
POSTER: BotFlex: A Community-driven Tool for Botnet
Detection

Sheharbano Khattak
Independent Researcher

sheharbano.k@gmail.com

Zaafar Ahmed,
Affan Syed

SysNet, National Univ. of
Computer & Emerging

Sciences, Pakistan
firstname.lastname@sysnet.org.pk

Syed Ali Khayam
PLUMgrid, Inc.

akhayam@plumgrid.com

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection

Keywords
botnet, network security, correlation

1. INTRODUCTION
Existing botnet detection tools suffer from two primary

limitations: case specificity and rigidity. Case-specific detec-
tion mechanisms leverage instance-specific characteristics of
botnets (typically related to C&C). As a result, the scope of
detection is narrow and tailored to a sub-class of the entire
phenomenon. Similarly, rigidity in design leads to difficul-
ties in (a) accommodating new detection parameters in their
decision policies, (b) tuning/configuring their operation, (c)
modification of decision policies, and (d) simultaneous im-
plementation of multiple decision policies. In addition to
these architectural aspects, flexibility of the tools is further
compromised by unavailability of source-code. Currently,
no tool exists that can be used to easily implement and test
new botnet detection mechanisms.
In this poster we present BotFlex— a community-driven

network-based tool for botnet detection, designed to address
the shortcomings of existing tools identified above. We also
present our first-cut implementation of BotFlex which con-
ceptualizes botnet infection as a complex event detectable
via multiple trigger paths. BotFlex employs a custom corre-
lation framework which detects and curbs botnet threats by
reasoning about vertical (across time) and horizontal (across
multiple entities) events.
Both BotFlex and its correlation framework are released

in open-source for community use [2]. We evaluate BotFlex
for accuracy over 500 GB of enterprise traffic collected from
one of Pakistan’s largest ISPs, Nayatel, with ground truth
obtained using a one-time sample of Team Cymru’s repu-
tation list for the collection duration. By tuning different

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).

ACM 978-1-4503-2477-9/13/11.
http://dx.doi.org/10.1145/2508859.2512507

Figure 1: BotFlex architecture.

parameters, BotFlex demonstrates a better detection accu-
racy with lower false positives than our baseline evaluation
tool BotHunter [3]. Despite encouraging preliminary results,
we acknowledge that BotFlex is still in its infancy and hope
that its built-in design flexibility and extensibility will allow
the community to extend it into an effective and actively
updated tool.

2. BOTFLEX–ARCHITECTURE AND IMPLE-
MENTATION

BotFlex is a network-based botnet detection tool, designed
to be (i)domain specific and community-driven with a view
to conveniently develop, improve upon, and/or benchmark
existing and new botnet detection solutions, (ii)flexible in
fine tuning its detection thresholds and conditions to cater
to varying organizational/deployment accuracy and delay
requirements; and extensible in easy integration of new de-
tection parameters and decision elements to keep up with
the rapidly-evolving botnet threat, (iii)promptly process in-
formation for early detection of threats and subsequently
activate evasive countermeasures, with a (iv)simple user in-
terface to define botnet detection policies and thus improve
end-user productivity.

BotFlex’s architecture (Figure 1) comprises of three mod-
ules: the blacklist manager, the sensor module and the corre-
lation framework. We implement BotFlex over Bro [5]. Bro
has a layered architecture, where low-level network traffic is
incrementally refined to meaningful network events which

1387

CCS’13, November 4–8, 2013, Berlin, Germany.

can be handled at the top-most scripting layer by Bro’s
domain-specific scripting language. BotFlex resides at this
layer and its sensor module and the correlation framework
have been written entirely in the Bro scripting language.
We now discuss BotFlex’s architectural modules, along with
their respective implementation.

Blacklist Manager:. The blacklist manager complements
the sensor module in its operation by providing it with up-
to-date intelligence, such as C&C and The blacklist man-
ager has been implemented as a bash script that downloads
a number of public blacklists [2], organizes the intelligence
based on its subject (IP, URL, subnet, port) and normalizes
it according to a specific format. BotFlex reads the black-
lists into a fast data structure that is synchronized with the
back end blacklists. The blacklist manager is flexible in that
it can be replaced with any other service as long as the
blacklists adhere to the file format used by BotFlex.

