in state 1.

Offline analyzer

Context

sensitive rule

based policies

High level

policy parser

MSO

specification

of policies

MSO

policy

analyser

Finite state

automaton

Figure 5: Part of the offline analyzer that translates

input policies to execution model

Figure 5 depicts the sequence of operations that take an
administrators input to an execution model. The outer box
represents the offline analyzer of Figure 1. The administra-
tor inputs (as shown in Table 2) are first translated from
their high-level English-like language to an MSO specifica-
tion by the high level policy parser. The offline analyzer
also checks for conflicts in user policies and incorporates op-
timizations specific to physical access control. The MSO
policy analyzer finally converts the MSO formulae into the
final execution model following well-known theoretical tech-
niques for converting formula into automata [26]. The au-
tomata finally generated, along with other initialization and
configuration information, are stored on user carried devices
like smart cards, as shown in Figure 1.

4.3 Context modeling
As mentioned in Section 2, the offline analyzer generates

configuration information for the controllers that enables
them to maintain system-wide context information. Main-
taining system-wide context involves publishing or subscrib-
ing events to/from various controllers and deriving context
events at individual controllers.

Given an enclosure like a room or a region that can have
multiple controllers, we elect a single controller as the owner
that becomes responsible for detecting and deriving context
events pertaining to this enclosure. The owner of an enclo-
sure uses local user actions and inputs from other controllers
associated with the enclosure to construct most of these
events. Other controllers may subscribe to these events, if
such is required by the policies.

Such context events are derived using many-sorted first
order predicate calculus. Ranganathan and Campbell pro-
vide one such infrastructure for context-awareness [21]. Our
approach is more tightly coupled with the physical access
control application. We use Prolog [11] based logic pro-
gramming techniques to derive context events. All events
are represented as predicates in Prolog. User and appli-

cation actions are stored as facts in a knowledge base and
inference rules are written to derive the predicates represent-
ing context events. The process of assertion and deletion of
facts, and subsequent derivation of dependent contexts us-
ing Prolog, is a continuous one. Predicate corresponding
to a context event is evaluated every time an event that it
USES is asserted, retracted or derived. For example, for the
context event Cmax of Section 4.1.3, facts corresponding to
user-entry and user-exit are put into the knowledge base,
the predicate corresponding to Cmax is derived from these
facts whenever users enter or exit the room C.

Certain contexts events are also results of conjunctions
and disjunctions of events, computed at various controllers
across different enclosures as well as other devices including
servers, PCs etc in the system generating individual logical
events. Since every event has only one owner, any other
controller can combine events through Boolean connectives
without ascribing any additional semantics to the combina-
tions, other than the combinations themselves. Note that
even a Boolean combination of events will have a single
owner responsible for publishing either a true or a false value
of the combination at any point in time. E.g. a policy P
may require events e1 and e2, detected and owned by con-
trollers C1 and C2 respectively, in order to govern access to
a particular enclosure owned by controller C3. C3 will thus
need to subscribe to e1 and e2, from C1 and C2 respectively.
In such cases, the administrator will define a new event e3
as a Boolean combination of e1 and e2, and will designate
C3 to be the owner of e3. Deriving our requirements from
the application, we note that a Boolean combination of such
constituent events suffices in most cases to capture the re-
quirements of such policies P .

The offline analyzer finds the event dependencies from the
policy definitions. The controllers exchange events based on
this information, through a publish/subscribe mechanism.
E.g. USES keyword of Table 2 illustrates the need for sub-
scriptions. Owners of the events are responsible for publish-
ing the events to subscribers.

Controllers that participate in constructions of various
contexts need to collaborate and hence stay connected all
the time. This creates logical groups of collaborating con-
trollers. These groups can tolerate mutual disconnect of
communication without affecting the application behavior.
By extension, controllers that guard rooms whose policies
depend solely on user history do not require any collabora-
tion for maintaining system context, and can thus perform
in isolation. For example, for policies specified in Table 2,
controllers of Figure 2 can be divided into four sets, such
that controllers belonging to the same set are connected with
each other and disconnected from those in other sets, viz.
{C1}, {C2, C5}, {C3, C6}, and {C4}.

