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ABSTRACT
In an end-to-end encryption model for a wireless sensor net-
work (WSN), the network control center preloads encryption
and decryption keys to the sensor nodes and the subscribers
respectively, such that a subscriber can use a mobile device
in the deployment field to decrypt the sensed data encrypted
by the more resource-constrained sensor nodes. This paper
proposes SMS-SED, a provably secure yet practically efficient
key assignment system featuring a discrete time-based ac-
cess control, to better support a business model where the
sensors deployer rents the WSN to customers who desires
a higher flexibility beyond subscribing to strictly consecu-
tive periods. In SMS-SED, a node or a mobile device stores
a secret key of size independent of the total number of sen-
sor nodes and time periods. We evaluated the feasibility of
deploying 2000 nodes for 4096 time periods at 1024-bit of
security as a case study, studied the trade off of increasing
the storage requirement of a node to significantly reduce its
computation time, and provided formal security argument
in the random oracle model.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distribut-
ed Systems; E.3 [Data Encryption]; K.6.5 [Management
of Computing and Information Systems]: Security and
Protection
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1. INTRODUCTION
A wireless sensor network (WSN for short) is a large-scale,

self-organized network consisting of a number of low-cost,
resource-constrained sensor nodes, which monitors ambient
environments in a certain deployment field. By means of ad
hoc routing, the sensor nodes send wirelessly the obtained
data (typically the sensor readings) to a base station, which
may further process the data and forward the result to a con-
trol center (e.g., for decision making). In certain scenarios,
the base station and the control center may be implement-
ed in the same physical server, which is usually a powerful
control center assumed to take over operating management
including user (i.e., customer) authentication.

1.1 Motivation
We envision a potential business model where the net-

work provider deploys the sensor nodes and rents the WSN
to commercial customers. The network as a whole is pro-
vided as a certain kind of infrastructure service (e.g., for sci-
entific research purposes), and each user just subscribes to
the service for data acquisition without necessarily deploying
his or her own sensor nodes. A sensor node in general can
be multi-functional, and thus there can be multiple types
of data services (e.g., temperature, pressure, and humidity
reports) and accordingly, various types of subscriptions re-
garding all possible combinations (e.g., a user may subscribe
to temperature and humidity but no pressure reports). For
simplicity, we focus on the consideration of just one such da-
ta service (and thus only one type of subscription), while our
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developed solution can be directly extended to accommodate
a scalable, multi-service scenario, and be further adapted to
other data provision applications such as self-navigation for
vehicles, as well as military applications [19]. Data are col-
lected by mobile units (e.g., unmanned aerial units) that
access the sensor network at locations which may be “hard”
to predict.
For the benefit of the network provider, a commercially

viable data provision service needs a certain kind of access
control so that any user can only acquire the entitled data
according to the subscription. Such a subscription is typi-
cally managed on a time basis, e.g., a user is charged daily,
or pays per hour. This subscription-based payoff model has
been well supported by economic research results on owner-
side strategies for maximizing profits of information good-
s. For example, research at NYU and MIT concluded that
content bundling and fixed fees can generate greater profits
per good [2]. This work is partially motivated by the un-
derstanding that a business model based on subscription is
more economically beneficial than others.

1.2 Sensor Network Data Encryption Models
To ensure data confidentiality, sensor nodes should en-

crypt the obtained data before sending them over the air. To
realize this goal efficiently, sensor networks adopt symmetric-
key cryptography, where the same key is employed for both
encryption (i.e., data protection) and decryption (i.e., data
access). For a WSN, the encryption can be done in either a
hop-by-hop manner, or an end-to-end one.

• In the hop-by-hop encryption model, a sensor node
locally shares a pairwise key with (almost) each of it-
s neighbor nodes within its communication range, so
that a neighbor node can decrypt (and possibly aggre-
gate) the received data before re-encrypting and for-
warding the data to the next hop (i.e., the neighbor
node’s neighbor on the path towards the base station).

• On the other hand, in the end-to-end encryption mod-
el, a sensor node only holds one encryption key (no
matter how many neighbors it has) secretly shared
with the base station; the encrypted data can be de-
crypted by the base station but not the other nodes,
while the neighbor nodes just propagate the data that
are kept intact in the encrypted form.

One advantage of the end-to-end encryption model is that
the sensed data can keep confidential even if some sensor
nodes are untrustworthy (e.g., corrupted). Another advan-
tage is that the data can be locally accessed by a mobile
user authorized by the control center. That is, the user can
roam in the WSN deployment field and directly access the
localized data at any sensor node, as long as the user hold-
s respective decryption keys (i.e., the same with those em-
ployed by the base station). In this article, we are interested
in such an end-to-end encryption model.

1.3 Time-based Access Control
Apart from who can access the data, another dimension

to consider is when can the data be accessed. Time-based
access control can be incarnated by time-bound key assign-
ment (e.g., [23, 7]). Each sensor node encrypts the obtained
data with a time-variant session key. Different nodes (identi-
fied by their node indices ß = {1, 2, · · · , n}) employ different

session keys even in the same time period. Note that we as-
sume sensor nodes are (at least loosely) synchronized with
a secure time synchronization scheme [20].

