
Securely Combining Public-Key Cryptosystems

Stuart Haber
STAR Lab, Intertrust Tech.

821 Alexander Road
Princeton, NJ 08540

stuart@intertrust.com

Benny Pinkas
STAR Lab, Intertrust Tech.

821 Alexander Road
Princeton, NJ 08540

bpinkas@intertrust.com

ABSTRACT
It is a maxim of sound computer-security practice that a
cryptographic key should have only a single use. For ex-
ample, an RSA key pair should be used only for public-key
encryption or only for digital signatures, and not for both.
In this paper we show that in many cases, the simulta-
neous use of related keys for two cryptosystems, e.g. for a
public-key encryption system and for a public-key signature
system, does not compromise their security. We demon-
strate this for a variety of public-key encryption schemes
that are secure against chosen-ciphertext attacks, and for a
variety of digital signature schemes that are secure against
forgery under chosen-message attacks. The precise form of
the statement of security that we are able to prove depends
on the particular cryptographic schemes in question and on
the cryptographic assumptions needed for their proofs of
security; but in every case, our proof of security does not
require any additional cryptographic assumptions.
Among the cryptosystems that we analyze in this man-
ner are the public-key encryption schemes of Cramer and
Shoup, Naor and Yung, and Dolev, Dwork, and Naor, which
are all defined in the standard model, while in the random-
oracle model we analyze plaintext-aware encryption schemes
(as defined by Bellare and Rogaway) and in particular the
OAEP+ cryptosystem. Among public-key signature schemes,
we analyze those of Cramer and Shoup and of Gennaro,
Halevi, and Rabin in the standard model, while in the random-
oracle model we analyze the RSA PSS scheme as well as vari-
ants of the El Gamal and Schnorr schemes. (See references
within.)

1. INTRODUCTION
It is conventional wisdom that keys used by different cryp-
tosystems must be independent. This principle was only en-
couraged by the recognition that the textbook versions of
the early public-key cryptosystems based on number-theory
problems had the property that we now call malleability, re-
lated to their random self-reducibility (as first pointed out

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’01, November 5-8, 2001, Philadelphia, Pennsylvania, USA.
Copyright 2001 ACM 1-58113-385-5/01/0011 ...$5.00.

for RSA by [9]). From the very beginning, researchers advo-
cated adding redundancy to messages (as Rabin did in one
of the founding papers of our field [19]), but a sophisticated
understanding of methods to do this, whose security we can
properly analyze, is much newer.
Most proofs of security of a cryptographic scheme assume
that it uses randomly chosen keys that are not used by any
other application; these proofs say nothing about the com-
bined use of two schemes that are secure when used in iso-
lation. In other words, although two cryptosystems C and
C′ might have been proven to be secure by themselves, the
availability of cryptosystem C might reduce the security of
cryptosystem C′ if their respective keys are related.
Encryption schemes and signature schemes are commonly
used in combination, most often with each of them using in-
dependent keys. We study the use of encryption and signa-
ture schemes whose keys are not independent of each other.
As we demonstrate below, it turns out that, in many cases,
a signature scheme can be securely used in combination with
an encryption scheme with which it shares a key.
The need to do this occurs in practice. For example, a
large system may be carefully designed so that all crypto-
graphic operations between parties are performed using pub-
lic keys for a digital signature algorithm (and any encryption
is performed using authenticated session keys generated, say,
by using a Diffie-Helman key exchange). If a new function
is demanded of the system that entails the use of public-key
encryption, it would be desirable to add this capability to
the system without substantially increasing the attendant
overhead of managing new keys and certificates. The rele-
vant engineering considerations can range from the hardware
constraints of small devices to the size of key-management
databases (e.g., of revocation lists). Perhaps the most im-
portant motivation in practice may be the desire to minimize
the number of parts of the existing system where changes
must be made in order to add the new encryption function-
ality, since the trouble entailed by each additional change
may be very high.
Our motivation in addressing the security of cryptosys-
tems with related keys is theoretical as well as practical. It
is worthwhile to investigate the validity of the assertions of
engineering folklore, such as the advice always to use in-
dependent keys in different cryptosystems. More generally,
one shouldn’t just study systems in isolation but rather in
the context of their actual use, as part of and in conjunction
with other systems.
We emphasize that the designer of a system must be very
careful in using two cryptosystems with related keys. The

215

preferred choice should always be to have each cryptosys-
tem use independent keys. Related keys should only be
used when there is a proof, rather than just a heuristic argu-
ment, that the combination is secure. Furthermore, crypto-
graphic security is usually not the only relevant considera-
tion. There are many situations in which the wider context
of their use dictates different requirements for public-key en-
cryption algorithms and digital-signature algorithms in the
same system. Even when it makes sense to use the same
algorithmic primitive—RSA, say—both for encryption and
for signatures, the keys may have different lifetimes in the
two cases, they may have different storage and protection re-
quirements, and they may be subject to different revocation
policies and different access rights. For example, if the digi-
tal signatures should have the property of non-repudiation,
then every signing key should be discarded after its lifetime
has ended; but decryption keys are often archived for the
purposes of later data recovery. In this study we address
only the question of cryptographic security.
To stress the danger of using related keys, we note that in
the realm of symmetric-key cryptography researchers have
developed cryptanalytic attacks (starting with Biham’s re-
sult in [4]) against the use of several instances of the same
encryption scheme with related keys.
While we have been able to prove that, for a number of
different algorithm choices, public-key cryptosystems with
related keys may be used securely in combination, we have
not obtained a general characterization of when this is pos-
sible. This is the subject of on-going study.

1.1 Our approach
The usual method of proving the security of a cryptosys-
tem involves the description of an adversary with precisely
specified powers, which is given a precise challenge. For
example, in the case of an encryption scheme, one sort of
adversary is allowed to query a decryption oracle with ci-
phertexts of its choice, and is then given the challenge of dis-
tinguishing between encryptions of two different messages.
A typical proof of security shows that the existence of a suc-
cessful adversary with a certain bound on its computational
resources (run-time, number of queries, and so on) contra-
dicts a “cryptographic assumption” about the infeasibility
of a specific computational problem.
We are studying the combined use of a pair of public-key
cryptosystems C and C′. In general, each of these may either
be a public-key signature scheme or a public-key encryption
scheme. Now suppose that each of C and C′ has a proof of
security—with a definite class of adversaries, under a defi-
nite cryptographic assumption—when it is used in isolation.
We would like to reason about the combined use of the two
systems where their respective keys are not independent.
Our general approach is to consider an adversary A for
cryptosystem C (the attacked cryptosystem), which we en-
dow with the ability to query an oracle for cryptosystem C′