5. PROTOTYPING APPROACH
For the purpose of rapidly experimenting with our frame-

work for decentralized access control, we used well-known
open-source software packages, notably, MONA developed
by BRICS Research Center in Denmark [16, 13] and the
Java Card Development Kit provided by Sun Microsystems,
Inc. [25]. These tools fit into various parts of the framework
and help one to rapidly simulate, analyze and evaluate the
behavior of the framework. We store events in a knowledge
base and thereby reason about the presence of contexts. In
this section we provide details of our prototyping approach

100

for simple physical access control applications. We first dis-
cuss the policy analyzer, which takes high level policy and
topology descriptions and converts them into a representa-
tion of the execution model. The motivation behind choos-
ing the execution model, its representation and storage is
discussed next.

5.1 Policy analyzer
We use MONA as the MSO policy analyzer of Figure 5.

MONA is a tool used to translate Monadic Second-order
(MSO) Logic formulae into minimal Deterministic Finite
State Automata (DFA). MONA works with MSO over bi-
nary encodings. Several steps are involved in converting
a given MSO formula into minimal DFA. Firstly, MONA
rewrites the formula to obtain a compact representation of
the same. This is followed by an inductive translation of the
rewritten formula into an automaton. Finally, the automa-
ton obtained from the above step is minimized so that an
effective decision procedure can be obtained.

The high level policy parser (Figure 5) is written using
a general-purpose parser generator [12] that takes adminis-
trator inputs written in a simple grammar (e.g. as shown
in Table 2) and converts them to a MONA-specific MSO
input form. It also translates events into appropriate binary
encodings as required by MONA. During the translation
process the events corresponding to requests, grants and sys-
tem context, as specified by the administrator in the access
control policies, are encoded as bit sequences {0, 1}k where
k is smallest integer such that for the set of events Σ de-
fined in policy specification, |Σ| ≤ 2k. The binary encoding
of the events and a basic set of predicates representing the
events are first specified as templates. These are then used
to construct policies that are defined by the administrator,
by straightforward parsing of the input policies.

5.2 Representation of execution model
The user-carried devices need to store the automata and

implement an execution program to run them. One can
choose to represent the DFA in a variety of ways includ-
ing adjacency matrix, linked lists, Boolean representations
or even program codes with switches or if-then-else blocks.
For our framework, we require a data structure that can ef-
ficiently store information pertaining to the run-time state
of the application, and should be amenable to storage on
small devices and fast execution. Binary Decision Diagram
(BDD) [7], a data structure used to represent an automaton
as a Boolean function, satisfies these requirements. A BDD
is considered to be an efficient data structure for storing au-
tomata and for capturing the runtime execution mechanism
of its behavior through the evaluation of next enabled tran-
sitions. The set of access control policies of a certain role,
which are translated into an automaton by the policy ana-
lyzer, is stored as a BDD on user carried devices. MONA has
built-in support for converting its output DFAs to BDDs.

The user carried devices also need to have an execution
program which will efficiently traverse the BDD and com-
pute the next state of the automaton, given an event of the
system as input. One can also design the controllers to host
this program since the automata are run only during the
interaction of the user-carried devices and the controllers.
However, we choose to store both automata (as BDDs) and
the execution program on the user-carried devices for the
obvious advantage of not having to communicate the BDDs

themselves from the devices to the controllers. Thus, de-
scribing the application behavior in the form of policies and
representing it in the form of a BDD provides a uniform
framework for writing access control rules for various user
carried devices e.g. smart cards, mobile phones etc.

For the sake of completion we give an example to illus-
trate how the state transition of an automaton translates to
a traversal of the corresponding BDD representation. The
execution program implements this traversal. Bryant [7]
provides a detailed explanation of the working of BDDs. The
finite state automaton of Figure 4, corresponding to one of
the simple access control policies of the regular user class
in Table 2, is represented as a BDD in Figure 6. As shown in
Figure 4, all events (i.e. input symbols for the automaton)
are represented as binary strings. Since we have only four
events, we use the following 2-bit encodings, viz. request -
entry -C : 00, allow-entry -C : 01, Cd

max: 10, and Cmax: 11.