On the other hand, a user registers at the WSN control
center to subscribe to the data service for a set J of subscrip-
tion time periods. At any (discrete) time j ∈ J , any user
who “subscribes to J” can access the sensed data directly
from the sensor nodes. In a nutshell, a sensor node encrypts
the data with a session key ki,j , which is determined by the
node index i and the current period of time j, and a mobile
user in the WSN deployment field can access the localized
data with the same session key ki,j , as long as j is within
his or her subscription set J .

The above idea can be realized trivially if the control cen-
ter creates n · l keys, pre-loads l keys to each node and as-
signs n · |J | keys to each user, where l is the total number
of time periods and |J | is the number of time periods sub-
scribed by the user. Apart from the key management issues
of a large number of keys, there is a cost issue since secret
key is preferably stored in secure storage which is consider-
ably more expensive than normal storage. Having a bulky
(collection of) key is probably not a good idea for resource-
constrained mobile devices and even more constrained sensor
nodes.

Preferably, we want a “two-dimensional” time-based key
management scheme which works as follows. The control
center issues a node key ki,∗ to the node i, and issues a
user key k∗,J to a user who subscribed to the set of time
periods J , as depicted in Fig. 1(a). A time-variant session
key ki,j can either be computed by the node using a node
key ki,∗ according to the current discrete time index j, or
by a mobile user using a user key k∗,J if j ∈ J , as depicted
in Fig. 1(b). For example, in the simplest case, a mobile
user only subscribes to a single time period j (i.e., |J | = 1)
is assigned with the user key k∗,j , from which ki,j for any
node i can be derived.

Now we have a conceptual idea which just needs to uti-
lize a constant size of cryptographic secret keying material.
A practical solution following this framework should allow
the key derivations to be done efficiently. In particular, the
computation required in deriving a session key should be
independent of the total number of nodes.

1.4 Our Contribution

1.4.1 Generalized Time-Based Access Control
Without loss of generality, we assume the entire subscrip-

tion time is partitioned into l equal units referred to as time
periods, where each period can typically be a day or an
hour. Our idea of time-based access control system fea-
tures that any user is allowed to subscribe to an arbitrary
set J ⊆ {1, 2, · · · , l} of these time periods, where the |J |
periods can be either consecutive or intermittent. Such flex-
ibility makes our mechanism distinguished from an existent
technique known as time-bound access control [23, 7], where
the |J | time periods only start at a certain j and end at
(j + |J | − 1), i.e., the time periods are strictly consecutive,
which may be a limit for many real-world applications.

While our motivating applications is providing subscrip-
tion services of data encrypted by WSN to mobile users, our
system provides a useful and lightweight primitive for time-
based access control in general. Moreover, the idea of dis-
crete time periods generalizes to classifiers of different kinds
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(a) (b)

Figure 1: Overview of the proposed time-based key management scheme for data access control in a WSN –
ki,j is the symmetric session key employed by sensor node i at time j for encryption and also employed by the
mobile user for decryption, that is either derived from ki,∗ by the node i, where ki,∗ is the node key initially
issued by the control center; or derived from his k∗,J , where k∗,J is the user key also issued by the control
center and j ∈ J.

of data, and our system thus naturally leads to application
or domain specific subscription of data.

1.4.2 Provable Security Guarantee
A major challenge of the posed key management problem

lies in the collusion of corrupted sensor nodes and (legiti-
mate but malicious) mobile users. Since sensor nodes are
not made tamper-proof, an adversary can easily reveal the
pre-loaded node key from a captured node. On the other
hand, by subscribing to the data service, the adversary can
also play the role of a mobile user, and thus acquire user
keys for certain time periods at his will. To thwart any
possible collusion, we pursue a secure solution where the
adversary is prevented from accessing localized data at any
uncompromised sensor node at any time period beyond his
subscription.
We will define the above intuition of security requirement

with respect to a threshold t, which models the adversary’s
ability to capture the sensor nodes. As long as no more
than t sensor nodes are compromised, the whole system still
remains secure. We remark that the threshold t only bounds
the number of revealed node keys, but not the number of
acquired user keys. Actually, an adversary is allowed to
obtain by means of subscription as many user keys as he
would like. Even so, our time-based scheme can still achieve
provable security. We believe this is important for a security-
oriented protocol, especially when previous time-bound key
management schemes [23, 7] have been found vulnerable to
collusion attacks [26, 25].

1.4.3 Our Design Principles
Our scheme can be seen as borrowing the idea of the

broadcast key assignment protocol proposed by Benaloh and
de Mare [5]. We applied two design principles in our con-
struction. One of the first principles in Computer Engineer-
ing is to make the common case fast. In our context, we
want to make the computation at the node, i.e., the node
key derivation, as lightweight as possible. Looking ahead,
our system (and [5]) assigns different prime exponents for
different “atomic units” of the access control policy (time

period in our case) and creates a session key by doing re-
peated exponentiations. One may consider further adapting
this idea also on the node identifiers, similar to the treatment
of time periods in our algorithm. However, this will result
in more exponentiation in the node key derivation (those
exponentiations regarding the n primes associated with the
n nodes), which is undesirable. Our solution can be seen
as making the “common” case fast by shifting the burden of
node to that of the mobile user. A novelty in our system
is that, the user key derivation is computed from an inter-
polation of t elements, which means the “apparent” shifted
burden is not dependent on the number of nodes as one may
imagine. This leads to our second principle. We get a high-
er efficiency for the overall system since our system SMS-SED

provided a “reasonable” level of security – resilience against
a threshold t of nodes where t is a system parameter. On the
other hand, an adoption of Benaloh and de Mare’s idea in
our scenario can possibly provide a very high level of securi-
ty which makes the system remains secure even when all but
one of the sensor nodes of the whole WSN are compromised.