(the oracle cryptosystem). If cryptosystem C′ is an encryp-
tion scheme we give the adversary access to a decryption
oracle, and if it is a signature scheme we give it access to a
signature-generation oracle. The adversary A can ask this
oracle any legitimate query, including queries based on its
interaction with cryptosystem C.
The desired result is that in this scenario A has no greater
probability of success in attacking system C than it would
if it did not have access to the oracle for system C′. We

prove this property by constructing a simulator that does
not have the private keys of system C, and is able nonethe-
less to answer the adversary’s queries to the C′-oracle in a
manner that is indistinguishable from that of an oracle that
does have full knowledge of the private keys of system C′.
Given such a simulator, the hypothesized security proof
for system C therefore holds as well in the situation where
users combine system C with system C′. If this were not the
case, an adversary that could break the combined system
could be converted into an adversary that breaks C alone.
The two schemes C and C′ may be completely indepen-
dent, using independently chosen key pairs, but we are par-
ticularly interested in the case where they are not indepen-
dent: for example, when C is a signature scheme and C′ is
an encryption scheme, both of them based on the discrete
log or the Diffie-Hellman problem, and a typical combined
use of them involves the choice of a pair of the form (x, gx)
where the exponent x is part of the user’s private key and the
group element gx is part of the public key of both schemes.
The precise relation between the keys in C and the keys in
C′ depends, of course, on the particular schemes C and C′.
If C and C′ are indeed completely independent then it is
easy to see that the combined use of the two schemes to-
gether is secure. If an adversary A can attack C when it
is given oracle access to system C′, then A has exactly the
same probability of success in attacking C when it interacts
instead with a simulator that chooses a C′-instance at ran-
dom, independently of the C-instance under attack. The
simulator is able to answer all queries from A because it has
chosen the private key(s) of the particular C′-instance.
The situation is more complex when the two systems have
related keys: a priori there is no reason for complete knowl-
edge of the keys of cryptosystem C′ to be available to a
simulator, since these keys are not independent of the keys
of cryptosystem C, which must be kept secret from it. It is
therefore unclear whether one could simulate the answers of
a system-C′ oracle to legitimate queries from the adversary.
It is perhaps surprising that in many cases we can simulate
the answers of C′. In some cases this is possible even though
the private key of C′ is identical to that of C, and therefore
the simulator has no information about it. In other cases
the simulator has partial knowledge of the private key of C′,
but no information about certain parts of this key.
If we can prove a similar result about C′ and C with the
roles reversed—with C′ as the attacked cryptosystem, this
time, and C as the oracle cryptosystem—then one may use
C and C′ in combination without compromising the security
of either system due to the presence of the other one.

1.2 Results
Most of this work explores scenarios where the cryptosys-
tems are either encryption schemes or signature schemes.
In the case where the oracle cryptosystem is an encryption
scheme, we provide results for the following schemes:

• In the standard model: the Cramer-Shoup [7] and the
Dolev-Dwork-Naor [10] encryption schemes, which are
secure against adaptive chosen-ciphertext attacks; and
the Naor-Yung scheme [17], which is secure against
non-adaptive chosen-ciphertext attacks.

• In the random-oracle model: a proof for the OAEP+ [23]
encryption scheme, which is an example of a plaintext-

216

aware cryptosystem ([2]), and a sketch of a proof for
the use of plaintext-aware cryptosystems in general.

In the case where the oracle cryptosystem is a signature
scheme, we provide results for the following schemes:

• In the standard model: the Cramer-Shoup [8] and the
Gennaro-Halevi-Rabin [14] signature schemes, whose
security is based on the strong RSA assumption (the
scheme of [14] also relying on an assumption about the
properties of a hash function).

• In the random-oracle model: El Gamal signatures, if
they use a hash function H which is modeled as a ran-
dom oracle, as suggested in [18]; RSA based signatures
according to the PSS construction of [3]; and Schnorr’s
signature scheme [21].

Remark 1: For each oracle cryptosystem we must define
the relation that holds between its private keys and those of
the attacked cryptosystem. In all the systems we explore, we
make the natural assumption that some part of the private
key of the oracle system is part of the private key of the at-
tacked cryptosystem, and is therefore completely unknown
to the simulator. If the private key contains additional infor-
mation, we assume it to have the same distribution as it has
when the oracle system is used in isolation. In many cases—
namely, all the results we provide for cryptosystems whose
security is proved in the random-oracle model—our results
hold even if the simulator has no information whatsoever
about the private key of the oracle cryptosystem.
Remark 2: The attacked cryptosystem is not required
to have any specific type of security (e.g. chosen-ciphertext
security, existential forgery, etc.). We only need to provide
a proof that depends on the properties of the oracle sys-
tem, and this proof ensures that the security of the attacked
system—whatever its actual strength—is not degraded due
to its use in conjunction with the oracle system.
Remark 3: Our main motivation is a scenario in which
one system is an encryption scheme and the other system
is a signature scheme. We refer to this scenario through-
out the paper. There is, however, no obligation to limit the
type of the attacked system. In particular, it could be of
the same type as the oracle system; e.g., both may be en-
cryption schemes. An interesting example is the case of the
Naor-Yung cryptosystem, which is only known to be secure
against non-adaptive attacks. We describe in Section 3.3
a setting with two instances of this scheme having related
keys, which is secure even though the adversary can query
one instance after observing the challenge for the other in-
stance.

2. NOTATION AND DEFINITIONS

2.1 Basic Definitions
We first provide definitions for public key encryption and
signature schemes, and then define their combined use.

Definition 1. (public-key encryption scheme) A public-
key encryption scheme is a triple of polynomial-time algo-
rithms Enc = (K,E,D) as follows:

• The key-generation algorithm K is a probabilistic al-
gorithm taking a security parameter k as input (in
unary), and producing a pair (e, d) of corresponding
public encryption and private decryption keys.

• The encryption algorithm E is a probabilistic algo-
rithm taking as input a public encryption key e and
a message m ∈ {0, 1}∗, and producing as output a ci-
phertext y ∈ {0, 1}∗; we write Ee(m) = y.

• The decryption algorithm D is a deterministic algo-
rithm taking as input a private decryption key d and a
ciphertext string y ∈ {0, 1}∗, and producing as output
either a message m ∈ {0, 1}∗ or a special reject symbol.

We require that if K(k) outputs a key-pair (e, d) and Ee(m)
outputs y, both with positive probability, then Dd(y) = m.

Definition 2. (public-key signature scheme) A pub-
lic key signature scheme is a triple of polynomial-time algo-
rithms Sig = (K,S, V) as follows:

• The key-generation algorithm K is a probabilistic al-
gorithm taking a security parameter k as input (in
unary), and producing as output a pair (s, v) of corre-
sponding private signature and public verification keys.

• The signature algorithm S is a probabilistic algorithm
taking as input a private signature key s and a message
m ∈ {0, 1}∗ and producing as output a signature σ ∈
{0, 1}∗; we write Ss(m) = σ.

• The verification algorithm V is a deterministic algo-
rithm taking as input a public verification key v and a
message-signature pair (m,σ) and producing as output
either accept or reject.

We require that if K(k) outputs a key-pair (v, s) and Ss(m)
outputs σ, both with positive probability, then Vv(m,σ) =
accept; and for any other pair (m′, σ′), Vv(m

′, σ′) = reject.

Definition 3. (combined public-key scheme) Given
an encryption scheme Enc = (K1, E,D) and a signature
scheme Sig = (K2, S, V), the combined public-key scheme
Σ = (Enc, Sig) is a suite of algorithms (K,E,D, S, V).

• The key-generation algorithm K is a probabilistic al-
gorithm that, given a security parameter k, produces
two pairs of keys [(e, d), (v, s)], one for Enc and one
for Sig.

• Encrypting and decrypting are performed with E and
D, and signing and verifying are performed with S and
V , exactly as in the respective stand-alone schemes.