1

State type:
1 = accepting

 -1 = rejecting

Level

0

Level

1

Level

1

Level

1

Level

1

Level

0

Level

0

3
4
2

1

4
3
2
1

-1
1
 -1

Starting state

Nodes

representing

Next State

Traversal on 1:

Traversal on 0:

Mapping
: State Node

Figure 6: Binary decision diagram for simple policy

As mentioned in Section 4.2, once a user removes his/her
card from the reader, the automaton must not be in a reject-
ing state. The automaton execution program maintains the
above automaton either in state 1 or 2 between subsequent
access request steps. Following the example of Section 4.2,
lets assume that after a Cd

max the automaton rests at state
2. It is then presented with the event request -entry -C . Now
state 2 will be the starting state for the new transition, which
maps to the center node at level 0. In general, a node at ith

level compares the ith most significant bit of the input sym-
bol. A request -entry-C is encoded as 00, so the traversal
takes right sub-tree (hyphenated arrows) upon comparing
bits at both levels, and reaches the leaf node (box) labeled
4. This completes one transition, whereby the automaton
arrives in state 4 from state 2. To complete the authoriza-
tion process, the automaton execution program will now ap-
ply allow -entry-C and check whether or not the automaton
reaches a final state. The event allow -entry-C is encoded as
01. Hence, starting from top right of the BDD structure at
level 0 (this time from the node mapped to by starting state
4), a bit comparison takes the traversal to level 1, following
the solid arrow, since the least significant bit of the encod-
ing is 1. At level 1, upon comparison with 0, the traversal
takes the left path to reach state 2 following the hyphenated
arrow, since the next significant bit is 0. This is an accept-

101

ing state as indicated in the top row of this BDD. Hence
the operation is accepted by the execution program and the
request will be followed by a grant.

Note that the generated automaton, as in Figure 4, can
group certain transitions together. E.g. request -entry -C
and Cd

max are grouped as x0 (x := 0,1). This means that a
transition labeled by this encoding only depends upon the
least significant bit. Subsequently a BDD making a level 0

comparison at starting state 4 can bypass further compar-
isons, if the least significant bit is found to be 0, and can
directly transition to state 3. This increases the efficiency
of execution. It is also evident from here that intelligent
assignment of bit orderings to variables denoting various
events can result in a number of grouped transitions and
hence in efficient storage and execution.

5.3 Smart cards as user carried devices
In physical access control scenarios, the cost of the per-

user device is likely to be an important factor for wide accep-
tance of this framework, given the extremely cheap passive
RF-ID tags that are mostly used today. Smart cards there-
fore appeal as the practical device of choice to host the user-
specific policies. In access control, interactions between the
users and access points are typically driven by their proxim-
ity. Hence, we use Java cards [9] as the machine framework
representing proximity based light weight devices.

In order to test the feasibility of our approach, we did a
software prototyping of a simple set of access control poli-
cies. We used Java card Development Kit [25] to simulate
Java cards, and to host BDD structure and its execution
program on it. Card reader devices were simulated using
the Java Card Development Kit and Open Card Framework
(OCF) API [19, 20].

Together Java card and OCF provide a way of simulating
the card-to-reader interactions and obtaining preliminary in-
sights into resource requirements/limitations for hosting our
access control framework based on smart cards, e.g. num-
bers on EEPROM usage and availability, as given by Java
card development kit. Our conclusion is that with the trend
of increasing memory capacities of the smart cards, mean-
ingful physical access control solutions look viable on them.
Almost all medium-end cards support 64KB currently, with
promise of EEPROMS in the order of MB in the near future.
The ISO 7816 standards as followed by smart cards [14], is
also supported by the GSM SIM cards which leave open
the possibility of using more powerful devices like mobiles
phones as the proximity devices in future.

Another major advantage of using libraries and toolkits
like Java card kit, which abide to standard specifications,
is the assurance that they will evolve by adapting latest
standards, protocols, and technologies. Such tools provide
a guarantee that applications developed using them will be
easy to migrate on real devices that support these standards.

