
A Group Signature Scheme with
Unbounded Message-Dependent Opening

Kazuma Ohara
UEC∗ and AIST†

Tokyo and Ibaraki, Japan
k-ohara@uec.ac.jp

Yusuke Sakai‡
UEC and AIST

Tokyo and Ibaraki, Japan
yusuke.sakai@uec.ac.jp

Keita Emura
NICT§

Tokyo, Japan
k-emura@nict.go.jp

Goichiro Hanaoka
AIST

Ibaraki, Japan
hanaoka-

goichiro@aist.go.jp

ABSTRACT
Group signature with message-dependent opening (GS-MDO)
is a kind of group signature in which only the signers who
have created group signatures on problematic messages will
be identified. In the previous GS-MDO scheme, however,
the number of problematic messages is bounded owing to
a limitation of the Groth-Sahai proofs. In this paper, we
propose the first GS-MDO scheme with the unbounded-
MDO functionality in the random oracle model. Our un-
bounded GS-MDO scheme is based on the short group signa-
ture scheme proposed by Boneh, Boyen, and Shacham and
the Boneh-Franklin identity-based encryption scheme. To
combine these building blocks and to achieve CCA-anonymity,
we also construct a special type of multiple encryption. This
technique yields an efficient construction compared with the
previous bounded GS-MDO scheme: the signature of our
scheme contains about 16 group elements (3630 bits), whereas
that of the previous scheme has about 450 group elements
(75820 bits).

Categories and Subject Descriptors
D.4.6 [Management of Computing and Information
Systems]: Security and Protection—authentication; E.3
[Data]: Data Encryption—public key cryptosystems
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1. INTRODUCTION
Group signature is a kind of digital signature, proposed

by Chaum and van Heyst [9]. Each signer belongs to a
group and can create a group signature, which can be ver-
ified whether it was created by a group member, without
identifying the actual signer. If it is necessary to identify
the signer of a group signature (e.g., a problem that may be
caused by the group signature), only the authority called the
“opener” can identify the corresponding signer of the group
signature. However, since the opener can identify the sign-
ers without any restriction, it seems that the opener’s power
is unfairly strong. For example, there is a possibility that a
non-problematic user will be identified.

To decentralize the power of the opener, Sakai et al. pro-
posed a model for group signature with a new capability,
which is called group signature with message-dependent open-
ing (GS-MDO) [15], where a new authority called the “ad-
mitter” is introduced. If a group signature is found on
a problematic message, the admitter issues a token corre-
sponding to this message, and the opener can identify the
signer of this group signature only when using both the given
token and the opener’s secret key. One of the significant
functionalities of GS-MDO is that no interaction between
the opener and the admitter is required. In other words,
tokens can merely be published by the admitter, and once
the opener receives the token, he is able to open the signa-
tures without any further interaction with any other entity.
Furthermore, once the admitter releases a token for a prob-
lematic message, the opener can open all signatures on that
message.

An application of GS-MDO is an anonymous bulletin board
system, which allows users to post their comments with-
out revealing their own identity. In the case of disputes,
which may be caused by posting inappropriate comments
(e.g., leaking some personal information of others, a crime
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notice, and so on), GS-MDO comes into effect: the admitter
indicates messages that should be prohibited, and the opener
can identify only the writers who have posted inappropriate
comments on the board. Another application of GS-MDO
is an anonymous auction. To bid anonymously, each bid-
der produces a group signature on his bidding price. After
checking the validity of the group signatures, the admitter
issues a token only to open the signatures on the highest
bid, thereby determining the winner(s). One benefit of this
system (compared with applying the conventional group sig-
nature) is that no loser(s) of this auction can be identified
by the opener.
Sakai et al. also presented a generic construction of GS-