The only difference between the combined scheme and the
original schemes is the key generation algorithm. Typically,
the probability space K(k) chosen by K with security pa-
rameter k will depend on K1(k) and K2(k). The distribu-
tion of (e, d) in K(k) is the same as its distribution in K1(k),
and the same holds for the distribution of (s, v) in K(k) and
K2(k). However the distributions of (e, d) and (s, v) in K(k)
might not be independent. Several examples may be found
in the later sections of this paper.

2.2 Security Definitions
We first describe the setting in which an encryption scheme

Enc is the attacked cryptosystem and a signature scheme Sig
is the oracle cryptosystem; this is the setting for our results
in §4 below.
An encryption-scheme adversary is a probabilistic algo-
rithm A that is meant to attack a given encryption scheme

217

Enc = (K,E,D), along with a specification of its attack sce-
nario, including the experiment that measures its success.
Depending on the scenario, A may or may not have access
to a decryption oracle during certain parts of its run; for
example, if A is limited to chosen-plaintext attacks, then it
cannot access a decryption oracle at all. The attack scenario
may include an experiment along the following lines: After
the choice of a key pair K(k) = (e, d), A is given e and then
runs in two stages, the first of which ends with its output
of a pair of messages; one of these is then chosen at random
and encrypted with Ee(·); the resulting ciphertext is given
to A’s second stage, whose challenge is to guess which of
the two messages was encrypted. One can adapt this gen-
eral definition to obtain the common adversarial models of
chosen-plaintext attack, chosen-ciphertext attack in the pre-
processing mode (or non-adaptive CCA, as defined in [17]),
and chosen-ciphertext attack in the post-processing mode
(or adaptive CCA, as defined in [20]).
If the encryption scheme Enc is used as part of a com-
bined scheme (Enc, Sig) as in Definition 3 above, we may
augment the encryption-scheme adversary by allowing it to
make use of Sig in its attack. This may be formalized with
the following augmented encryption-scheme attack scenario:

Definition 4. (augmented encryption scheme at-
tack) An adversary operates against Enc when it is used as
part of the combined scheme Σ = (Enc, Sig) = (K,E,D, S, V).
The following experiment measures the adversary’s success.

Keys are chosen for the encryption and signature scheme
using the key generation algorithm K(k) = [(e, d), (s, v)].
The adversary is given e and v.

The attack experiment for the adversary attacking Enc is
run, with the following addition: Besides any access that this
attack scenario provides to a Dd(·)-oracle, the adversary is
also allowed to make queries of its choice to an oracle for
Ss(·). That is, the adversary is given legitimate signatures
on messages of its choice. These queries can be made at any
time, even after the challenge is given to the adversary.

Definition 5. (security of an encryption scheme
in a combined public-key scheme) The combined scheme
Σ = (Enc, Sig) does not compromise the security of Enc if
the following holds: for any augmented encryption scheme
adversary A for the combined scheme, there exists an ad-
versary A′ for Enc alone with success probability at most
negligibly worse than the success probability of A (where the
probabilities are taken over the key space and over the ran-
dom choices of the adversary and of the oracles it queries).

In all of the examples for this setting that we consider in
§4 below, A′ operates by:

1. taking the public key e that A′ is given by K1(k);

2. choosing a Sig-key (s, v) so that [(e, d), (s, v)] has the
correct distributionK(k) for the augmented encryption-
scheme attack;

3. running the given adversaryA, while being able to sim-
ulate the answers that A would receive for its queries
to the Ss(·)-oracle.

We have to show that the simulator’s answers are indistin-
guishable from those that A would receive in an actual run
of its attack experiment. The challenge in showing this is

that A′ does not have complete knowledge of the private
signature key s, which is related to the private decryption
key d, which in turn is unknown to A′.

Next we describe the setting in which the signature scheme
Sig is the attacked cryptosystem and the encryption scheme
Enc is the oracle cryptosystem; this is the setting for our
results in §3 below.
A signature-scheme adversary is a probabilistic algorithm

A that is meant to attack a given signature scheme Sig =
(K,S, V), along with a specification of its attack scenario,
including the experiment that measures its success. Depend-
ing on the scenario, A may or may not have access to a sign-
ing oracle during certain parts of its run. In parallel with
our definitions above for the encryption schemes, we next
describe an augmented signature-scheme attack scenario.

Definition 6. (augmented signature scheme attack)
An adversary operates against Sig when it is used as part of
the combined scheme Σ = (Enc, Sig) = (K,E,D, S, V). The
following experiment measures the adversary’s success.

Keys are chosen for the combined scheme using the key
generation algorithm K(k) = [(e, d), (s, v)]. The adversary
is given e and v.

The attack experiment for the adversary attacking Sig is
run, with the following addition: Besides any access that our
attack scenario provides to an Ss(·)-oracle, the adversary is
allowed to make queries to an oracle for Dd(·); that is, the
adversary can decrypt ciphertext strings of its choice.

Definition 7. (security of a signature scheme in
a combined public-key scheme) The combined scheme
Σ = (Enc, Sig) does not compromise the security of Sig if the
following holds: for any augmented signature scheme adver-
sary A for the combined scheme, there exists an adversary
A′ for Sig alone with success probability at most negligibly
worse than the success probability of A.

In all of the examples for this setting that we consider in
§3 below, we construct A′ by:

1. taking the public key v that A′ is given by K2(k);

2. choosing an Enc-key (e, d) so that [(e, d), (s, v)] has the
correct distribution K(k);

3. running the given adversaryA, while being able to sim-
ulate the answers that A would receive for its queries
to the Dd(·)-oracle.

As in the parallel setting for encryption schemes, we have to
show that the simulator’s answers are identical to those that
A would receive in an actual run of its attack experiment.

We can similarly combine two different encryption schemes
or two different signature schemes, making the appropri-
ate changes in the definitions for the two settings described
above. The main issue is not the type of the two cryptosys-
tems that are used together, but rather whether either one
of them affects the security of the other.

218

3. SECURITY IN THE PRESENCE OF EN-
CRYPTION SCHEMES

This section describes several public-key encryption schemes
that can be used in conjunction with a different cryptosys-
tem, typically a signature scheme, while using related keys
and without affecting the security of the other cryptosys-
tem. In other words, the signature scheme is the attacked
cryptosystem and the encryption scheme is the oracle cryp-
tosystem.
For each specific encryption scheme Enc, in order to demon-
strate that Enc can be safely combined with a specific sig-
nature scheme Sig, we must first define the relation between
the private key of Enc and the private key of Sig; that is, we
must specify how the key generation algorithm of the com-
bined scheme operates. In all the schemes we discuss the
following natural relation holds between the keys: One part
of the private key of the encryption scheme, denoted d1, is
also part of the private key of the attacked scheme, and is
therefore completely defined (and unknown to the adversary
in our proofs of security). The rest of the private key of the
encryption scheme, denoted d2, is distributed to ensure that
the combined distribution of d = (d1, d2) has the same dis-
tribution it has when it is generated by the key-generation
algorithm of the encryption scheme alone, subject to the
constraint that d1 has a particular value.
The second step we must take is to show that the con-
ditions required by Definition 7 above are fulfilled: for any
adversary A operating against the combined scheme there
is an adversary A′ operating against the signature scheme
alone (the attacked cryptosystem) with success probability
close to that of A. Therefore, A gains nothing by having
access to the decryption oracle and decrypting ciphertexts
of its choice. This type of result is shown by providing a
simulator S that has exactly the same knowledge that A′

has about the keys of the signature scheme Sig. In particu-
lar, S does not know the secret key, and therefore does not
have full knowledge of the decryption key of the decryption
oracle Dd(·) of Enc. We show that if A interacts with S
it obtains the same information that it obtains interacting
with Enc. Therefore the interaction with Enc does not in-
crease A’s success in breaking Sig to be greater than the
success probability of A′.

