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Abstract

Communication complexity has always been an important
issue when designing group key distribution systems. This
paper systematically studies what can be achieved for the
most common measures of protocol complexity. Lower
bounds for the total number of messages, the total num-
ber of exchanges, and the number of necessary rounds are
established, whereby models that allow broadcasting have to
be distingunished from those that do not. For every measure
of protocol complexity, we furthermore show that the corre-
sponding bound is realistic for Diffie-Hellman-based proto-
cols by referring to or introducing protocols that match the
bound or exceed it by only one.

1 Introduction

Since the publication of 2-party Diffie-Hellman (DH) key
exchange in 1976, various solutions have been proposed to
extend Diffie-Hellman key exchange to multiparty key dis-
tribution. Most notable and best known among those pro-
posals are the protocols by Ingemarson et al. [[TW82] and
Burmester and Desmedt [BD94]. Beyond the security of
the systems, protocol complexity has always been an im-
portant issue when designing group key distribution sys-
tems. Steiner et al. [STW96), for instance, defined a class of
“generic n-party DH protocols” for which they showed that
security is based on the intractability of the Diffie-Hellman
problem. Subsequently, they introduced two protocols that
have proved to be optimal within the class with respect to
certain measures of protocol complexity. Following this line
of research, we systematically analyze Diffie-Hellman-based
key distribution protocols in terms of protocol complexity
(see [Be97]). Lower bounds for the total number of mes-
sages, the total number of exchanges, and the number of
necessary rounds are established, whereby models that al-
low broadcasting have to be distinguished from those that
do not. For every measure of protocol complexity, we show
that the corresponding bound is realistic for DH-based pro-
tocols by referring to or introducing protocols that match
the bound or exceed it by only one.
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The overall objective of multiparty key distribution sys-
tems is to establish securely, for a distinguished set of users,
a common secret communication key. If the group key is
generated and distributed by a central trusted party, then it
is not necessary to discuss the communication complexity.
Therefore, we are concerned with the efficiency of contrib-
utory group key distribution systems, which interactively
establish a group key such that

- no user is required to hold secret information before
entering the protocol,

- each group member makes an independent contribu-
tion to the group key.

The 2-party Diffie-Hellman key exchange is a simple exam-
ple of a contributory group key distribution system. We call
a contributory key distribution system Diffie-Hellman-
based if its security relies upon the intractability of the
Diffie~-Hellman decision problem; i.e., if the resulting key
is always polynomially indistinguishable from a random
number, presuming the same is true for 2-party DH keys.
This concept is more general than the Diffie~-Hellman-based
“generic n-party DH protocols” introduced by Steiner et
al. [STW96]. They require the keys to be of the form
K = o™""Nn_where Ny,...,N, are the random values
chosen by the individual group members, and assume that
all values ollier ¥¢ with I C {1,...,n} might be revealed
by the protocol.

When studying lower bounds for the communication
complexity of contributory key distribution systems, we dis-
tinguish between messages, exchanges, and broadcasts. A
message is a single package of information sent from one
member to a single other member of the group. In an ex-
change, on the other hand, two parties may simultaneously
exchange a message; i.e., a member M, is allowed to send a
message to party M2, who can simultaneously send a mes-
sage to M). A broadcast is a message sent by a user and
received by every other member of the group. In order to
measure time cormplexity, we assume a synchronous round
model, which presumes synchronized clocks ticking at dis-
crete instances, where each tick is considered to be a new
round. With respect to the design of communication effi-
cient protocols, the following measures of protocol complex-
ity are the ones most commonly found in the literature:

- total messages: total number of messages plus total
number of broadcasts sent according to the protocol.

- total exchanges: total number of exchanges plus to-
tal number of broadcasts necessary in order to perform
the protocol.




- synchronous rounds: minimum number of syn-
chronous rounds required by the protocol, presuming
that every party is allowed to send arbitrarily many
messages with every time tick and to receive arbitrarily
many messages sent by other parties at the beginning
of a round (cf. [BM93] p. 133).

- simple rounds: minimum number of required
synchronous rounds, presuming that every party
sends and receives at most one message per round
(cf. [ABMS87]).