Sensor Module:. The sensor module generates symptoms
of botnet infection as events derived from the underlying
NIDS–Bro, thus allowing for information to be processed
and reacted to as it is churned. Events produced by sensor
module may be readily consumed (simple events) or derived
by further processing (derived events). Derived events can
optionally involve one or more iterations through the correla-
tion framework. Based on the well-known [1, 3] bot lifecycle
events, the sensor module eventually maps all simple and
derived events to five high-level activity classes: inbound
scan, host exploit, malicious binary (egg) download, C&C
communication and outbound attack. Currently, BotFlex
uses a preliminary list of botnet detection parameters from
existing literature . The sensor module is extremely flexible
as it uses tunable attributes; the threshold values used to
trigger various events, their weights and observation inter-
vals (or time windows) are configurable. Furthermore, being
independent of the correlation framework, the sensor mod-
ule supports addition/removal/modification of detection pa-
rameters as threats evolve without requiring modifications
to the correlation logic.

Correlation Framework:. The correlation framework con-
tinuously receives events from the sensor module and corre-
lates them according to rule(s) specified by the user to derive
the complex event of botnet infection. Note that we input
botnet-related events to the framework, but in principle it is
an independent, self-contained entity capable of processing
any events fed to it.
The correlation framework has been implemented in Bro

scripting language as a Complex Event Processing (CEP)
engine. The present problem of botnet detection clearly
conforms to the CEP model where events are defined with
respect to time, causality and aggregation [4]. CEP allows
correlation of events in real-time to detect a target com-
plex event comprising of multiple simple or complex events.
The choice of CEP makes BotFlex (i) flexible in how sensor
module alerts are correlated; and (ii) extensible in facilitat-
ing addition of new correlation conditions; (iii) with a faster
response because of a temporally-aware, event-driven model
where information is processed as soon as it is churned and
discarded when it is no longer relevant/needed. We have
implemented a declarative correlation rule language that al-
lows flexible processing of events related to botnet infection.

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

T
a

ls
e

 P
o
s
it
iv

e
 R

a
te

False Positive Rate

Rule-1,Rule-2,Rule-2b
Rule-1b

Rule-5,Rule-6,Rule-6b
Rule-5b

Rule-3
Rule-3b

Rule-4,Rule-4b

BotFlex BotHunter

Figure 2: ROC curve for botnet detection with BotFlex and

BotHunter

Correlation framework can handle both vertical and hori-
zontal correlation. 1 The correlation framework is novel in
that it marks the first time a CEP engine has been built
within a non-proprietary NIDS with a view to accelerate in-
formation processing (CEP engine is typically treated as an
external entity to which NIDS alerts are fed). Our approach
has two main advantages: (i) CEP engine built within NIDS
can directly ingest NIDS events and data structures thus re-
ducing the delay incurred due to translation of NIDS events
to an intermediate format when working with an external
CEP engine, (ii) NIDS can readily understand and correlate
events derived from disjoint sources.

3. PRELIMINARY EVALUATION

3.1 Evaluation Dataset and Methodology
We evaluate BotFlex for accuracy over a 500 GB data

trace obtained from one of Pakistan’s leading ISPs, Naya-
tel. The traffic contains 48,606 unique IP addresses of which
381 IP addresses represent Nayatel’s local network statically
assigned to mid-to-small size enterprises. While we assume
that an IP address represents a single machine, we acknowl-
edge that the ISP customers are likely using their public IPs
to represent multiple private (NATed) hosts. However, this
assumption of a one-to-one mapping between public IPs and
bots provides a realistic test environment for deployment of
a real-world bot detection solution.

We obtain ground truth for this data from a one-time
sample of the IP reputation feed provided by Team Cymru.
The ground truth comprises a proprietary threat repository
of known C&C servers identified with the help of a chain of
globally-deployed sensors. These C&C servers (referred to
as the ground truth blacklist henceforth) were being actively
contacted by hosts from the monitored region during our
data collection at the ISP’s B-RAS (between 08:54:49 AM
and 04:13:29 PM PKT on September 18th, 2012). We la-
beled our data on the principle that the hosts in our dataset
that communicate with the ground truth C&C servers are
bots. The ground truth identified 108 (28.3%) of the total

1Vertical correlation performs temporal analysis of events generated
for a single entity. Horizontal correlation deals with spatial analysis
of an event pattern for multiple entities.