3.1 Results
In all the encryption schemes that we study in this section,
the decryption process includes a first stage in which the
validity of the ciphertext is checked, and a second stage in
which the ciphertext is decrypted. The simulators we design
are able to perform the first stage in exactly the same way
as in the original decryption process, while the second stage
must be changed in order to compensate for the fact that
parts of the private key are unknown to the simulator.
In the standard model we give combined-scheme secu-
rity results for several schemes:
We treat the Cramer-Shoup scheme, which provides cho-
sen ciphertext security against adaptive attacks without any
random-oracle assumption, based on the Decision Diffie-
Hellman problem. We also give a sketch of a proof for the
Dolev-Dwork-Naor scheme, which is a generic and less effi-
cient construction that provides the same level of security.
(A brief description of our result concerning this system ap-
pears in §3.3 discussing the Naor-Yung scheme, since the
proof techniques are similar).

The Naor-Yung encryption scheme, which is secure against
non-adaptive (or “lunch-time”) chosen-ciphertext attacks.
This scheme depends on the use of an encryption scheme
that is secure against chosen-plaintext attack, and on the se-
curity of a scheme for non-interactive zero-knowledge proofs.

In the random-oracle model we present results for
the OAEP+ encryption scheme of Shoup [23]. This scheme
satisfies the property of “plaintext-awareness” defined by [2]
in order to describe encryption schemes for which the only
correctly formatted ciphertexts—i.e., the only ciphertexts
that will be decrypted—are those which were computed by
a party that is “aware” of the plaintext. We also sketch a
general proof for plaintext-aware schemes, which turns out
to be rather straightforward.

3.2 The Cramer-Shoup system
The Cramer-Shoup encryption scheme [7] is quite practi-
cal and provides chosen-ciphertext security against adaptive
attacks. This is achieved in the standard security model,
based on the hardness of the Decision Diffie-Hellman prob-
lem in a cyclic group G of large prime order q.
The scheme operates in the following way. We describe
the slight variation given in [22]. (We follow the author’s
notation, which gives different meaning to the symbols e, d
than we gave in §2.)

Key Generation: A group G (along with its size, q), and
random elements g1, g2 ∈ G and x1, x2, y1, y2, z ∈ (Z/qZ)
are chosen. The public key is

(g1, g2, c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1),

together with a universal one-way hash functionH : {0, 1}∗ →
(Z/qZ). The private key is (x1, x2, y1, y2, z).

Encryption: The input is a plaintext messagem ∈ G. The
encryption algorithm chooses a random element r ∈ (Z/qZ)
and computes

u1 = gr
1 , u2 = gr

2 , e = hrm, α = H(u1, u2, e), v = crdrα.

The ciphertext is (u1, u2, e, v).
Decryption: Given a ciphertext (u1, u2, e, v) the decryp-
tion algorithm first computes α and examines the equation
ux1+y1α

1 ux2+y2α
2 = v. If it does not hold then the ciphertext

is rejected; otherwise the output is m = e(uz
1)

−1.
Relation between keys: We consider now what sort of
relation makes sense between the keys of a Cramer-Shoup
instance and the keys of a signature scheme which is used in
combination with it. The most natural scenario is to use the
Cramer-Shoup instance together with a signature scheme
that also uses the group G, having (g1, h) as its public key
and z as its private key. This applies to a number of sig-
nature schemes that are defined over cyclic groups, such as
El Gamal, DSA, or Schnorr’s signature scheme. Let Sig de-
note any of these schemes, using the same group G as our
Cramer-Shoup instance, with (g1, h) as the public verifica-
tion key. The other keys of the Cramer-Shoup instance are
distributed exactly as in the definition of the key generation
of the scheme, independently of the signature system.
Simulating decryption: Given an adversary A that at-
tacks a signature scheme Sig when used together with the
Cramer-Shoup scheme as described above, we construct an
adversary A′ attacking Sig alone. This adversary A′ runs A
as a black box and must therefore simulate the operation of
a decryption oracle for the Cramer-Shoup instance.

219

The adversary A′ operates in the following manner:

1. A′ is given the public key v = (g1, h) of Sig.

2. A′ defines keys for the Cramer-Shoup instance. It
chooses a random exponent x and defines g2 = hx−1

,
where x−1 satisfies xx−1 ≡ 1 mod q (and therefore h =
gx
2). It then chooses random elements x1, x2, y1, y2 ∈ G
and sets c = gx1

1 gx2
2 , d = gy1

1 gy2
2 as in the original

scheme. The distribution of the keys is exactly that
of the keys in the original scheme, subject to the con-
straint that (g1, h) are fixed as part of the public key
of the attacked signature scheme.

3. A′ runs the given adversary A against the combined
use of the two schemes, and provides a decryption or-
acle for the Cramer-Shoup instance. When A asks to
decrypt a ciphertext (u1, u2, e, v) the decryption oracle
first verifies that ux1+y1α

1 ux2+y2α
2 = v, using its knowl-

edge of x1, x2, y1, y2. If this equation holds it computes
the plaintextm = e(ux

2)
−1. (That is, A′ uses its knowl-

edge of logg2
h for performing the decryption, instead

of using logg1
h as in the original scheme).

It can easily be verified that the view of A is identical
to its view in an actual run against a combined instance of
Sig and the Cramer-Shoup scheme, and its probability of
success is therefore unchanged.

3.3 The Naor-Yung System
The Naor-Yung encryption scheme [17] was the first to
provide chosen-ciphertext security (although only against
“lunch-time” attacks, giving chosen-ciphertext security in
the pre-processing mode, and not against adaptive attacks).
Security is proven in the standard model based on a crypto-
graphic assumption and without modeling any function as
a random oracle.
On a high level, the Naor-Yung encryption scheme oper-
ates in the following way: The scheme uses two indepen-
dently chosen instances (E1, E2) of a chosen-plaintext se-
cure encryption scheme, and a noninteractive zero knowl-
edge (NIZK) proof system [5]. To encrypt a message, one
encrypts it twice, once using each of the two encryption keys,
and provides a NIZK proof for the statement that the two
ciphertexts are encryptions of the same plaintext. In the de-
cryption phase the owner of the private key first verifies the
NIZK proof, and if it is valid it decrypts one of the cipher-
texts using one of its private keys. It is important for us that
the verification of the NIZK proof does not require knowl-
edge of the private key, and therefore can be performed by
any party.
Relation between keys: To set the Naor-Yung scheme
in our context we assume that the keys of one of the two
encryption instances, say E1, are related, or possibly equal,
to the keys of the signature scheme Sig and are therefore
unknown to our adversary. The keys of E2 are distributed
according to their original distribution, independently of Sig.
The key of the Naor-Yung scheme also contains a random
string R which is used for the NIZK proofs.
Simulating the decryption oracle: The construction
of a simulator S that provides decryptions of legitimate ci-
phertexts without knowing the private keys of E1 is straight-
forward. The simulator chooses a key pair for E2, and sets
the public key of its encryption scheme to contain the public
keys of E1 and E2 plus a random string R. When S receives