Whereas the total number of messages of a protocol mea-
sures the number of packages sent, the number of exchanges
can be considered to be the number of connections to be
established during a protocol run. It should be mentioned
that, when counting a broadcast as a single message sent, we
implicitly assume that the underlying network is completely
connected. Finally, the number of rounds is obviously an
abstract measure of the time needed to perform the pro-
tocol, where simple rounds are usually considered if send-
ing and receiving messages incurs high costs relative to the
transmission of data, for instance owing to software delays
encountered when moving through the protocol layers. Fur-
thermore, for the formulation of lower bounds for the num-
ber of rounds, the distinction between synchronous and sim-
ple rounds is only relevant if broadcasting is allowed. This
is indeed the case because recording synchronous rounds es-
sentially means to permit broadcasts, i.e., different messages
can be sent to different parties in one combined broadcast.
In the following section, we will prove lower bounds for the
aforementioned measures of protocol complexity and then
discuss various protocols that match the bounds formulated
in Section 3.

2 Bounds for Contributory Key Distribution Systems

Contributory key distribution protocols interactively gener-
ate a common group key including an independent contri-
bution of every group member. With other words, n parties
each contribute a secret random value to a common key,
which has to be known by every party after the protocol
has finished. Considering only the information that has to
be distributed in order to establish a contributory group
key, we observe that each member of the group has a piece
of information, which has to reach every other member of
the group. Therefore, the minimum number of exchanges
or messages needed to distribute this information may serve
as a lower bound for the number of exchanges or messages
required by a contributory key distribution.

The question concerning how many telephone calls are
needed to distribute n pieces of information held by n differ-
ent parties to all the participating parties is known in the lit-
erature as the gossip problem, see [BS72] and [Be72]. Baker
and Shostak [BS72] have shown that the minimum number
of required phone calls is 2-n —4, assuming that n > 4. This
result immediately provides us with a lower bound for the
total number of exchanges required by contributory key dis-
tribution protocols that do not activate broadcasts. In order
to show that this bound is sharp, we introduce a DH-based
protocol that matches the bound in Section 3. With re-
spect to the minimum number of total messages required by
a key distribution protocol without broadcasting, we could
reformulate the gossip problem by replacing the phone calls
by letters or postcards. For the gossip problem in terms of
messages, the following lemma can be proved.

Lemma 1 Let h(n) denote the minimum number of mes-
sages (letters) required by the gossip problem among n par-
ties. Then it holds that h(n) =2-n — 2.

Proof It is not difficult to see that h(n) < 2-n — 2;
for instance, all parties may send their information to one
party, which subsequently distributes the entire informa-
tion to everybody. Therefore it remains to be shown that
h(n) > 2-n — 2, which can be done by induction on n.

Obviously hA(1) = 0 and h(2) = 2. Assume there ex-
ists a protocol A to distribute the information of n + 1
parties Pi,...,Ppq1 with the help of 2 - n» — 1 messages.
There has to be a party P; whose first message M contains
only the information originally held by P;. We now show
that protocol A can be modified to protocol A, which per-
forms the entire information distribution between the par-
ties Pi,... ,Pi-1, Pit1,... , Pp in fewer than 2 - n — 2 mes-
sages. This contradicts the induction assumption; hence
h(n+1)>2.-n=2-(n+1)-2.

Now, if P; does not send any further messages besides
M, then A’ can be derived from A by omitting Af and all
messages addressed to P;. As P; has to receive at least
one message, protocol A’ provides the entire gossip between
Py,...,Pi-1,Piyy,..., P, in fewer than 2 - n — 2 messages.
Otherwise, if P; sends a second message M’ to party P;, then
A’ can be constructed from A by omitting messages M and
M’ and letting P, act for P;. This again provides a gossip
protocol for Py,...,P,_1, Py1,... , Py requiring fewer than
2 - n — 2 messages. (m]

Finally, a lower bound for the number of simple rounds re-
quired by a contributory key distribution protocol withont
broadcasts can also be obtained by activating the informa-
tion distribution argument. As every party is allowed to
send and receive only one message per simple round, the
number of parties who have a certain piece of information
can at most be doubled in each round; i.e., at least d simple
rounds are needed to let 2¢ parties have a piece of infor-
mation. Therefore, the number of simple rounds required
to gossip information between n parties cannot be less than
[logan], where [z] denotes the smallest integer greater than
or equal to « (for the gossip problem it can be shown that the
lower bound for odd n is [logzn]+1; see [Kn75]). From these
results and observations we derive the following bounds for
contributory key distribution systems without broadcasting.

Theorem 1 (without broadcasts) Let P be a contribu-
tory group key distribution system for n parties not using
broadcasts.

1. For the total number of messages ©1(P) required by P
it holds that

p1(P)22-n-2.

2. For the total number of exchanges p2(P) required by
P and n > 4 it holds that

w2(P)>22-n—4.