MDO from a tag-based key encapsulation mechanism (tag-
based KEM), digital signature, identity-based KEM (IB-
KEM), and non-interactive zero knowledge (NIZK) proof.
Moreover, they gave an instantiation of the generic con-
struction using Shacham’s decision-linear (DLIN) Cramer-
Shoup encryption scheme (actually a tag-based KEM variant
thereof), the Abe-Haralambiev-Ohkubo structure-preserving
signature [2, 1], k-resilient a DLIN variant of the Heng-
Kurosawa IB-KEM [14]), and the Groth-Sahai proof sys-
tem [13], which is used as an instantiation of the NIZK proof
in the standard model.
One of the weaknesses of the specific construction by Sakai

et al. is that it only achieves “k-bounded” security, in the
sense that the number of tokens the admitter can issue must
be determined when the scheme is set up. This stems from
the (in)compatibility of the known identity-based encryption
(IBE) schemes and the Groth-Sahai proof system. As the
implication result by Sakai et al. suggests, using IBE as a
building block to construct a GS-MDO scheme is indispens-
able. Recall a widely used approach for constructing group
signature, in which each group member is assigned a dig-
ital signature and generate group signature by encrypting
that digital signature and prove the validity of encrypted
signature by using an NIZK proof. It is also crucial to
use an non-interactive zero-knowledge proof system to en-
sure “well-formedness” of the encrypted certificate, which
serves as a group signature. Unfortunately, the Groth-Sahai
proof system provides the zero-knowledge property only for
a restricted type of theorem. Basically, when a theorem in-
volves equations between elements of the target group GT ,
the zero-knowledge property is not guaranteed, which is why
the instantiation by Sakai et al. used a k-resilient scheme to
instantiate IB-KEM instead of an ordinary IBE scheme.
Such a k-bounded limitation seems to be unavoidable.

All known IBE schemes (of the discrete-log type) depend
on pairing-type assumptions, and more particularly contain
target-group elements in their ciphertexts. Hence the “well-
formedness” of an IBE ciphertext is described as equations
between target-group elements, for which the Groth-Sahai
proof system does not provide the zero-knowledge property.
Considering the fact that the Groth-Sahai proof system is
currently the only choice for an efficient instantiation of a
zero-knowledge proof system, we have no other way of pro-
viding a proof of this type.
Of course if we want an unbounded GS-MDO scheme, it

is easily possible by applying general NIZK techniques (as in
the BMW/BSZ constructions [4, 5]). However, it might be
hard to achieve an efficient instantiation of the known NIZK
proofs for general NP-languages (The same holds even in the
random oracle model).

From the above considerations, it is difficult to construct
efficient unbounded GS-MDO schemes in the standard model.
Therefore, applying random oracles seems to be a reasonable
solution.

Our Contribution.
In this paper, we propose the first unbounded GS-MDO

scheme in the random oracle model. The proposed scheme
is based on the Boneh-Boyen-Shacham (BBS) group signa-
ture [7], which is one of the most efficient group signature
schemes in the random oracle model. The opening procedure
is implemented by linear encryption, and a user’s certificate
is implemented by the Boneh-Boyen short signature [6]. The
functionality of MDO is realized by adopting the Boneh-
Franklin (BF) IBE [8]. In order to combine the short group
signature and the BF IBE, we replace the linear encryption
with a certain type of 2-out-of-2 multiple encryption.

Note that the BBS scheme satisfies only CPA-anonymity,
the security game of which does not allow the adversary to
access the opening oracle. We make a further improvement
to the above approach to achieve CCA-anonymity. This im-
provement is carried out by changing the “linear”part of the
multiple encryption to a kind of double encryption similar
to the Naor-Yung construction and adding a validity check
component that ensures “well-formedness” of the ciphertext,
which could be reminiscent of the Cramer-Shoup encryption
scheme [11, 12].

For efficiency reasons, to realize the proof, we do not fol-
low the construction of the Cramer-Shoup scheme directly,
but instead use the Fiat-Shamir heuristics. This strategy
yields a more efficient construction compared with that ob-
tained when directly using another DLIN-based CCA-secure
public-key encryption (PKE) is directly used, e.g., Shacham’s
DLIN-variant of the Cramer-Shoup PKE scheme [16].