a ciphertext it first checks the NIZK proof to verify that the
two encryptions under the two public keys are of the same
plaintext. If this is correct, it uses the private key of E2 to
decrypt the second encryption. This is the correct decryp-
tion, since the soundness of the NIZK proof ensures that
the two plaintexts are equal. The view of the adversary is
identical to its view in interacting with the combined cryp-
tosystem, up to a negligible error that depends on the error
probability of the NIZK proof.
Combined use of two Naor-Yung schemes: Assume
that the adversary has access to two instances of the Naor-
Yung scheme, NY and NY ′, which share one of their keys.
That is, cryptosystemNY has keys (E1, E2, R) andNY ′ has
keys (E′

1, E
′
2, R

′) with E1 = E′
1, while the other keys are in-

dependent of E1 and of each other. Suppose also that the
adversary can present only “lunch-time” chosen-ciphertext
queries toNY , but can present adaptive queries toNY ′ even
after it receives a challenge for NY . It is somewhat surpris-
ing that this combined scheme does not affect the security
of NY , even though the Naor-Yung scheme is not known to
be secure against adaptive chosen-ciphertext attacks.
To see why this holds, assume that there is an adversary

A that breaks the combined scheme. We show how to use it
to construct an adversary A′ that breaks NY with a lunch-
time attack. A′ first chooses a random E′

2 and R′, and sends
the public keys of NY and NY ′ to A. Before receiving the
challenge ciphertext, it can forward A’s queries about NY
to NY ’s decryption oracle. After receiving the challenge, A
can only ask queries about NY ′, and A′ can answer these
since it knows the decryption key for E′

2.
A sketch of a proof for the Dolev-Dwork-Naor

scheme: The Dolev-Dwork-Naor scheme [10], which pre-
ceded the Cramer-Shoup scheme, provides the same security
against adaptive chosen-ciphertext attacks, using a generic
construction which is considerably less efficient. Without
going into detail, the scheme of [10] uses k pairs of encryp-
tion keys, all chosen according to a scheme which is chosen-
plaintext secure. When a party generates an encrypted mes-
sage it must choose a signature key, and a hash of the cor-
responding verification key chooses one encryption key out
of every pair. Every bit of the message is encrypted with
each of the k chosen keys, and in addition the ciphertext
is signed and contains a NIZK proof of consistency among
the encryptions. The proof that this scheme can be securely
used in combination with a signature scheme is similar to
the proof given for the Naor-Yung scheme. Namely, most of
the keys of the system can be part of the private key of the
attacked scheme and therefore unknown, since it is sufficient
to be able to decrypt only one of the k encryptions of the
message. This is achieved, for example, when one of the k
pairs of encryption schemes is independent of the key of the
attacked cryptosystem. Therefore, in every choice of keys
that is made in the encryption process, one of the two keys
in this pair is used to encrypt the message, and the result
can be decrypted by the simulator. Alternatively, it is suf-
ficient that a large sample of the keys in different pairs are
independent of the key of the attacked cryptosystem, so that
for every encrypted message there is a high probability that
one of these keys is used for encryption, and the resulting
ciphertext can be decrypted by the simulator.
Remark: Our results show that using an encryption scheme
whose keys are related to those of a signature scheme does
not reduce the security of the latter. It seems, therefore,

220

that if encryption scheme E1 provides weaker security than
encryption scheme E2, it should be more difficult to prove
the result with respect to scheme E1 than with respect
to scheme E2. Therefore, the result regarding the Naor-
Yung scheme (which does not provide security against adap-
tive post-processing attacks) seems stronger than the re-
sults regarding the Cramer-Shoup and the Dolev-Dwork-
Naor schemes.

3.4 Plaintext-Awareness and OAEP+

3.4.1 Plaintext-awareness
Plaintext-awareness was introduced by Bellare and Ro-
gaway in [2], and a modified definition was given in [1].
We follow Shoup [23] and call these definitions PA1 and
PA2, respectively. This notion of security applies only in
the random-oracle model.
Intuitively, an encryption scheme provides plaintext aware-
ness if an adversary that sends ciphertext queries to a de-
cryption oracle can only receive decryptions of ciphertexts
for which it is already “aware” of the plaintexts that are
encrypted by these ciphertexts.
This property is captured by the requirement that there be
a plaintext extractor which, given a ciphertext along with a
transcript of the interaction of the adversary with the hash
functions (or any other functions in the scheme) that are
modeled as random oracles, can output the plaintext that
is encrypted by the given ciphertext. Bellare et al. [1] have
shown PA2 to be strictly stronger than adaptive chosen-
ciphertext security in the random-oracle world.
The OAEP scheme [2] was proven to have the PA1 prop-
erty, and its instantiation with the RSA cryptosystem, RSA-
OAEP, is part of two industry standards, PKCS #1, version
2 and IEEE P1363. Recently Shoup [23] has shown that
one cannot prove that the PA1 definition provides adap-
tive chosen-ciphertext security if the proof only uses black
box reductions. (PA1 still provides chosen-ciphertext secu-
rity against non-adaptive attacks.) In addition, Shoup has
suggested a new scheme, OAEP+, which satisfies the PA2
definition (and therefore provides chosen-ciphertext security
against adaptive attacks, as proven in [1]). Very recently,
Fujisaki et al. [13] have shown that RSA-OAEP (namely,
OAEP using the RSA function as the trapdoor permuta-
tion) is secure, and Boneh [6] has given a simpler variant of
OAEP for the RSA and Rabin functions. We will discuss
these cryptosystems in the full version of this paper.
Our aim is to prove that the decryption oracle D of a
plaintext-aware encryption scheme does not help any adver-
sary to break a signature scheme Sig whose keys may be
related to the private keys of the encryption scheme. In-
tuitively this should be true, since the plaintext-awareness
property ensures that by examining a ciphertext and the ad-
versary’s interaction with the random oracle, the plaintext
extractor can provide the plaintext that is encrypted by the
given ciphertext. The plaintext extractor can therefore pro-
vide the adversary with the same answers as D, even though
(like the adversary) it does not know the private keys of D.
We first treat the OAEP+ scheme, and then give a sketch
of a proof for general plaintext-aware cryptosystems.