1.4.4 Symmetric Key Aggregation
Our system SMS-SED can also be seen as providing a mech-

anism to aggregate many symmetric keys together. The size
of either a node key ki,∗ or a user key k∗,J are independent
of either the total number of sensor nodes n or the total
number of time periods l, yet each of them can be used
to derive keys for all l time periods or keys used by all n
nodes respectively. Using symmetric keys, only a little over-
head is required to simultaneously obtain confidentiality and
authenticity (integrity) by using a block cipher mode of op-
eration which supports authenticated encryption (e.g., [4].)
While there exist public-key signature schemes which fea-
ture a very short signature size and signature transmission
would not required too much energy from the transceivers,
its verification may be time-consuming when computation
power is limited, unless extra measures are taken (for exam-
ple, outsourced yet verifiable computation, e.g., [8]).

1.5 Paper Organization
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Related work will be discussed in the next section. Sec-
tion 3 presents some cryptography basics. Section 4 formally
presents the notion of subscription-based key management
scheme for discrete time periods, followed by the descrip-
tion of SMS-SED, our proposed key management system in
Section 5. Section 6 evaluates the feasibility of the scheme
with respect to resource-constrained sensor nodes. Final-
ly, we conclude in Section 7. For readers’ convenience, the
symbols and parameters employed throughout this article
are summarized in an alphabetical order in Table 1.

2. RELATED WORK

2.1 Mechanisms for Key Distribution
Establishing pairwise keys is always an important issue for

WSN. Eschenauer and Gligor [13] first proposed a key pre-
distribution scheme for WSN. In their scheme, each sensor
node randomly picks a key set from a big key pool. If two
nodes have a key in the intersection of their key sets, they
can use this key as a secret key. Chan et al. [6] then pro-
posed a scheme using the same procedure [13] but the key
between two nodes is available if and only if the intersection
of the key sets contains a number of keys. Otherwise, they
have to communicate to each other via intermediate node(s).
Subsequently, there are many key pre-distribution schemes
proposed, e.g., [11, 16, 12, 15, 18]. However, these schemes
are not suitable for our scenario because the keys are es-
tablished according to the data receivers rather than time
periods. In our scenario, the user is issued a key for (con-
tinuous or discrete) time periods and is restricted to access
the nodes within the time periods.

2.2 Key Assignments Supporting Hierarchy
Time-bound access control is usually realized with key as-

signment scheme supporting a partial order hierarchy. A
comprehensive overview of the time-bound hierarchical key
assignment can be found in [27]. While one may extend the
time-hierarchy to also cover the nodes (e.g., the upper level
represents time periods and the lower level represents node
indices), it is unclear how to support the two-dimensional
key derivation as we described in Section 1.3. Even though
the structure of a public-key scheme may be rich enough
to support “fancy” hierarchy (e.g., a two-dimensional hi-
erarchy [24]), these encryption schemes are impractical for
low-cost, resource-constrained sensor nodes, unless other ar-
rangements are made such as storing pre-computed results
and utilizing online/offline encryption techniques (e.g. [9]).
One may view that our system is essentially providing a

mean for a node i and a user subscribed to j to agree upon
a session key ki,j , which bears a similarity with the key
agreement problem. First, it is “agreed” in a non-interactive
or“offline”manner between a sensor node and a mobile user,
without interacting with each other or interacting with the
control center other than the initial assignments. While non-
interactive key agreement exists, we still need to satisfy our
design goal requiring the size of either ki,∗ or k∗,J to be
independent of either the total number of sensor nodes n
or the total number of time periods l, which rules out the
straightforward adoption of key agreement protocol.

3. TECHNICAL PRELIMINARIES

3.1 Quick Review of RSA Cryptosystem
An RSA cryptosystem can be setup in the following way.

Choose two large primes p and q. Let N = pq be the public
RSA modulus and λ(N) = lcm(p− 1, q − 1), where lcm(·, ·)
denotes the least common multiple, be the Carmichael func-
tion (which is a secret similar to the factorization of N)§.
Find integers e > 1 and d such that ed ≡ 1 (mod λ(N)) (this
implicitly requires e, d ∈ Z∗

λ(N); therefore, e ≥ 3). Publish
e as the encryption exponent, and keep d as the (secret)
decryption exponent. For any integer x ∈ ZN , its encrypt-
ed form is y = xe mod N . With the knowledge of d, the
plaintext x can be recovered from the ciphertext y follow-
ing x = yd mod N = xed mod N = xzλ(N)+1 mod N = x,
where z is an integer.

Generally, given the public-key (e,N) and the ciphertext
y, it is computationally infeasible for an adversary to recover
the plaintext x. Nevertheless, given e1, e2, y1 = xe1 mod N
and y2 = xe2 mod N , where the greatest common divisor of
the exponents is 1, i.e., gcd(e1, e2) = 1, it is feasible for an
adversary to recover the plaintext x. This is done as follows.
Employ the Euclidean algorithm to compute integers u and v
such that e1u+e2v = 1. Then yu

1 y
v
2 ≡ xe1uxe2v ≡ x mod N .