5.4 Application specific optimizations
We have incorporated a few application specific optimiza-

tions to ensure that automaton state spaces are as small as
possible. This allows us to target extremely light weight de-
vices for realizing our implementation. For example, failure
to find an accepting state on an “allow” transition in the au-
tomaton, implicitly means a deny in our application. Thus
Σ may contain only allow -into-A and not deny -into-A, for
all rooms A.

According to our execution mechanism, during the pro-
cess of authorization, a controller first inputs all relevant
events to the smart card, which are then applied internally
to its automaton, thereby honoring the sequences of events
specified by the policy. By introducing Boolean combination
of events as a new event, we reduce the number of events
to be communicated to the smart card and hence the deci-
sion latency. This also reduces the number of literals of the
automaton, thereby reducing its size.

We note that a single complete automaton capturing all
valid sequences of user movements quickly grows to sizes
that are unattractive for smart cards as the number of rooms
increases. In the context of this application, we instead work
with an automaton per room or enclosure, without sacri-
ficing on any meaningful transition that would have been
present in a single big automaton encompassing all rooms.
We did an example computation on the size of the generated
automaton with the entry condition of every room compris-
ing of a single context event and a history based condition,
viz. anti-passback. While for a unified automaton approach
the size increases rapidly with number of rooms, growing to
4.3MB for a modest 6 room facility, the combined size of all
the automata on per-room basis increased linearly with the
number of rooms reaching only 6KB for 6 rooms.

Lastly, we note that Σ of the automaton of a user doesn’t
usually include individual actions of other users. Although
this can be incorporated as an exception, its absence helps
to contain the number of automata states. In general, we
capture significant user behaviors at role-level and abstract
them as context events.

6. BENEFITS
A centralized architecture for context dependent autho-

rization in physical access control does not scale with large
number of users. Local decision making capacity at points
of access effectively decentralizes the process of dynamic au-
thorization. This not only reduces the per-user per-request
round-trip communication to a central server, but also cuts
down on the processing involved to interpret a context with
respect to a user’s policy owing to execution of policies on
user carried devices. Further, effective decentralization and
localization of policy decision enables meaningful enforce-
ment of some access control policies even if there is a partial
disconnection in the network of the controllers. E.g. policies
depending only on a users past behavior, and not on other
system context, can be enforced even if a controller is totally
disconnected from the system. This is possible because, as
we saw from the asset center example, all the relevant con-
text information (user history) is present on the card itself.
Also, re-programming of controllers for policy changes can
be avoided in cases where enclosures are guarded only with
the help of user-history dependent policies.

By doing away with the need to contact a central server
for every access request, this framework allows and aligns
itself with the growing trend of using general purpose data
network in buildings and facilities. The perceived lack of
reliability of such networks can assume serious proportions
for centralized solutions. In our framework, the spatial local-
ity of contexts and a local decision-making ability gives rise
to only a local dependence on connectivity among the con-
trollers. This is evident from the rooms and lobby scenario
cited in Section 1, and can also be observed with respect to
various other examples listed in Section 4.

102

Many recent access control solutions implement partial
decentralization by caching ACLs locally. In this manner,
access decisions for a defined region are catered by a cache,
which acts as a mirror of the central repository. In cases
where the number of users is extremely large, these solutions
will have to keep dividing their ACLs into further localized
caches. Our approach brings intelligent user carried devices
within the fold of decentralization and obviates the need
for data repositories for per-user context, e.g. user history
based policies.

Besides, ACLs are inherently powerless to express com-
plex policies. With the help of logic formulae we can ex-
press user behaviors in the form of regular expressions, which
would comprise of a possibly unbounded number of user ac-
tions and cannot be accommodated in ACLs.

Further, in our framework, a PC or other entities can also
generate and provide contexts. The framework therefore
lends itself to act as a bridge between logical and physical
access control domains. Controllers can stand for logical en-
tities and generate pertinent contexts. Context thus gener-
ated is handled in the same way as other physical application
contexts.