3.4.2 OAEP+
In this section, we prove the security of a combined public-
key scheme using OAEP+ [23]. An instance of the scheme

uses a trapdoor permutation f , and three functionsG,H,H ′,
modeled as random oracles. The key generation algorithm
chooses a random trapdoor permutation f , whose inverse,
f−1, is the private key. Given a plaintext x, the encryption
is performed as follows: (1) A random string r is chosen. (2)
Define s = (G(r)⊕x)||H ′(r||x), and t = H(s)⊕r. (3) Set the
ciphertext to y = f(s||t). To decrypt a ciphertext y, the de-
cryptor uses the private key to compute x = f−1(y), which
it parses as x = sL||sR||t, and then computes r = H(s)⊕ t,
x = G(r)⊕sL, and c = sR. If c = H ′(r||x), then x is output
as the cleartext; otherwise the ciphertext is rejected.
Relation between keys: Next we prove that it is secure
to use OAEP+ in combination with a signature scheme hav-
ing f−1 as (part of) its private key. This relation completely
defines the keys of OAEP+.
Simulating decryptions: The simulator interacts with
an adversary A and observes its behavior. The simulator
observes the lists of queries that A sends to the three func-
tions that are modeled as random oracles, and the answers
that A receives. (Our proof does not require the simula-
tor to change the oracle responses to these queries.) Let
SG, SH , SH′ denote these lists. The simulator is required to
decrypt the given ciphertext y. In order to do so it follows
the operation of the decryption oracle defined in Game G3
in [23].
In more detail, the simulator examines all the pairs of
(r∗, x∗) ∈ SH′ . For each pair it defines s∗ = (G(r∗) ⊕
x∗)||H ′(r∗||x∗). If s∗ ∈ SH it computes t∗ = H(s∗) ⊕ r∗

and y∗ = f(s∗||t∗). If y∗ = y, it stops and outputs x∗ as the
decryption. It is proven in [23] that the answers of this ora-
cle are negligibly close to the answers of a decryption oracle
that knows the decryption key f−1 of the scheme. This is
exactly the property we require of our simulator.

3.4.3 Plaintext-Awareness in general
We give a sketch of a proof that a plaintext-aware en-
cryption scheme with private key d can be used safely in
combination with a different scheme that uses d as part of
its private key. We describe this for the plaintext-awareness
definition given in [1], definition PA2.
Definition The definition of plaintext-awareness given
in [1] concerns an adversary B that is given a public key,
an oracle for a hash function H that is used by the encryp-
tion algorithm and is modeled as a random oracle, and an
encryption oracle that provides valid encryptions generated
with H as the hash function (but does not provide the cor-
responding plaintexts).
Let Π = (K,E,D) be an encryption scheme. Let B be an
adversary, and let KE be a “knowledge extractor” algorithm
whose running time is polynomial in the length of its inputs.
We describe an experiment of running B and then KE. Let
k be a positive integer.

1. Fix H as a random function from the domain of all
functions with input and output lengths as required
by the encryption algorithm.

2. Run the key generation algorithm to get (e, d) = K(1k).

3. Run the adversary B and record the following data:
(1) The queries that it makes to H, and the corre-
sponding answers. (2) The answers (ciphertexts) given
by the encryption oracle. (3)The ciphertext y gener-
ated by B. The ciphertext y will be a challenge for

221

KE to decrypt. It must hold that y is not among the
answers given by the encryption oracle.

Define the success probability in this experiment to be
the probability that KE, given as input the key e and the
recorded data, outputs the same answer as a decryption or-
acle (which knows the private key) for the query y. The en-
cryption scheme Π is plaintext-aware if it provides chosen-
plaintext security in the sense of indistinguishability; and
there is a knowledge-extractor KE that, for any feasible ad-
versary B, has success probability negligibly close to 1.
Using a plaintext-aware encryption scheme as the

oracle cryptosystem Consider a plaintext-aware encryp-
tion cryptosystem, Enc, which is used in combination with
a signature scheme Sig. As in Definition 3, the combined
key-generation algorithm generates the keys ((e, d), (s, v)) so
that (e, d) and (s, v) might be related, but each pair alone is
distributed according to the distribution of the correspond-
ing cryptosystem. (We capture this relation by making the
most difficult assumption for our proof, namely that d is
part of s).
We prove that the use of the plaintext-aware encryption
cryptosystem Enc does not degrade the security of the signa-
ture scheme Sig. We should therefore demonstrate that for
any adversary A that operates against the combined cryp-
tosystem and tries to break Sig, there is an adversary A′

that runs against Sig alone and has a success probability
which is at most negligibly worse than the success probabil-
ity of A. The adversary A′ will run A as a black box, and
should therefore answer the queries that A generates to a
decryption oracle of Enc.
The setting, including the probability distribution of the
key space, exactly fits the definition of plaintext-awareness.
A′ can therefore run the knowledge extractor KE which pro-
vides answers that are negligibly close to those of a decryp-
tion oracle for Enc. This ensures that the view that A sees
when it is run as a black box by A′ is negligibly close to its
view when it runs against the combined scheme.

4. SECURITY IN THE PRESENCE OF SIG-
NATURE SCHEMES

This section describes several public-key signature schemes
that can be used in conjunction with a different cryptosys-
tem, typically an encryption scheme, that uses related keys.
We prove that the use of the signature scheme does not af-
fect the security of the other cryptosystem. In other words,
the encryption scheme is the attacked cryptosystem and a
signature scheme is the oracle cryptosystem.
For each of these signature schemes, we specify a com-
bined scheme (as in Definition 3) by describing an encryp-
tion scheme (or a family of encryption schemes) with re-
lated keys; and we prove, following Definition 5, that the
combined scheme does not compromise the security of the
encryption scheme being used.
For each scheme we describe the relation that can hold be-
tween the keys of the two schemes without affecting the se-
curity of the encryption scheme. As in §3, the proof method
is to show that an adversary for the encryption scheme gains
nothing by having access to the signature-generation oracle
and asking it to sign arbitrary messages of its choice. This is
demonstrated by constructing a simulator that has exactly
the same information as the adversary, and is able to give
answers that are indistinguishable from those of a signature-

generation oracle with knowledge of the private key of the
signature scheme.

4.1 Results
In the standard model we provide results for the Cramer-
Shoup and the Gennaro-Halevi-Rabin signature schemes. In
the random-oracle world we provide results for the El Gamal
signature scheme, as modified by Pointcheval and Stern [18]
to obtain security against adaptive chosen-message attacks,
for the RSA based PSS scheme of Bellare and Rogaway [3],
and for the Schnorr signature scheme [21]. The proof for the
Schnorr signature scheme will only be provided in the full
version of this paper, since it is similar to the other proofs
we describe in this section.
An interesting property of our constructions of signature
simulators is that none of the simulators has any knowledge
about any part of the private key of the signature scheme
whose signatures it simulates (in contrast to the simulators
for the encryption schemes in the standard model in §3,
where the simulators had partial knowledge of the private
keys). In the standard model the signature simulators are
able to do their job since the public keys are generated in a
special way that gives the simulators additional knowledge,
while preserving the original distribution of the keys. In the
random oracle model the simulators operate by setting the
output of the random oracle to appropriate values.

4.2 The Cramer-Shoup signature scheme
Cramer and Shoup proposed a signature scheme and proved
it to be secure against adaptive chosen-message attacks in
the standard model, under the strong RSA assumption [8].
The scheme is efficient and does not require the signer to
maintain any state (unlike, e.g., the signature scheme of
Dwork and Naor [11], which is not stateless).
The strong RSA assumption is that given an RSA mod-
ulus n and a random z ∈ (Z/nZ)∗, it is infeasible to find
r > 1 and y ∈ (Z/nZ)∗ such that yr = z mod n. The signa-
ture scheme also uses a hash function H which is collision-
intractable. The basic scheme operates as follows:

Key generation: An RSA modulus n = pq is chosen (with
p, q prime). The public key is (n, h, x, e′), where h, x ∈R

QRn (the set of quadratic residues mod n) and e′ is a ran-
dom prime of appropriate length (as defined in [8]). The
private key is (p, q).