This is known as the common modulus attack, which we will
employ in our security proof.

3.2 Quadratic Residue
We call an integer u ∈ Z∗

N a quadratic residue modulo N if
there exists an integer v such that u = v2 mod N (otherwise,
u is called a quadratic non-residue moduloN). We define the
group of quadratic residues in Z∗

N as QRN = {u ∈ Z∗
N | u =

v2 mod N, v ∈ ZN}. It is sufficient to generate QRN by only
considering v ∈ Z∗

N ∩ Z⌊N
2
⌋+1.

We say a prime p is a safe prime if p = 2p′ + 1, where p′

itself is a (large) prime (hence we immediately have p ≡ 3
(mod 4)). We say an N is a safe RSA modulus if N = pq is
the product of two distinct safe primes (hence N is a Blum
integer). For such an N , the order of the group of quadratic

residues is |QRN | =
(p−1)(q−1)

4
= p′q′ = λ(N)

2
. That is, there

are p′q′ such quadratic residues in Z∗
N .

It has been proved that, u ∈ QRN is a generator for QRN ,
if and only if gcd(u − 1, N) = 1 [17]. Therefore, QRN is
a cyclic group of order p′q′. If p and q are significantly
large, any random u ∈ QRN\{1} shall be a generator for

QRN except for a negligible probability ε = p′+q′−2
p′q′−1

. One
approach to compute this ε is to employ the group theory
(regarding subgroup); another approach is to enumerate u ∈
QRN\{1} satisfying gcd(u−1, N) ̸= 1 (particularly, with the
Chinese Remainder Theorem).

3.3 Strong QR-RSA Assumption
The strong RSA assumption is first introduced by [3]. It-

s variant and itself have been very useful in the construc-
tion of many efficient cryptographic functions (e.g. signa-
ture scheme in [10]). In this article, we consider a variant
of this (standard) strong RSA problem, the strong QR-RSA

§We follow PKCS#1 version 2.1, which specifies using the
Carmichael function λ(N) instead of the Euler’s totient
function ϕ(N) = (p − 1)(q − 1). Observe that λ(N) is al-
ways a divisor of ϕ(N). PKCS#1 version 2.1 is the public-
key cryptography standard published by RSA laboratories
in 2002 which was also republished as an Internet standard
(RFC 3447).
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problem [17], in the group of quadratic residues in Z∗
N , where

N is the product of two safe primes. It has been shown that
this variant is not any easier than the standard one [10].
Therefore, we have the following strong QR-RSA assump-
tion.

Definition 1. The strong QR-RSA assumption holds if no
polynomial time adversary A has non-negligible advantage
in solving the following strong QR-RSA problem: given the
instance (y,N), where N is a safe RSA modulus and y ∈
QRN , output (x, e) such that y = xe mod N .

3.4 Lagrange Interpolation
A polynomial f(x) of degree t can be uniquely recovered

from (t + 1) sample values f(x0), f(x1), · · · , f(xt), where
no two xa are the same, 0 ≤ a ≤ t. The interpolation
polynomial in the Lagrange form is

f(x) =

t∑
a=0

λxxaf(xa), where λxxa =

t∏
b=0,b̸=a

x− xb

xa − xb
.

Each λxxa itself is also a polynomial of degree t (instead of
a coefficient). Later in Section 5.1 we shall employ a special
case where xa = a, 0 ≤ a ≤ t. Thus we know for any (inte-
ger) i, λia =

∏t
b=0,b̸=a

i−b
a−b

and then f(i) =
∑t

a=0 λiaf(a).

Let αia =
∏t

b=0,b ̸=a(i− b) and βa =
∏t

b=0,b̸=a(a− b). Then

we have λia = αia
βa

for any (integer) i. In this article, we call
such λia’s the Lagrange interpolation coefficients.
The Lagrange interpolation also works in Zm, where m =

p′q′ is the product of two (large) primes [22]. That is, for
any subset of t points in {1, 2, · · · , n}, the sample values of
f(x) mod m at these points uniquely determine the value
of f(x) mod m at any other point in {1, 2, · · · , n}. (This
follows from the fact that the corresponding Vandermonde
matrix is invertible modulo m, since its determinant is rel-
atively prime to m [22].) We will apply this idea in Section
5.2.

4. FORMAL DEFINITIONS

4.1 Framework
A time-based key management scheme consists of the fol-

lowing five algorithms:

• Setup(1µ, n, t, l): On input an unary string 1µ for an
integer µ which acts as the security parameter, an in-
teger n as the total number of sensor nodes, an integer
t as the maximum number of nodes that the adversary
may corrupt and an integer l as the total number of
time periods for user subscription, output the master
secret key K (along with certain public parameters).
This is the only probabilistic one among all five algo-
rithms.

• NodeKeyGen(K, i): On input the master secret key
K and a node index i, output the secret key ki,∗ for
node i.

• UserKeyGen(K,J): On input the master secret key
K and a set J of time periods, output the secret key
k∗,J for a mobile user subscribing to all the time peri-
ods j ∈ J .