Our mechanism attempts to enforce a valid behavior by
ensuring that there exists a certain sequence in the events,
as permitted by the policies. The offline analyzer checks
for inconsistencies and anomalies like mutually conflicting
set of rules - such that only a consistent set of policies are
executed in the cards. Time complexity involved in check-
ing such sequences using automaton on the smart cards is
constant, unlike most proof theoretic approaches. This is
owing to the fact that our interpretation is fixed over a set
of events, whereas other proof theoretic approaches use first
order logic without a fixed interpretation. This coupled with
the fact that in the context of the application, it is possible
to optimize the size of the automaton, makes the framework
appealing for smart devices.

We have chosen smart cards as representatives for these
user carried smart devices in our prototyping approach —
smart cards follow the widely popular ISO/IEC 7816 stan-
dard [14] that also covers the almost ubiquitous GSM SIM
cards. Conformance to this standard coupled with their low
cost and already existing market penetration makes them
readily available for deployment. Also, improvements in
hardware will ensure that memory-rich smart cards and low-
cost power-efficient controllers will continue to become even
more attractive for our framework of access control.

7. CONCLUSION AND FUTURE WORK
In this work we have focused on a decentralized policy

evaluation framework for dynamic authorization. As an ini-
tial approach, we have simplified our assumptions about the
relationship between users and roles (no role hierarchies) and
derived the requirements from a specific application, namely
physical access control. We observe that our specification
model is useful for capturing fairly involved context-sensitive
physical access control scenarios, including connecting phys-
ical access to enterprise logical access control solutions. The
emphasis is on decentralized implementation, the fundamen-
tal advantage being reduction of traffic that would be oth-
erwise required for dynamic context evaluation at a central
server.

The mechanism of capturing individual role-based policies
in the form of automata and storing them on user carried

devices lends itself to a decentralized enforcement of these
policies. Our software implementation with Java card kit es-
tablishes the viability of such a mechanism. Issues relating
to performance still need to be addressed. For example, a
performance analysis of communication between smart cards
and card readers needs to be done. We also intend to ad-
dress issues pertaining to latency of access decisions with a
prototype implementation using physical devices. A few as-
pects concerning security are also not well addressed in our
framework.

Validation of user credentials [18] and security of data
transfer among various system entities are important con-
siderations for commercial access control solutions today.
While the primary contribution of this paper is to provide
a solution for context based decentralized authorization, we
will seek to integrate DAC with a sophisticated validation
framework in future.

Decentralized context maintenance and designation of spe-
cific controllers as owners of room specific contexts introduce
concerns about reliability. Ways to handle compromise of
nodes and/or node failures are not explored here. With re-
spect to the cards, tamper proofing is one way to ensure
that stored data are safe from manipulation. Using crypto-
graphic techniques to establish trust on smart cards poses
another significant challenge.

8. REFERENCES
[1] M. Abadi. Logic in access control. In LICS ’03:

Proceedings of the 18th Annual IEEE Symposium on
Logic in Computer Science, page 228, Washington,
DC, USA, 2003. IEEE Computer Society.

[2] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin.
A calculus for access control in distributed systems.
ACM Transactions on Programming Languages and
Systems, 15(4):706–734, September 1993.

[3] M. Balasubramanian, N. Chaturvedi, A. D.
Chowdhury, and A. Ganesh. A framework for
rapid-prototyping of context based ubiquitous
computing applications. In Proceedings of the IEEE
International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing -Vol 1
(SUTC’06), pages 306–311, Washington, DC, USA,
2006. IEEE Computer Society.

[4] L. Bauer, S. Garriss, and M. K. Reiter. Distributed
proving in access-control systems. In V. Paxon and
M. Waidner, editors, SP ’05: Proceedings of the 2005
IEEE Symposium on Security and Privacy, pages
81–95, Washington, DC, USA, 2005. IEEE Computer
Society.

[5] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An
access control model supporting periodicity constraints
and temporal reasoning. ACM Transactions on
Database Systems, 23(3):231–285, 1998.