Signature generation: To sign a message m, a random
prime e = e′ and a random y′ ∈ QRn are chosen. Compute

an x′ satisfying (y′)e
′
= x′hH(m) mod n, and solve the equa-

tion ye = xhH(x′) mod n for y. The signature is (e, y, y′).
Signature verification: Given (e, y, y′), first check that e
is odd, of the right length, and different from e′. Then
compute x′ = (y′)e

′
h−H(m) mod n, and check whether x =

yeh−H(x′) mod n.
Relation between keys: We show that the Cramer-
Shoup signature scheme with a public key n can be used
in combination with a cryptosystem whose private key in-
cludes the factorization of n. In the proof, the simulator
must forge signatures without knowing the factorization of
n. Note that the only step in which this knowledge is used

is the extraction of the eth root of xhH(x′) in order to com-
pute y, where e is chosen by the signature generation oracle.
The simulator can therefore define the other elements of the
public key so as to enable it to compute these roots. This

222

can be accomplished in the following way. Suppose that the
simulator expects to be required to compute at most & sig-
natures. In order to compute x and h for the public key it
chooses in advance & random values e1, . . . , e�, and two ran-
dom values x0, h0 ∈ QRn. It defines x = x

e1···e�
0 mod n and

h = h
e1···e�
0 mod n. It also chooses e′ as a random prime of

the length required by the original scheme. The public key
is (n, h, x, e′). The key has the same distribution as in the
original scheme, subject to the constraint that n is given.
Operation of the simulator: When the simulator is
required to compute the ith signature, it chooses e = ei. It
then computes the signature in the usual way, except that
y is computed as

(xhH(x′))1/e = x
e1···ei−1ei+1···e�
0 (h

e1···ei−1ei+1···e�
0)H(x′) mod n.

This computation does not require knowledge of the factor-
ization of n. The view of the adversary is identical to its
view in interacting with the combined scheme.

4.3 The Gennaro-Halevi-Rabin Scheme
Gennaro, Halevi and Rabin proposed an efficient and state-
less signature scheme secure against adaptive chosen-message
attacks, based on the strong RSA assumption in the stan-
dard model [14], and on the use of a “chameleon” hash func-
tion. Although the result is similar to the Cramer-Shoup
scheme, the construction is very different, and it is worth-
while to examine our approach in relation to it. The scheme
operates in the following way. (We describe here the variant
that does not require the random-oracle assumption):

Key generation: The public key is composed of a random
RSA modulus n, a random value s ∈ (Z/nZ)∗, and a hash
functionH. The private key is the factorization of n, namely
primes p, q such that pq = n. It is also assumed that p, q are
“safe”, so that finding an odd integer that is not co-prime
with φ(n) is as hard as factoring n.

Signature generation and verification: To sign a message
m the signature algorithm first chooses a random R and
hashes it together with m to get an exponent e = H(R,m).

It then uses p, q to compute σ = s1/e mod n. The signature
is (σ,R). To verify the signature the verifier computes e =
H(R,m) and verifies that σe = s mod n.
In order for the scheme to be secure in the standard model
the hash function must satisfy several properties. For our
purpose, it is only important to know that chameleon hash
functions [15] can be used by the scheme. In particular, we
use the fact that these functions have a trapdoor. With-
out knowledge of this trapdoor the function H is collision-
intractable. If the trapdoor is known then, given m1, R1,m2

it is easy to find an R2 such that H(R1,m1) = H(R2,m2).
Relation between keys: As in §4.2 the public key n is
also the public key of the attacked cryptosystem, and there-
fore the simulator must forge signatures without knowing
the private key, which is the factorization of n. We require
that the public key s be random, as in the distribution of
the keys of the original system, but we provide the simula-
tor with additional useful information about s. We do this
with a technique that is similar to the method used to prove
the security of the scheme in [14]. The key s is chosen in
the following way: Suppose that the simulator expects to be
required to compute at most & signatures. In order to com-
pute s for the public key it chooses H, chooses in advance
2& values R′

1,m
′
1, . . . , R

′
�,m

′
�, and sets ei = H(R′

i,m
′
i) for

1 ≤ i ≤ &. It then chooses a random r ∈ (Z/nZ)∗ and sets

the public key to contain s = re1···e� and the function H.
The distributions of the public key generated by the simula-
tor, and the public key in the original scheme, are different
only in case e1 · · · e� is not co-prime to φ(n), but this event
happens with negligible probability.
Signature simulation: When it is required to sign a
message mi the simulator uses the trapdoor of H to find a
value Ri such that H(Ri,mi) = H(R′

i,m
′
i) = ei. It com-

putes σ = re1···ei−1,ei+1···e� mod n and publishes (σ,Ri) as
the signature. The view of the adversary differs from its
view in interacting with the combined scheme only if the
simulator cannot find a collision in H, which happens with
negligible probability.

4.4 PSS Signatures
In [3], Bellare and Rogaway described an RSA-based sig-
nature scheme for which the ability to forge signatures is
tightly related to the ability to invert the RSA function, in
the random-oracle model. The scheme operates as follows.

Key generation: An ordinary RSA key (n, e, d) is gener-
ated, with n = pq, p and q prime, e relatively prime to
φ(n), and ed ≡ 1 mod φ(n). The modulus n is of length
k > k0 + k1. The public key is (n, e) and the private key is
d. The scheme also makes use of three hash functions, h, g1,
and g2, modeled as random oracles in reasoning about the
scheme’s security.

Signature generation: To sign a message m ∈ {0, 1}∗,
choose r ∈R {0, 1}k0 ; compute w = h(m||r) and r∗ =
g1(w) ⊕ r; let y = 0||w||r∗||g2(w); and return yd mod n as
the signature.

Signature verification: To verify x ∈ (Z/nZ)∗ as a valid
signature for a message m with respect to the public key
(n, e), compute y = xe mod n and parse y as b||w||r∗||γ;
compute r = r∗ ⊕ g1(w); and verify the conditions b = 0,
g2(w) = γ, and h(m||r) = w. The signature is valid iff all
three of the conditions are satisfied.
Relation between keys: We show that an instance of
this signature scheme with RSA modulus n may be com-
bined with any other cryptosystem that uses n as part of its
public key. As in §§4.2 and 4.3, our simulator must be able
to forge signatures without knowing the factorization of n.
Signature simulation: The simulator is given a message

m, for which it must compute a signature without being able
to compute dth roots mod n. It does this by choosing a ran-
dom point x ∈ (Z/nZ)∗, and then choosing random-oracle
responses appropriately so that y = xe mod n is a valid sig-
nature for m. The simulator begins by making sure that
the first bit of y is 0; if not, then it chooses a new x at ran-
dom, and repeats. The simulator parses y as y = 0||w||r∗||γ;
chooses r ∈R {0, 1}k0 ; and then makes the oracle-value as-
signments h(m||r) = w, g1(w) = r ⊕ r∗, and g2(w) = γ.
(As usual, and in order to make sure that the functions are
consistent, the simulator must keep a list of previous input-
output pairs for which it has provided answers for h, g1 and
g2, and if any of these inputs occurs again it must choose a
new random x and repeat the process again.)