• NodeKeyDer(ki,∗, j): On input a secret key ki,∗ and
a time period j, output the encryption key ki,j for node
i.

• UserKeyDer(k∗,J , i, j): On input a secret key k∗,J of
a set J of time periods, output the decryption key ki,j
for the user subscribing to J .

The control center performs Setup to select the master
secret key, and then issues the node keys and user keys to
sensor nodes and mobile users by invoking NodeKeyGen
and UserKeyGen, respectively. After that, a sensor node
performs NodeKeyDer to derive its encryption key for the
current time period j, and an entitled mobile user performs
UserKeyDer at time period j ∈ J with respect to a corre-
sponding node to derive the same key for decryption. That
is, NodeKeyDer and UserKeyDer independently gener-
ate the same ki,j with regard to any given node-time index
pair (i, j) for i ∈ {1, 2, · · · , n}, j ∈ J ⊆ {1, 2, · · · , l}.

4.2 Security Model
The security of a (t, n)-threshold time-based key manage-

ment scheme is defined by the following game between an
adversary A and a challenger C.

Setup. C invokes Setup(1µ, n, t, l) to select the master se-
cret key K.

Query Phase 1. A can query the following oracles:

• NodeExt(i): C responds with

ki,∗ ← NodeKeyGen(K, i).

This oracle can be only queried for up to t differ-
ent i’s.

• MobiExt(J): C responds with

k∗,J ← UserKeyGen(K, J).

Challenge. A selects (̂i, ĵ), where î has never been called

in NodeExt and any J with ĵ ∈ J has never been
called in MobiExt. Then C flips a fair coin b ∈ {0, 1}.
If b = 0, C responds with a random element chosen
from the key space. If b = 1, C responds with the real
session key kî,ĵ ← NodeKeyDer(kî,∗, ĵ).

Query Phase 2. C responds to the queries from A as in
Query Phase 1, but neither NodeExt(̂i) nor any Mo-

biExt(J) with ĵ ∈ J is permitted; otherwise, A triv-
ially obtains kî,ĵ .

Guess. A outputs his guess b′ on b. If b′ = b, A wins the
game.

The above game has modeled the potential attacks on
the scheme: the adversary can corrupt at most t nodes and
extract their node keys (via NodeExt), and acquire an ar-
bitrary number of user keys (via MobiExt). Therefore, if a
scheme is provably secure in the above model, it can resist
collusion attacks.

Definition 2. A (t, n)-threshold time-based key manage-
ment scheme is secure if for any polynomial time algorithm
A, A’s advantage in the above game AdvA = |Pr[b′ = b]− 1

2
|

is negligible.
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For this work, we consider the slightly restricted “static”
security of a (t, n)-threshold time-based key management
scheme, where A chooses a set of at most t nodes he may
corrupt at the very beginning of the game. That is, in Query
Phase 1 and Query Phase 2, NodeExt is only made to these
pre-determined nodes. Such a static model is the actual one
we shall employ in the security proof of the proposed scheme.

5. OUR PROPOSED SYSTEM

5.1 Protocol Specification
Let n be the total number of sensor nodes in the WSN, t

be the maximum number of nodes that the adversary may
corrupt, and l be the total number of time periods for user
subscription. The symbols and parameters employed are
summarized in an alphabetical order in Table 1.

• Setup(1µ, n, t, l):

1. Choose two distinct primes p′ and q′ of length µ,
so that p = 2p′ + 1 and q = 2q′ + 1 are two large
safe primes.

2. Let e1, e2, · · · , el be the enumeration of the l primes
after n (i.e., el > · · · > e2 > e1 > n). (Note that
µ is large enough so that even el is still far less
than both p′ and q′.)

3. Let N = pq and m = p′q′(= λ(N)
2

).

4. Let H(·) : QRN → K be a cryptographic one-way
hash function, where K is the key space associated
with the symmetric encryption to be employed for
protecting the sensed data.

5. Let F be the factorial of n, i.e., F = n!.

6. Randomly choose a secret s ∈ QRN\{1}, and a
polynomial f(x) of degree t in Zm.

7. Publish (N,H(·), F ) as the public system param-
eters and securely store K = (s, f(x)) as the mas-
ter secret key .

8. For speeding up NodeKeyGen and UserKey-

Gen, sF
2

, and s
f(0)F2

β0 , · · · , s
f(t)F2

βt can be pre-
computed, where βa =

∏t
b=0,b̸=a(a− b).

• NodeKeyGen(K, i): For K = (s, f(x)), output

ki,∗ = sf(i)F
2

mod N.

• UserKeyGen(K,J): For K = (s, f(x)), output

k∗,J = (s
f(0)EJ

F2

β0 , s
f(1)EJ

F2

β1 , · · · , sf(t)EJ
F2

βt ) mod N,

where EJ =
∏l

z=1,z /∈J ez, and βa =
∏t

b=0,b̸=a(a − b)

which is always a factor of F 2.¶

• NodeKeyDer(ki,∗, j): Output

ki,j = H(k
Ej

i,∗ mod N), where Ej =

l∏
z=1,z ̸=j

ez.

¶F 2 is not only for canceling βa such that division in the
exponent is not necessary, but also for the security proof.