The proposed scheme simultaneously achieves a higher de-
gree of efficiency and security than the previous scheme by
Sakai et al. The signature contains 16 group elements (3630
bits for 80-bit security), whereas that of the previous scheme
contains about 450 elements (about 76000 bits for the same
security level). Furthermore, the proposed scheme allows
the admitter to issue an unbounded number of tokens, which
is not achieved by the previous efficient construction. See
Section 4 for a detailed comparison.

2. PRELIMINARIES
In this section, we present a formal model of the GS-MDO

proposed by Sakai et al. in [15], and computational assump-
tions for our proposed scheme.

2.1 Group Signature with Message-dependent
Opening

GS-MDO is an extension of group signature, which al-
lows members of the group to sign a message anonymously.
In addition, as described in the introduction, there are two
authorities in GS-MDO, the opener and the admitter. The
admitter is able to issue a token that is specific to a message.
The opener is able to identify the signer of a signature on a
message for which a token from the admitter is available.

A GS-MDO scheme consists of five probabilistic polynomial-
time algorithms (GKg,GSig,GVf,Td,Open). GKg takes as
inputs (1λ, 1n) where λ is a security parameter and n is
the number of group members, and outputs (gpk, ok, ak,
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(gski)1≤i≤n) where gpk is a group public key, ok is an open-
ing key for the opener, ak is the message specification key for
the admitter, and gski is a group signing key for each group
member i. GSig takes as inputs (gpk, i, gski,M) where M is
a message, and outputs a group signature σ. GVf takes as
inputs (gpk,M, σ) and outputs ⊤ or ⊥. Td takes as inputs
(gpk, ak,M) and outputs the token tM for M . Open takes
as inputs (gpk, ok,M, σ, tM ) and outputs i ∈ {1, 2, . . . , n} or
⊥.
Note that in the case where the number of tokens issued

by the admitter is bounded by k (like the Sakai et al.’s
scheme [15]), the group key generation algorithm GKg takes
as input (1λ, 1n, 1k).

2.2 The Security Requirements of GS-MDO
Sakai et al. defined the following three requirements for

a GS-MDO (the definition of these properties is based on
Bellare, Micciancio, and Warinschi’s security model [4]).

Opener Anonymity.
The opener should be unable to identify the signer of any

group signature without cooperation with the admitter, even
if some group members are corrupted. This requirement is
formalized by the following game. Note that, in order to
model anonymity against the opener, we give the opening
key to the adversary in this game.

Definition 1. We say that a GS-MDO scheme Π = (GKg,
GSig,GVf,Td,Open) has opener anonymity if for all proba-
bilistic polynomial-time adversaries A, the success probabil-
ity of A in the following game between a challenger is negli-
gible in the security parameter λ.

Setup. The challenger runs GKg(1λ, 1n) and obtain (gpk,
ok, ak, (gski)1≤i≤n). Then the challenger sends (gpk,
ok, (gski)1≤i≤n) to A.

Token Query I. A is allowed to interact with a token or-
acle. For a token query for M , the challenger runs
Td(gpk, ak,M) to obtain tM and return tM to A.

Challenge. At some point A requests a challenge for i0, i1 ∈
{1, . . . , n} and a message M∗. The challenger chooses
a random bit b, and return GSig(gpk, gskib ,M

∗). In
this phase A is forbidden to submit M∗ which is al-
ready queried in Token Query I.

Token Query II. A continues to query tokens. In this
phase A is forbidden to query M∗ which is submitted
in challenge phase.

Guess. A outputs a bit b′. The advantage of A is defined
by the absolute difference between the probability that
b′ is equal to b and 1/2.

Admitter Anonymity.
The admitter should be unable to identify the signer of any

group signature without cooperation with the opener, even
if some group members are corrupted. This requirement is
formalized by the following game. Note that, in order to
model anonymity against the admitter, we give the message
specification key to the adversary in this game.