3. For the number of simple rounds ¢3(P) required by P
it holds that

©3(P) 2 [logan].
The situation changes if broadcasting is allowed. For ex-

ample, Steiner et al. [STW96] introduced a DH-based con-
tributory group key distribution protocol that requires only
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n — 1 messages and one broadcast. Obviously a total of n
messages is optimal because at least every party has to dis-
close its piece of information. Lower bounds for the different
measures of communication complexity for key distribution
systems including broadcasts are summarized in the follow-
ing theorem.

Theorem 2 (with broadcasts) Let P be o contributory
group key distribution system for n parties allowing broad-
casts.

1. For the total number of messages 1¥1(P) required by P
it holds that

¥1(P) 2 n.

2. For the total number of exchanges v2(P) required by
P and n > 3 it holds that

P2(P) > n.

3. For the number of simple rounds v3(P) required by P
it holds that

#3(P) > [logan].

4. For the number of synchronous rounds 1¥4(P) required
by P it holds that

¢1(P) 2 1.

Proof Proposition 2 may be shown by proving that at least
n exchanges or broadcasts are needed to distribute the n
individual pieces of information (gossiping via broadcasts).
This claim is obviously true for n = 3. Assume there exists
an algorithm A to distribute the information of n > 3 parties
which requires fewer than n exchanges and broadcasts. Then
at least one exchange between two parties P; and P; has to
be performed in order to enable every party to disclose its
information. But now, by identifying the parties P; and P;,
an algorithm A’ can be derived from A, that performs the
gossiping for n — 1 parties with fewer than n — 1 exchanges
and broadcasts, which contradicts the induction assumption.

Proposition 3 holds because every party receives at most
one message per simple round and therefore can hold at most
27 messages after round d. O

3 Efficient Diffie~Hellman-Based Protocols

The aim of this section is to demonstrate that the lower
bounds formulated for protocol complexity are realistic for
Diffie-Hellman-based key distribution systems. Therefore,
we summarize and introduce Difie-Hellman-based key dis-
tribution protocols, which are efficient with respect to at
least one of the above measures of protocol complexity.

3.1 Protocols requiring a minimum number of messages

Examples for DH-based key distribution protocols requiring
a minimum number of messages may be found in [STW96].
The protocol GHD.I by Steiner et al. is straightforward,
without broadcasting, and performs with a total of 2 - n —
2 messages. The second protocol they introduce, denoted
GDH.2, requires n messages to be sent, one of which is a
broadcast.

protocol I GED.1 TGHD.2]
messages 2-n—2 n
exchanges 2-n—2 n
simple rounds || 2-n—2 n
syn. rounds 2-n—2 n
bc - 1

3.2 Minimizing the number of exchanges:
The octopus protocol

We now introduce a protocol without broadcasting that re-
quires only 2 - n — 4 exchanges. For the broadcasting case,
no further protocol has to be introduced because the lower
bounds for the number of exchanges and the number of mes-
sages are both n. Therefore, the protocol GDH.2 also proves
that the lower bound for the number of exchanges is sharp
if broadcasting is possible.

In order to describe the subsequent Diffie-Hellman-based
protocols, let G' be a finite cyclic group of order g and let
a be a generator of G (e.g., Diffie and Hellman [DH72] use
G = Z}, where p is a prime). Furthermore, we assume that
the individual participants choose their random secrets from
Zg4. A basic idea of the following protocol is to use a Diffie-
Hellman key computed in one round as a random input for
the subsequent round. Therefore, we further have to assume
that there is a bijection ¢ : G — Z,, which has a short de-
scription. Whether there are appropriate bijections from G
into Z, depends on the group G. In the case that G = Zg,
there is obviously no problem. But if G is supposed to be a
subgroup of a much larger Z, this problem has to be fur-
ther studied for particular groups G and practical solutions

have to be found.
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Before introducing the octopus protacol, we first observe
that four parties A, B, C, and D may generate a group key
using only four exchanges. First, parties A4 and B and par-
ties C and D perform a Diffie-Hellman key exchange gener-
ating keys o®® and o9, respectively. Subsequently, A and
C as well as B and D carry out a Diffie-Hellman key ex-
change using as secret values the keys generated in the first

step; i.e., A (B) sends a*©@™®) to C (to D) while C (D)
sends ") to A (to B) such that A and C (B and D)

can generate the joint key a?(@* )¢

In the octopus protocol, participants P, ... , P, gen-
erate a common group key by first dividing themselves
into five groups. Four participants Ph—3,Pn—2, Pa_1, Pa
take charge of the central control; we denote these partic-
ipants A,B,C, and D, respectively. The remaining par-
ties distribute themselves into four groups {P; | i € Ia},
{Pi| i€ I}, {Pi | i € Ic}, and {P: | i € Ip}, where
Ia,1B,Ic, and Ip are pairwise disjoint, possibly of equal
size, and I4UIgUIcUIp = {1,... ,n—4}. Now P,... ,P,
can generate a group key as follows:

1. For all X € {4,B,C,D} and all i € Ix, the party

X generates a joint key k; with P; by performing a
Diffie-Hellman key exchange.

[ ——

a -~




2. The participants A, B,C, and D perform the 4-party
key exchange described above using the values a =
K(I4),b=K(IB),c= K(I¢), and d = K(Ip), where
K(J) := [l;c; ¢(ks) for J C {1,...,n —4}. There-
after, A, B, 5 and D hold the joint and later group
key

K — a(p(QK(IAUIB))_‘P,(QK(ICUID))
3. We describe this step only for A; the parties B, C, and

D act correspondingly. For all j € I4, the participant
A sends the following two values to P;:

aK(IBUIA\{J'}) a:p(aK(ICUID)).

and
Now P, is able to generate K; first P; calculates
(aK(IBUIA\{J'}))V(kj) = KUaYIB) 514 then K =
(a(p(ah'(lc UID)))¢(QK(IAUIB))

This protocol requires n — 4 exchanges to generate the

DH keys ki, four exchanges for the key agreement between

A, B,C, and D, and finally n — 4 messages to be sent from

A,B,C,Dto B,...,P,_4. Hence the protocol performs a
minimum number of 2 - n — 4 exchanges.

I O i iele
L/ O
N

K _ a(p(aK(IAUIB))'V?(&K(ICUID))

®
\o

protocol octopus
messages 3-n—4
exchanges 2-n—4
simple rounds || 2- [252] +2
syn. rounds 4

be -

3.3 Mlmmlzmg the number of rounds:
The 2%-octopus protocol

The number of simple rounds can be minimized by general-
izing the 1dea of the 4-party key agreement described above.
In general, 2% parties can agree upon a key within d simple
rounds by performing DH key exchanges on the edges of a
d-dimensional cube.

In order to describe formally the cube protocol for 2¢
participants, we identify the 2¢ part1c1pants with the vec-
tors of the d-dimensional vector space GF(2)? and choose a

basis bi,... ,bg of GF(2)%. Now the protocol may be per-
formed in d rounds as follows:

v YOG T Tl i R

.

1. In the first round, every participant ¥ € GF(2)? gen-
erates a random number rz and performs a DH key
exchange with participant ¢ + by using the values ryz
and 7 4By respectively.

i. In the i-th round, every participant ¥ € GF(2)* per-
forms a DH key exchange with participant T+b;, where
both parties use the value generated in round 7 —1 as
the secret value for the key exchange.

In every round, the participants communicate on a maxi-
mum number of parallel edges of the d-dimensional cube (in
round ¢ in the direction g,-); thus, every party is involved
in exactly one DH exchange per round. Furthermore, all
parties share a common key at the end of this protocol be-
cause the vectors b1, ceey B4 form a basis of the vector space
GF(2)%. This cube pattern is also used in [Kn75] to man-
age the gossip problem with a minimum number of rounds.
[Bu90] suggests using parallel classes in more general geo-
metric structures to distribute information between n par-
ties, which might as well serve as a basis for group key dis-
tribution protocols.

In order to formula.te a protocol for an arbitrary number
of participants (# 2¢), which requires a low number of simple
rounds, the 1dea of the octopus protocol can be adopted
agam. In the 2¢-octopus protocol the participants act
as in the octopus protocol introduced above with the only
difference that 2¢ instead of four parties are dlstmgmshed
to take charge of the central control, whereas the remaxmng
n—2% parties divide into 2¢ groups. In other words, in steps
1 and 3 of the octopus protocol, 2¢ participants manage
communication with the rest and in step 2 these 2¢ parties
perform the cube protocol for 2¢ participants. If the number
of participants is n and if d is the largest integer smaller
than logsn, then the 2%¢-octopus protocol requires 1+ d +

= [logan] + 1 simple rounds. In general, we obtain the
following values of protocol complexity for the cube and the
24-octopus protocol.