• UserKeyDer(k∗,J , i, j): Let k∗,J = (k0, k1, · · · , kt).
For j ∈ J , output

ki,j = H((kαi0
0 kαi1

1 · · · kαit
t )

∏
z∈J\{j} ez mod N),

where αia =
∏t

b=0,b ̸=a(i − b) for a = 0, 1, · · · , t. As
discussed, these αia’s are the numerators of the La-
grange interpolation coefficients involved in computing
f(i) =

∑t
a=0 λiaf(a).

Correctness.
Let λia = αia

βa
=

∏t
b=0,b̸=a

i−b
a−b

, be the Lagrange interpo-
lation coefficients. For j ∈ J ,

k
Ej

i,∗ mod N

= (sf(i)F
2

)EJ
∏

z∈J\{j} ez mod N

= s(λi0f(0)+···+λitf(t))EJF2 ∏
z∈J\{j} ez mod N

= s
(
αi0
β0

f(0)EJF2+···+αit
βt

f(t)EJF2)
∏

z∈J\{j} ez mod N

= (kαi0
0 kαi1

1 · · · kαit
t )

∏
z∈J\{j} ez mod N

That is, the encryption key derived by the node i is the
same as the decryption key derived by the mobile user at
time period j ∈ J .

5.2 Security Proof
We claim the static security (as defined in Section 4.2) of

SMS-SED with the following theorem.

Theorem 1. SMS-SED is a secure (t, n)-threshold time-
based key management scheme when H(·) is modeled as a
random oracle, and under the strong QR-RSA assumption.

Proof. Suppose there is an adversary A breaking our
scheme. Given a strong QR-RSA problem instance (y,N),
where N is a safe RSA modulus and y ∈ QRN , we can con-
struct another polynomial time algorithm B to break the
strong QR-RSA assumption. This is done as follows. After
A chooses the set Ŝ of t nodes he may corrupt, B chooses
i′ ∈R {1, 2, · · · , n}\Ŝ and j′ ∈R {1, 2, · · · , l}, and enumer-
ates the l primes e1, e2, · · · , el after n. Then B prepares

(s
f(0)ej′

F2

β0 , s
f(1)ej′

F2

β1 , · · · , sf(t)ej′
F2

βt ) mod N

by the following four steps:

1. Since y ∈ QRN , there exist s and ŷ such that sŷ ≡ y
(mod N). Since ej′ ≪ p′ and ej′ ≪ q′, ej′

−1 mod m
exists (this still holds even if ej′ itself is not prime be-
cause m = p′q′ has no common divisor with ej′). Let

f(i′) = ej′
−1ŷ mod m such that sf(i

′)ej′ ≡ y (mod N).

Note that B does not know sf(i
′) due to not knowing

the factorization of N (and thus not being able to com-
pute e−1

j′ mod m), but this still implicitly determines

one sample point for f(x) mod m at x = i′.

2. Randomly choose ri ∈ Z⌊N/4⌋. Let sf(i) ≡ yri ≡
sf(i

′)ej′ri (mod N) for i ∈ Ŝ. That is, for these |Ŝ| =
t sample points, it is implicitly defined that f(i) ≡
f(i′)ej′ri (mod m).

3. Compute βa =
∏t

b=0,b̸=a(a− b) for a = 0, 1, · · · , t.
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Table 1: Quick-reference notation: symbols and parameters
ez z-th prime after n (i.e., el > · · · > e2 > e1 > n), z ∈ {1, 2, · · · , l}
ki,∗ node key secretly issued by the control center
k∗,J user key assigned for those subscribing to J
ki,j symmetric session key for data protection as well as data access
l total number of time periods for user subscription (e.g., 4096)
m product of two distinct large primes p′ and q′

n total number of sensor nodes in the WSN (e.g., 2000)
t maximum number of sensor nodes that may be corrupted (e.g., 100)
F factorial of n (i.e., n!)
H(·) a cryptographic one-way hash function of appropriate range and domain
J user subscription set, an arbitrary subset of time indices {1, 2, · · · , l}
N product of two distinct safe primes p (= 2p′ + 1) and q (= 2q′ + 1)
λ(N) Euler’s totient of n, (= lcm(p− 1, q − 1))

4. Apply the Lagrange interpolation to the (t+1) values
of f(x) mod m sampled at the (t+ 1) points: i′ (Step

1) and i ∈ Ŝ (Step 2). Thus B has

f(x) ≡ λxi′f(i
′) +

∑
i∈Ŝ

λxif(i) (mod m),

where λxi′ =
∏

j∈Ŝ
x−j
i′−j

and λxi =
∏

j∈{i′}∪Ŝ,j ̸=i
x−j
i−j

for i ∈ Ŝ. Therefore,

sf(x)ej′ ≡ sλxi′f(i
′)ej′ ·

∏
i∈Ŝ

sλxif(i)ej′ (mod N)

≡ yλxi′ ·
∏
i∈Ŝ

yriλxiej′ (mod N).

For a = 0, 1, · · · , t, B evaluates (sf(x)ej′ ) at a and then

raises it to the power of F2

βa
,

s
f(a)ej′

F2

βa ≡ y
λai′

F2

βa ·
∏
i∈Ŝ

y
riλaiej′

F2

βa (mod N).