4.5 El Gamal Signatures
Pointcheval and Stern [18] provide a version of the El Gamal
signature scheme [12] which is secure against adaptive chosen-
message attacks in the random-oracle model. The scheme is
defined in the following way.

Key generation; The public key is (p, g, h), where p is

223

prime, g is an element with (Z/pZ)∗ = 〈g〉, and h ∈ (Z/pZ)∗.
The private key is x such that h = gx mod p. The system
also uses a hash function H :M × (Z/pZ)∗ → (Z/(p−1)Z),
where the message space is M .

Signature generation and verification: To sign a message
m ∈ M , pick a random k ∈ (Z/pZ)∗, compute r = gk mod
p, s = k−1(H(m, r) − xr) mod (p − 1), and output (r, s).
(The only difference from the El Gamal signature scheme

is that gH(m,r) replaces gm.) To verify (r, s) as a signa-
ture for m with respect to (p, g, h), check whether hrrs =

gH(m,r) mod p.
Relation between keys: We consider an additional
cryptosystem whose private key contains the discrete log
x. Therefore, the only freedom that the simulator has is in
defining the hash function H (modeled as a random oracle).
A signature simulator: The simulator is asked by the
adversary A to compute signatures, and should do so with-
out knowing x = logg(h). The simulator takes advantage of
the fact that since the hash function H is modeled as a ran-
dom oracle, A must compute each value of H independently,
and accepts any randomly chosen value as the output of H
for any specific query. The simulator can therefore observe
the queries that A makes to H, and can manipulate the out-
put of H while being assured that this will not be detected
by A. The only remaining problem is that the signature
requires gH(m,r) to have a specific value, and the simulator
does not know how to extract discrete logs in order to set
the output of H accordingly.
To overcome this problem and forge a signature for a mes-
sage m with respect to the public key (p, g, h), the simulator
chooses random u, v ∈ (Z/(p− 1)Z) with (v, p− 1) = 1, and
computes r = guhv mod p and s = −rv−1 mod (p − 1). It
also sets H(m, r) = us mod (p − 1). It outputs (r, s) as
the signature. This output is a valid signature for m since

hrrs = hrgushvs = hrgushv(−rv−1) mod p. (This “forgery”
technique, adapted here for our simulation, is well known;
see e.g. [16], §11.5.2, Note 11.66 (iii).)1

5. ACKNOWLEDGEMENTS
We wish to thank Xavier Serret-Avila and Marius Schilder
for stimulating discussions that motivated this work.

6. REFERENCES
[1] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway,

Relations Among Notions of Security for Public-Key
Encryption Schemes, Adv. in Cryptology – Proc. of
Crypto ’98, LNCS 1462, pp. 26-45.

[2] M. Bellare and P. Rogaway, Optimal Asymmetric
Encryption Adv. in Cryptology – Proc. of Eurocrypt
’94, Springer-Verlag LNCS 950, pp. 92-111.

[3] M. Bellare and P. Rogaway, The Exact Security of
Digital Signatures: How to Sign with RSA and Rabin,
Adv. in Cryptology – Proc. of Eurocrypt ’96,
Springer-Verlag LNCS 1070, pp. 399-416.

1The adversary may query the simulator for H(m, r) before
it asks the simulator to signm. This happens with negligible
probability, since r is defined by the simulator as a function
of u, v, which are chosen at random. In order to take care
of this event, the simulator keeps a list L of all the queries
to H that were asked by the adversary. If the simulator is
asked to sign m, and it happens to choose u, v that define
an r such that (m, r) ∈ L, then it chooses new values (u, v).

[4] E. Biham, New Types of Cryptanalytic Attacks Using
Related Keys, J. of Cryptology 7(4): 229-246 (1994).

[5] M. Blum, P. Feldman and S. Micali, Non-Interactive
Zero-Knowledge and Its Applications, STOC 1988,
103-112.

[6] D. Boneh, Simplified OAEP for the RSA and Rabin
functions, Adv. in Cryptology – Proc. of Crypto 2001.

[7] R. Cramer and V. Shoup, A Practical Public Key
Cryptosystem Provably Secure Against Adaptive
Chosen Ciphertext Attack, Adv. in Cryptology – Proc.
of Crypto ’98, Springer-Verlag LNCS 1462, 13-25.

[8] R. Cramer and V. Shoup, Signature Schemes Based
on the Strong RSA Assumption, ACM Conference on
Computer and Communications Security 1999, 46-51.

[9] G. Davida, Chosen Signature Cryptanalysis of the
RSA (MIT) Public Key Cryptosystem, TR-CS-82-2,
Dept. of EECS, Univ. of Wisconsin, Milwaukee, 1982.

[10] D. Dolev, C. Dwork and M. Naor, Non malleable
cryptography, SIAM J. Comput. 30(2), pp. 391-437.

[11] C. Dwork and M. Naor, An Efficient Existentially
Unforgeable Signature Scheme and Its Applications,
Journal of Cryptology 11(3), pp. 187-208 (1998).

[12] T. El Gamal, A Public Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms, Adv.
in Cryptology – Proc. of Crypto ’84, Springer-Verlag
LNCS 196, pp. 10-18.

[13] E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern,
RSA-OAEP is Secure under the RSA Assumption,
Adv. in Cryptology – Proc. of Crypto ’2001.

[14] R. Gennaro, S. Halevi and Tal Rabin, Secure
Hash-and-Sign Signatures Without the Random
Oracle, Adv. in Cryptology – Proc. of Eurocrypt ’99,
Springer-Verlag LNCS 1592, pp. 123-139.

[15] H. Krawczyk and T. Rabin, Chameleon hash functions,
Theory of Cryptography Library: Record 98-10, 1998.

[16] A. Menezes, P. van Oorschot and S. Vanstone,
Handbook of Applied Cryptography, CRC Press,
October 1996.

[17] M. Naor and M. Yung, Public-key Cryptosystems
Provably Secure against Chosen Ciphertext Attacks,
STOC 1990, pp. 427-437.

[18] D. Pointcheval and J. Stern, Security Proofs for
Signature Schemes, Adv. in Cryptology – Proc. of
EUROCRYPT 1996, LNCS 1070, pp. 387-398.

[19] M. Rabin, Digitalized Signatures and Public-Key
Functions as Intractable as Factorization,
MIT/LCS/TR-212, 1979.

[20] C. Rackoff and D. Simon, Noninteractive
zero-knowledge proof of knowledge and chosen
ciphertext attack, Adv. in Cryptology – Proc. of
Crypto ’91, pp. 433-444.

[21] C.-P. Schnorr, Efficient Signature Generation by
Smart Cards, J. of Crypt. 4(3), 161-174 (1991).

[22] V. Shoup, Using hash functions as a hedge against
chosen ciphertext attacks, Adv. in Cryptology – Proc.
of Eurocrypt ’2000, LNCS 1807, pp. 275-288.

[23] V. Shoup, OAEP Reconsidered, Adv. in Cryptology –
Proc. of Crypto 2001. A more complete version is
available as: Cryptology ePrint Archive: Report
2000/060 (February 6, 2001).

224