Definition 2. We say that a GS-MDO scheme Π = (GKg,
GSig,GVf,Td,Open) has admitter anonymity if for all prob-
abilistic polynomial-time adversaries A, the success proba-
bility of A in the following game between a challenger is
negligible in the security parameter λ.

Setup. The challenger runs GKg(1λ, 1n) and obtain (gpk,
ok, ak, (gski)1≤i≤n). Then the challenger sends (gpk,
ak, (gski)1≤i≤n) to A.

Open Query I. A is allowed to interact with an open ora-
cle. For an open query for (M,σ), the challenger runs
Td(gpk, ak,M) to obtain tM and return Open(gpk, ok,
M, σ, tM ) to A.

Challenge. At some point A requests a challenge for i0, i1 ∈
{1, . . . , n} and a message M∗. The challenger chooses
a random bit b, and return GSig(gpk, gskib ,M

∗).

Open Query II. A continues to query tokens. In this phase
A is forbidden to query σ∗ which is submitted in chal-
lenge phase.

Guess. A outputs a bit b′. The advantage of A is defined
by the absolute difference between the probability that
b′ is equal to b and 1/2.

Traceability.
Even the opener and the admitter collude, they should

not be able to produce any forged signature or untraceable
signature. This requirement is formalized by the following
definition.

Definition 3. We say that a GS-MDO scheme Π = (GKg,
GSig,GVf,Td,Open) has traceability if for all probabilistic
polynomial-time adversaries A, the success probability of A
in the following game between a challenger is negligible in
the security parameter λ.

Setup. The challenger runs GKg(1λ, 1n) and obtain (gpk,
ok, ak, (gski)1≤i≤n). Then the challenger sends (gpk,
ok, ak, (gski)1≤i≤n) to A.

Private Key Query. A is allowed to interact with a pri-
vate key oracle. For a private key query for i, the
challenger returns gski to A.

Signing Query. A is allowed to interact with signing or-
acle. For a signing query for (i,M), the challenger
returns GSig(gpk, i, gski,M) to A.

Forge. A outputs a message-signature pair (M∗, σ∗). The
adversary wins the game if GVf(gpk,M∗, σ∗) = ⊤ and
one of the following conditions (a) and (b) holds: (a)
Open(gpk, ok,M∗, σ∗,Td(gpk, ak,M∗)) = ⊥, or (b)
Open(gpk, ok,M∗, σ∗,Td(gpk, ak,M∗)) = i∗ ̸= ⊥ and
both the signing key of the user i∗ and a signature on
(i∗,M∗) are never queried to the above oracles. The
advantage of A is defined by the probability that A wins
the game.

2.3 The Computational Assumptions
Let G be a probabilistic polynomial-time algorithm that

takes a security parameter 1λ as input and generates a pa-
rameter (p,G,GT , e, g) of bilinear groups, where p is a λ-bit
prime, G and GT are groups of order p, e is a bilinear map
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from G × G to GT , and g is a generator of G. We then
describe several computational assumptions on which the
proposed scheme is based.

The q-strong Diffie-Hellman Assumption.
Let (p,G,GT , e, g)

$←− G(1λ), γ
$←− Z and Ai ← gγ

i

for
i = 0, . . . , q. The q-strong Diffie-Hellman problem in G is
stated as follows: given (g, (Ai)0≤i≤q), output (c, g1/(γ+c))
where c ∈ Z∗

p. The advantage of an algorithm A against the
q-strong Diffie-Hellman problem is defined as

Advq-SDH
A (λ) = Pr[A(g, (Ai)0≤i≤q) = (c, g1/(γ+c)) ∧ c ∈ Zp].

We say that the q-strong Diffie-Hellman assumption holds if
Advq-SDH

A (λ) is negligible in λ for any probabilistic polynomial-
time algorithm A.

The Decision Linear Assumption.
Let u, v, h

$←− G, α, β, r
$←− Zp and g1 ← uα, g2 ← vβ .