As in the actual scheme, F 2 = (n!)2 cancels βa. Simi-
larly, F 2 also cancels the denominators in λai′ and λai, so

B can prepare the above (t + 1) values s
f(a)ej′

F2

βa mod N ,
a = 0, 1, · · · , t, without knowing the factorization of N . Al-
so note that gcd(ez, F

2) = 1 for any 1 ≤ z ≤ l since e1 > n.

Query Phase 1. For the static security setting, since A
may corrupt the nodes with indices in Ŝ, B can just

send to A the keys ki,∗ = sf(i)F
2

mod N = yriF
2

mod

N for all i ∈ Ŝ. B then simulates the other oracles for
A. Without loss of generality, we assume each query
is issued once only.

• MobiExt(J): If j′ ∈ J , B aborts.
Otherwise, B responds with

k∗,J = (s
f(0)EJ

F2

β0 , · · · , sf(t)EJ
F2

βt ) mod N.

As long as j′ /∈ J , such k∗,J can be computed from

(s
f(0)ej′

F2

β0 , · · · , sf(t)ej′
F2

βt ) mod N prepared be-

fore by raising each of the s
f(a)ej′

F2

βa mod N term
to the power of

∏l
z=1,z ̸=j′,z /∈J ez.

• Random oracle H(w): B first checks if wej′ ≡
yEj′F

2

mod N . If not, B responds with a ran-
dom number from the key space K. If the con-

dition holds, since sf(i
′)ej′ ≡ y (mod N), B shall

have wej′ ≡ sf(i
′)ej′Ej′F

2

(mod N). That is, B
encounters a “special” w from A as a random o-

racle query: w ≡ sf(i
′)Ej′F

2

(mod N). Denote

the known sf(i
′) by x. Then B has both y =

xej′ mod N and w = xEj′F
2

mod N. Note that
Ej′ =

∏l
z=1,z ̸=j′ ez and thus

gcd(ej′ , Ej′F
2) = 1. Therefore, with y and w, B

can employ the common modulus attack to com-
pute x mod N , and then provide (x, ej′) as a solu-
tion to the given instance of the strong QR-RSA
problem.

Challenge. Once A decides that Query Phase 1 is over, he
selects (̂i, ĵ) that he targets. If î ̸= i′ or ĵ ̸= j′, B
aborts. Otherwise, B responds with a random value in
K.

Query Phase 2. B responds to the queries as in Query
Phase 1.

Guess. A outputs a guess b′ for b. B terminates.

A’s guess is “ignored”. However, for A to do any thing

“useful”, A should have issued s
f (̂i)F2E

ĵ mod N (i.e., the
“special” w) to the random oracle to get the correct kî,ĵ ,
which helps the computation of x and eĵ .

The simulation succeeds when (̂i, ĵ) = (i′, j′). If A has
non-negligible advantage ε to break our scheme, B can solve
the strong QR-RSA problem with probability ε

(n−t)l
, which

is also non-negligible.

6. FEASIBILITY EVALUATION
There are three kinds of entities involved in our time-

based key management scheme, namely, the sensor nodes
(performing NodeKeyDer), the mobile users (performing
UserKeyDer), and the control center (performing Setup,
NodeKeyGen, and UserKeyGen). The control center
is probably a more powerful server, and the knowledge of
factorization of N = pq can significantly accelerate its op-

erations like computing ki,∗ = sf(i)F
2

mod N by exploiting
the Chinese remainder theorem. A mobile user is usually
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equipped with a device like a PDA or a smart phone. While
definitely weaker than a server, the user key derivation is
not an expensive operation for them. The sensor node is
the one with really limited computing power. In this sec-
tion, we evaluate the processing cost of deriving a session

key ki,j = H(k
Ej

i,∗ mod N) by a node i at time period j.
Note that the computation or storage cost for a sensor node
is mainly affected by l, which indicates that our scheme is
applicable to a very large WSN.

6.1 Case Study Settings
We assume an adversary may corrupt up to 100 out of

2000 sensor nodes, and there are a total of 4096 time pe-
riods allocated by the control center for user subscription.
That is, we set n = 2000, t = 100, and l = 4096 as a case
study. Having l = 4096 is large enough for most real-life
applications. For examples, if each period corresponds to
one hour, l = 4096 corresponds to nearly half a year; if
each period corresponds to one day, l = 4096 corresponds
to more than 11 years. We take the safe RSA modulus to
be |N | = 1024 bits in length, which is the recommended
security level nowadays.
SinceH(·) is a one-way hash function (usually cost-efficient),

the major workload for computing ki,j = H(k
Ej

i,∗ mod N)

may consist of computing the product Ej =
∏l

z=1,z ̸=j ez
regarding 1 ≤ j ≤ l and then computing the (modular)

exponentiation k
Ej

i,∗ mod N . This may be computationally
expensive. However, we shall show that the computation
can be done in a more efficient “divide-and-conquer” man-
ner. Let us begin with how to obtain each ez in Ej .