[6] E. Bertino, E. Ferrari, and V. Atluri. A flexible model
supporting the specification and enforcement of
role-based authorization in workflow management
systems. In RBAC ’97: Proceedings of the second
ACM workshop on Role-based access control, pages
1–12, New York, NY, USA, 1997. ACM Press.

[7] R. E. Bryant. Symbolic Boolean manipulation with
ordered binary-decision diagrams. ACM Computing
Surveys, 24(3):293–318, 1992.

103

[8] G. Chen and D. Kotz. Solar: Towards a Flexible and
Scalable Data-Fusion Infrastructure for Ubiquitous
Computing. In UbiTools’01 - Workshop on Application
Models and Programming Tools for Ubiquitous
Computing (held in conjunction with the
UbiComp’01), Sep. 30 2001.

[9] Z. Chen. Technology for Smart Cards: Architecture
and Programmer’s Guide. Addison Wesley, June 2000.

[10] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications.
Human-Computer Interaction, 16(2-4):97–166, 2001.

[11] D. Diaz. GNU Prolog: A Native Prolog Compiler with
Constraint Solving over Finite Domains, 1.7 edition,
September 2002. For GNU Prolog version 1.2.16.

[12] C. Donelly and R. Stallman. Bison: The
YACC-Compatible Parser Generator (Reference
Manual). Free Software Foundation, Version 1.25
edition, November 1995. On-Line Info File.

[13] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund,
B. Paige, T. Rauhe, and A. Sandholm. Mona:
Monadic second-order logic in practice. In Tools and
Algorithms for the Construction and Analysis of
Systems, First International Workshop, TACAS ’95,
LNCS 1019, 1995.

[14] International Organization for Standardization.
ISO/IEC 7816. http://www.iso.org.

[15] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian. Flexible support for multiple access
control policies. ACM Trans. Database Syst.,
26(2):214–260, 2001.

[16] N. Klarlund and A. Møller. MONA Version 1.4 User
Manual. BRICS Notes Series NS-01-1, Department of
Computer Science, University of Aarhus, Aarhus C,
Denmark, January 2001.

[17] D. Kozen. Automata and Computability. Springer
Verlag, 1997.

[18] S. Micali. NOVOMODO: Scalable certificate
validation and simplified PKI management. In 1st
Annual PKI Research Workshop - Proceeding, April
2002.

[19] OpenCard Consortium. OpenCard Framework -
General Information Web Document, second edition,
October 1998.
http://www.opencard.org/docs/gim/ocfgim.pdf.

[20] OpenCard Consortium. OpenCard Framework 1.2 -
Programmer’s Guide, fourth edition, December 1999.
http://www.opencard.org/docs/pguide/PGuide.pdf.

[21] A. Ranganathan and R. H. Campbell. An
infrastructure for context-awareness based on first
order logic. Personal Ubiquitous Comput.,
7(6):353–364, 2003.

[22] M. Román, C. K. Hess, R. Cerqueira,
A. Ranganathan, R. H. Campbell, and K. Nahrstedt.
Gaia: a middleware platform for active spaces. ACM
SIGMOBILE Mobile Computing and Communications
Review, 6(4):65–67, October 2002.

[23] P. Samarati and S. D. C. di Vimercati. Access control:
Policies, models, and mechanisms. In FOSAD ’00:
Revised versions of lectures given during the IFIP WG
1.7 International School on Foundations of Security
Analysis and Design on Foundations of Security

Analysis and Design, pages 137–196, London, UK,
2001. Springer-Verlag.

[24] A. Seleznyov, M. Ahmed, and S. Hailes. ADAM: An
Agent-based Middleware Architecture for Distributed
Access Control. In Proc. Artificial Intelligence and
Applications, 2004.

[25] Sun Microsystems. Development Kit User’s Guide for
the Binary Release with Cryptography Extensions,
October 2003. Java CardTM Platform Version 2.2.1.

[26] W. Thomas. Handbook of formal languages, volume 3,
chapter Languages, automata, and logic, pages
389–455. Springer-Verlag, New York, NY, USA, 1997.

104