The decision linear problem in G is stated as follows: given
(u, v, h, uα, vβ , z), output 1 if z = hα+β , otherwise 0 if z =
hr. The advantage of an algorithm A against the decision
linear problem is defined as

AdvDLIN
A (λ) = |Pr[A(u, v, h, uα, vβ , z) = 1 | z = hα+β ]

− Pr[A(u, v, h, uα, vβ , z) = 1 | z = hr]|.

We say that the decision linear assumption holds if AdvDLIN
A (λ)

is negligible in λ for any probabilistic polynomial-time algo-
rithm A.

The Decision Bilinear Diffie-Hellman Assumption.
Let (p,G,GT , e, g)

$←− G(1λ) and a, b, c, r
$←− Zp. The

decision linear problem in (G,GT ) is stated as follows: given
(g, ga, gb, gc, z), output 1 if z = e(g, g)abc, otherwise 0 if
z = e(g, g)r. The Advantage of an algorithm A against the
decision bilinear Diffie-Hellman problem is defined as

AdvDBDH
A (λ) = |Pr[A(g, ga, gb, gc, z) = 1 | z = e(g, g)abc]

− Pr[A(g, ga, gb, gc, z) = 1 | z = e(g, g)r]|.

We say that the decision bilinear Diffie-Hellman assumption
holds if AdvDBDH

A (λ) is negligible in λ for any probabilistic
polynomial-time algorithm A.

3. THE PROPOSED SCHEME
In this section we describe the proposed scheme and its

security.

Underlying Idea.
Our proposed scheme is based on the BBS group signa-

ture, in which each group member is provided with a (Boneh-
Boyen) signature [6], to certify the membership of the owner.
The group signature consists of two parts: the first part is
the linear encryption of the certificate, while the second part
is the “signature of knowledge” of the encrypted certificate.
The decryption key for the linear encryption, which is held
by the opener, is used to revoke the anonymity of any group
signature.
We extend the BBS group signature scheme by replacing

the linear encryption with a certain type of 2-out-of-2 mul-
tiple encryption of ordinary PKE and IBE. The multiple en-

cryption is designed to ensure that only when both the PKE
and the IBE are decrypted, can the entire ciphertext be
decrypted. Such multiple-encryption can be accomplished
using a simple 2-out-of-2 secret sharing.

This feature enables us to realize the MDO functionality.
If the opener only possesses the decryption key of the PKE
and the admitter holds the master secret of the IBE, the
decryption key of the IBE (under a certain ID) can serve
as the message-dependent token. The multiple encryption
ensures that the opener cannot identify the originator of a
signature even if the opener has the decryption key of the
PKE scheme. Furthermore, if the opener receives the token,
which is merely a derived decryption key of the IBE, the
opener, using both his own decryption key and the message-
specific decryption key received from the admitter, is able
to decrypt the ciphertext included in the group signature,
thereby identifying the originator of the signature.

Our Construction.

GKg(1λ, 1n). The proposed scheme uses two hash functions
H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zp. They are
modeled as random oracles in the security analysis.
Given a security parameter 1λ, the algorithm runs
G(1λ) to generate a parameter of bilinear group (p,
G,GT , e, g). Then the algorithm selects a random el-

ement u, v, h
$←− G \ {1} and random integers ξ1, ξ2,

ξ3, ζ, γ
$←− Zp, sets g1 ← uξ1hξ3 , g2 ← vξ2hξ3 , y ← gζ ,

and w ← gγ . The algorithm then select xi
$←− Zp

and sets Ai ← g1/(γ+xi) for each user i (1 ≤ i ≤ n).
Finally the algorithm outputs the group public key
gpk ← (p,G,GT , e, g, u, v, h, g1, g2, y, w,H1, H2), the
message-specification key ak ← ζ, the opening key
ok ← (ξ1, ξ2, ξ3, (e(Ai, g))1≤i≤n), and the users’ sign-
ing keys (gsk i)1≤i≤n ← (Ai, xi)1≤i≤n.