1388

Table 1: Description of BotFlex correlation rules.
Namea Rule Description

1 (cnc blacklist OR cnc other) AND (exploit OR

egg OR attack)

C&C and any other malicious

activity

2 cnc blacklist OR (cnc other AND (exploit OR

egg OR attack)

Same as 1, with a direct trigger for

C&C blacklist match

3 (exploit OR egg) AND (cnc blacklist OR

cnc other OR attack))

Evidence of any inbound host

compromise and outbound C&C or

attack

4 cnc blacklist OR ((exploit OR egg) AND

(cnc other OR attack)))

Same as 3, with a direct trigger for

C&C blacklist match

5 (egg AND (cnc blacklist OR cnc other)) OR

(attack AND (cnc blacklist OR cnc other)) OR

(egg AND ATTACK)

Egg download and outbound C&C

or attack, or C&C and attack

6 cnc blacklist OR (egg AND cnc other) OR

(attack AND cnc other) OR (egg AND attack)

Same as 5, with a direct trigger for

C&C blacklist match

aRule{1,...,6}b variations include an OR rule for hosts tagged as part of a spam or scan campaign
through horizontal correlation

381 IP addresses in the data trace as compromised bots.

3.2 Accuracy evaluation
We take a bottom-up approach in evaluating BotFlex in

terms of accuracy. Thus, we first identify the best thresholds
for the sensor module, and then compare different correla-
tion rules to identify the most effective bot detection system.
We run BotHunter [3] on the same dataset as a baseline to
validate our results. For fair evaluation, we do not provide
the ground truth blacklist to either of BotHunter or BotFlex.
We first observe the impact of different threshold values for
threshold-based detection parameters in the sensor module
on bot detection. We then use best ROC operating points to
identify suitable thresholds. We acknowledge that the use of
a bot-labeled ground truth to measure accuracy of specific
sensors (spam, scan etc.) is not perfect; however it remains
a more rigorous approach than setting arbitrary thresholds.
After establishing suitable settings for the sensor mod-

ule, we formulate correlation rule(s) (Table 1) for botnet
detection to identify the strengths and weaknesses of vari-
ous correlation policies. We plot the result of each run on
an ROC curve. Also, note that we removed the detection
parameter ‘inbound scan’ from our rules after noticing that
it is nearly omnipresent (triggered for 341 of our total 381
ISP local hosts) possibly because of legitimate applications
(e.g. p2p peer discovery) and Internet background noise.
We now discuss the insights gathered from the ROC curve

for correlation rules (Figure 2) . Vertical correlation rules in-
dicate that relying heavily on evidence of C&C communica-
tion produces low detection rates. This can be improved by
complementing C&C evidence with other detection param-
eters. For rules Rule{1,2...,6}b involving horizontal correla-
tion, we detect 23 hosts through coordination in spam-like
activties and another 17 are detected based on synchroniza-
tion in outbound scan timings. We generally find that hor-
izontal correlation increases TP with no effect on FP with
the exception of one host in Rule 3b (the latter was found to
be a spambot later through manual investigation). Hence,
horizontal correlation can possibly identify previously unde-
tected bots based on their activity coordination with other
botnet members.
To sum up, BotFlex (with Rule 3) detects 100 of the

ground truth 108 bots, with a TPR of 92.6% and an FPR of
5.8%. These results are comparable with our baseline tool,
BotHunter, which on the same trace gave a TPR of 79.6%
and an FPR of 6.6%. Note that FPR for both the tools could
represent an inflated number as our ground truth is biased
in favor of TP (sensitivity) at the expense of TN (specificity)
(the source of our ground truth claims to have nearly zero
false-positives from their IP reputation feed).

4. CONCLUSION/FUTURE DIRECTIONS
The botnet research community currently lacks an open-

source and community-driven tool to develop with ease, im-
prove upon, and/or benchmark existing and new botnet de-
tection solutions. In this paper, we presented BotFlex–a
domain-specific, flexible and extensible network-based tool
for botnet detection. We evaluated BotFlex for accuracy
while comparing with a relevant baseline tool, and found
the results to be encouraging. Our next research goal is
to evaluate BotFlex’s performance and scale it to increased
traffic volumes while also taking its underlying NIDS plat-
form into account. Additionally, BotFlex will also benefit
from extension of its sensor module alerts and correlation
rules, and enhancement of the correlation framework’s cus-
tom rule language for defining correlation policies.

5. REFERENCES
[1] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A

multifaceted approach to understanding the botnet phenomenon.
In Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, IMC ’06, pages 41–52, New York, NY,
USA, 2006. ACM.

[2] BotFlex. http://sysnet.org.pk/BotFlex. Online. Feb,2013.

[3] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.
Bothunter: Detecting malware infection through ids-driven
dialog correlation. In Usenix Security Symposium, 2007.

[4] D. C. Luckham. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

[5] V. Paxson. Bro: a system for detecting network intruders in
real-time. In Proceedings of the 7th conference on USENIX
Security Symposium - Volume 7, SSYM’98, pages 3–3, Berkeley,
CA, USA, 1998. USENIX Association.

1389