6.2 Prime Enumeration
In our case study, a sensor node needs l = 4096 primes af-

ter n (e1, e2, · · · , e4096) to derive the session keys. There are
303 primes within n = 2000 (i.e., 2, 3, 5, · · · , 1997, 1999), and
thus a sensor node actually needs to know the first l′ = 4399
primes. To obtain all these l′ primes, at first glance a sensor
node may choose to employ the Sieve of Eratosthenes with
O((d log d)(log log d)) time complexity and O(d) space com-
plexity [21], where d is the total number of integers to sieve
(l′ ≈ d/ ln d according to the prime number theorem). Even
though there is a segmented version of the Sieve of Eratos-
thenes with O(d) time complexity and O(

√
d log log d/ log d)

space complexity [1], this is still too expensive for a sensor
node when d (essentially, l′) becomes significantly large. So
it is unfavorable (if not impractical) for a sensor node to
enumerate the primes by itself.
As a result, we suggest to pre-load the enumeration of

the l primes after n (e1 = 2003, e2 = 2011, · · · , e4096 =
42071) into each sensor node’s memory, specifically, read
only memory (ROM). In other words, a sensor node only
needs to look up in a static table to immediately obtain any
of the l = 4096 primes. The storage for all the l = 4096
primes occupies 59738 bits = 7468 bytes (ignoring the small
encoding overhead), which is fairly acceptable for the current

generation of sensor nodes∥.

6.3 Computation/Storage Tradeoff
∥For example, a MICAz node has 128K bytes of ROM but
only 4K bytes of RAM. Detailed datasheet of the product
is available for download at http://www.openautomation.
net/uploadsproductos/micaz_datasheet.pdf (12/28 ’10).

Figure 2: Sensor’s computation/storage tradeoff for
l = 8. Each stripe (separated by the dashed lines)
suggests a possible approach to computing the de-
sired key by only using exponentiation with an ex-
ponent at most |el| bits.

We know that the product of all l = 4096 primes is of
length 57581 bits and e1, the first prime greater than n =

2000, is 11-bit long. To compute k
Ej

i,∗ mod N for a certain
j, a sensor node needs to compute ki,∗ to the power of a
certain Ej of up to 57570 bits in length (when |ej | = 11).
It reminds us of potential implementation challenges at low-
cost, resource-constrained sensor nodes. We address this
problem by doing the exponentiations separately, and opti-
mize the performance with the help of a key-tree structure,
which trades storage for computation efficiency.

The tradeoff, depicted in Fig. 2 with l = 8 as a simple
illustration, is to have each sensor node pre-loaded with, in
addition to the primes enumeration, certain pre-computed

keys in the form of ki,a∼b = sf(i)F
2 ∏

z∈{1,··· ,l}\{a,··· ,b} ez mod
N , so that a node can compute a session key for a specific
time period more efficiently. When a node is additionally
pre-loaded with 2r pre-computed keys, it only needs to take
one of these keys to the power of the product of ( l

2r
− 1)

ei’s. Assuming the sensor node’s processor can only perform
viable exponentiations where the exponent is of at most |el|
bits in length, the computation can be implemented as ( l

2r
−

1) such viable exponentiations.
In our case study where l = 4096, we have the tradeoff

graph as shown in Fig. 3. We can see that when r = 1, a
node has to store the keys of total length 21× 1024/8 = 256
bytes. When r = 2, a node needs to store the keys of length
22 × 1024/8 = 512 bytes, and so on. For the computational
cost, we consider the heaviest case: a pre-loaded key to the
power of the product of the most lengthy ( l

2r
− 1) primes.

For example, assuming that a sensor node is preloaded with
28 pre-computed keys (i.e., 2r|N |/8 = 256 × 1024/8 = 32K
bytes), it needs to compute a key to the power of a 231-
bit exponent. According to the recent evaluation on sensor
nodes [14], this kind of exponentiation can be done in one
minute even in software implementation (and less than one
seconds in hardware implementation). This seems to be a
reasonable balance for a sensor node. Similarly, one can
appropriately trade storage for computation according to d-
ifferent application conditions. Furthermore, note that the
key-tree as illustrated in Fig. 2 can be reused by a node
i when computing ki,j ’s for different j’s, and thus certain
intermediate results can be cached for better computation
efficiency. For example, caching ki,1∼2 when ki,1 is comput-
ed enables the computation of k1,2 in the next time period
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Figure 3: The computation/storage tradeoff for 4096 time periods

to be done in one small-exponent exponentiation.
Finally, we want to stress that while the storage size may

look logarithmic to the total number of time periods, it is
still independent of the total number of nodes, as we dis-
cussed in Section 2.2.

7. CONCLUSION
Economic research has demonstrated that a subscription-

based payoff model is more profitable than a traffic-based
one for the service owner. We envision a business model for
data provision services in wireless sensor networks, where a
time-based access control is adopted to protect data confi-
dentiality. As an instantiation of the access control mecha-
nism, we proposed SMS-SED, a secure (t, n)-threshold time-
based key management system for secure mobile subscrip-
tion of sensor-encrypted data. The primary feature of the
scheme lies in that the control center can delegate the data
access rights to mobile users with respect to their subscrip-
tion time periods. Our cryptographic construction achieves
provable security even if an adversary can capture up to t
sensor nodes and reveal the stored node keys. We show that
our system is practical for the current generation of wireless
sensor networks and a tradeoff study for balancing between
the processing overhead and the storage cost of a sensor n-
ode. The high efficiency of our system is from the design
principles of making common cases fast and supporting a
right level of security.
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