GSig(gpk , i, gsk i,M). Given an input (gpk , i, gsk i,M), the
algorithm generates a group signature as follows: choose

random α, β, ρ, η
$←− Zp, computes

(T1, T2, T3, T4)← (uα, vβ , hα+β , gα1 g
β
2Aig

η)

and

(T5, T6)← (gρ, e(y,H1(M))ρe(g, g)−η).

Then choose random rα, rβ , rρ, rη, rx, rαx, rβx, rρx,

rηx
$←− Zp, compute

R1 ← urα ,

R2 ← vrβ ,

R3 ← hrα+rβ ,

R4 ← e(T4, g)
rxe(g1, w)−rαe(g1, g)

−rαx

· e(g2, w)−rβe(g2, g)
−rβxe(g, w)−rηe(g, g)−rηx ,

R5 ← grρ ,

R6 ← e(y,H1(M))rρe(g, g)−rη ,

R7 ← T rx
1 u−rαx ,

R8 ← T rx
2 v−rβx ,

R9 ← T rx
5 g−rρx ,

R10 ← T rx
6 e(y,H1(M))−rρxe(g, g)rηx ,
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compute c← H2(M,T1, . . . , T6, R1, . . . , R10), and fur-
ther computes

sα ← rα + cα,

sβ ← rβ + cβ,

sρ ← rρ + cρ,

sη ← rη + cη,

sx ← rx + cxi,

sαx ← rαx + cαxi,

sβx ← rβx + cβxi,

sρx ← rρx + cρxi,

sηx ← rηx + cηxi.

Finally let σ be

(T1, . . . , T6, c, sα, sβ , sρ, sη, sx, sαx, sβx, sρx, sηx)

and output σ as the group signature.

Remark 1. The above R1, . . . ,R10, c, sα, sβ , sρ, sη, sx,
sαx, sβx, sρx, and sηx come from a Schnorr-type protocol
that proves knowledge α, β, ρ, η, and x satisfying the equa-
tions

T1 = uα,

T2 = vβ ,

T3 = hα+β ,

e(g, g) = e(T4g1
−αg2

−βg−η, wgx),

T5 = gρ,

T6 = e(y,H1(M))ρe(g, g)−η.

More concretely, introducing four intermediate variables δ1,
δ2, δ3, and δ4 (which are intended to be δ1 = αx, δ2 =
βx, δ3 = ρx, and δ4 = ηx), the underlying protocol proves
knowledge α, β, ρ, η, x, δ1, δ2, δ3, and δ4 satisfying the
equations

T1 = uα,

T2 = vβ ,

T3 = hα+β ,

e(g, g)/e(T4, w) = e(T4, g)
xe(g1, w)−αe(g1, g)

−δ1

· e(g2, w)−βe(g2, g)
−δ2

· e(g, w)−ηe(g, g)−δ4 ,

T5 = gρ,

T6 = e(y,H1(M))ρe(g, g)−η,

1 = T x
1 u

−δ1 ,

1 = T x
2 v

−δ2 ,

1 = T x
5 g

−δ3 ,

1 = T x
6 e(y,H1(M))−δ3e(g, g)δ4 .

GVf(gpk ,M, σ). Given gpk , M and σ, the algorithm verifies
the signature as follows. The algorithm computes R′

1,
R′

2, R
′
3, R

′
4, R

′
5, R

′
6, R

′
7, R

′
8, R

′
9, and R′

10 by letting

R′
1 ← usαT−c

1 ,

R′
2 ← vsβT−c

2 ,

R′
3 ← hsα+sβT−c

3 ,

R′
4 ← e(T4, g)

sxe(g1, w)−sαe(g1, g)
−sαx

· e(g2, w)−sβe(g2, g)
−sβx

· e(g, w)−sηe(g, g)−sηx

· (e(g, g)/e(T4, w))−c,

R′
5 ← gsρT−c

5 ,

R′
6 ← e(y,H1(M))sρe(g, g)−sηT−c

6 ,

R′
7 ← T sx

1 u−sαx ,

R′
8 ← T sx

2 v−sβx ,

R′
9 ← T sx

5 g−sρx ,

R′
10 ← T sx

6 e(y,H1(M))−sρxe(g, g)sηx .

Then the algorithm verifies whether the equation

c = H2(M,T1, . . . , T6, R
′
1, . . . , R

′
10)

holds. If the equation holds, the algorithm outputs ⊤,
otherwise outputs ⊥.

Td(gpk , ak ,M). Given gpk , ak = ζ, and M , the algorithm
generates a token tM as tM ← H1(M)ζ and outputs
tM .

Open(gpk , ok ,M, σ, tM ). Given gpk , ok , M , σ, and tm, the
algorithm first verifies the signature using the algo-
rithm GVf. If the signature is invalid, the algorithm
outputs ⊥. If the signature is valid, the algorithm then
find i which satisfies the equation

e

(
T4

T ξ1
1 T ξ2

2 T ξ3
3

, g

)
· T6

e(T5, tM )
= e(Ai, g).

When such i exists, the algorithm outputs i, otherwise
outputs ⊥.

The security of our proposed scheme is proved as follows.

Theorem 1. If the decision bilinear Diffie-Hellman as-
sumption holds, the proposed construction has opener ano-
nymity in the random oracle model.

Theorem 2. If the decision linear assumption holds, the
proposed construction has admitter anonymity in the random
oracle model.

Theorem 3. If the q-strong Diffie-Hellman assumption
holds, the proposed construction has traceability in the ran-
dom oracle model.

For the details of the proof of these theorems, see the full
version of this paper.

4. COMPARISON
Finally, we present a brief comparison of the proposed con-

struction and some related constructions in Table 1. Con-
cretely we compare the proposed scheme with the instantia-
tion presented by Sakai et al. [15] and the BBS group signa-
ture scheme, on which the proposed construction is based.

As shown in Table 1, compared with the scheme by Sakai
et al., the proposed scheme realizes improvements in two
aspects: the first is removing the a priori upper bound on the
number of tokens the admitter can issue, while the second is
substantially reducing the signature size. For 80-bit security,
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Table 1: Performance comparison, where DLIN, DBDH, q-SDH, and SFP respectively stand for the decision
linear assumption, the decision bilinear Diffie-Hellman assumption, the q-strong Diffie-Hellman assumption,
and the simultaneous flexible pairing assumption [3]. The bit size for the estimation is given in [10].

Signature length Message-dependent Assumption w/o RO Anonymity
# of [G,Zp,GT ]-elements Opening

Proposed [5,10,1] (3630 bits) unbounded DLIN, DBDH, q-SDH - CCA
Sakai et al. [15] [446,0,0] (75820 bits)1 k-bounded DLIN, SFP ✓ CCA

BBS [7] [3,6,0] (1530 bits) - DLIN, q-SDH - CPA

1This scheme needs an additional (strongly unforgeable) one-time signature scheme, and therefore the total number of group
elements becomes slightly larger, and additional complexity assumptions may be required.

the signature length of our scheme is 3630 bits, while those
of the schemes by Sakai et al. [15] and Boneh et al. [7] are
75820 bits and 1530 bits (the bit size for the estimation is
given in [10]), respectively. These two improvements are
achieved at the cost of using random oracles, as indicated in
the “w/o RO” column in the table.
Compared with the BBS scheme, we believe that the pro-

posed scheme achieves MDO at a relatively reasonable cost
given the increase in signature size. As shown in the table,
the signature size of the proposed scheme is almost twice
as long as that of the BBS scheme, which we believe to be
reasonable. We also note that the proposed scheme achieves
CCA-anonymity, which guarantees a remarkably higher level
of security than the CPA-anonymity achieved by the BBS
scheme.
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