protocol 29_cube 29_octopus
messages n-d 3.-(n-29)+2%.4
exchanges n-df2 {2-(n— 2d) + 24=1.d
simple rounds d 2-[2of- 2| +d
syn. rounds d 2 +d

be - -

The 2%-octopus protocol is especially interesting because it
provides a tradeoff option between the total number of mes-
sages or exchanges needed and the number of rounds. For
d = 2 (octopus protocol) the number of exchanges is opti-
mal, whereas the number of simple rounds is comparatxvely
hlgh On the other hand, if d satisfies 277! < n < 2%, the
number of simple rounds required is very low and the to-
tal number of messages is high. Furthermore, the protocol
enables the group to decide how many participants should
share control of the protocol.

With the 2%-octopus protocols we have introduced a
class of key distribution systems without broadcasting which
matches the lower bound [logzn] for the total number of
simple rounds if 7 is a power of 2; otherwise the protocols re-
quire [logan]-+1 simple rounds. Furthermore, the 1-octopus
protocol (d = 0) is a protocol that requires two synchronous
rounds, which is at least close to optimal. In other words,
with respect to the bounds formulated for the number of
rounds required by contributory key distribution protocols,
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we have formulated protocols that exceed the bounds by at
most one round. It remains an open question whether there
exist, for n # 2%, protocols (with or without broadcasting)
that require only [logzn] simple rounds. Another interest-
ing question is whether one can formulate a contributory
key distribution system that requires only one synchronous
round.

The protocols introduced should, of course, be elabo-
rated further, for example by including authentication pro-
cedures. But here our main objective was to clarify system-
atically the question of protocol complexity rather than to
design detailed protocols. Therefore we do not discuss re-
finements of those protocols further and conclude this paper
with a security analysis of the protocols.

4 Security of the Protocols

It was claimed in the previous section that the protocols
introduced are Diffie-Hellman-based, which remains to be
proved. The main new building block of those protocols
is the cube protocol for 2¢ participants. Therefore, we re-
strict our discussion to proving that the cube protocol for
2¢ participants is Diffie-Hellman-based; a very similar proof
applies to the 2%-octopus protocol.

In the following, it has to be shown that the key gen-
erated by the cube protocol cannot be distinguished by a
polynomial algorithm from a random number if all values
transmitted during a protocol run are known. This claim
has to be derived under the assumption that the same holds
for the 2-party DH protocol. The method of the subsequent
proof is similar to that used in [STW96] to show that the
class of generic DH protocols is Diffie-Hellman-based.

Let G denote again the group underlying the protocol;
let g be the order of G, a a generator of G, and ¢ a bijection
from G into Z,. Furthermore let d be a positive integer and

X = (Ni,...,Nys) randomly chosen from ng. Now we

consider a cube protocol with 2¢ participants Py,..., Pou,
where P, has chosen N, as the secret starting value. Then

e v(d,X) denotes the ordered 2%-tuple of all values
transmitted during the performance of the cube pro-
tocol (we presume a fixed order) and

® K(d,X) denotes the final common key generated
by the cube protocol with starting values X =
{N1,...,Nya).

Now we consider the probability distribution A4y :=
(v(d, X),y) obtained by the probability of (v(d,X),y) if
od
Xe Zj and y € G are randomly chosen. Furthermore we
define the probability distribution Fy := (v(d, X), K(d, X))
obtained if we chose X randomly from ng. The polynomial
indistinguishability between two probability distributions is
denoted by =pory. Then the claim that the cube protocol

is Diffie-Hellman-based can be expressed as in the following
theorem.

Theorem 3 A1 =pory Fi implies Ay ~poty Fu for every
positive integer d.

Proof [sketch] The implication claimed in the theorem may
be proved by induction on d. First we observe that one can
rewrite v(d, X) with X = (NV1,...,N,qd) as a permutation
of

((d =1, 1), v(d = 1, Xp), 714D, g1 X2)),

where X; = (Nl, ooy N2d.-1) and X = (N24-1+1’ cee ,NQd).
Furthermore, it holds that

K(d, X) = QO(&K(d—l'Xl).K(d—l'Xz)).

In order to show Ag =01y Fu, we define probability dis-

tributions By, Ca, Dy, and Ey on Z2' x G with Ag ol

By =poty Ca Rpoly Da Rpoty Ea Ripoly Fu, which implies

Ag =poty Fa. All of the following probability distributions

are; defined on ng x G by randomly choosing X1, X2 from
2 -1

Z; andy,c1,c2€G:

As = ((d-1,X1),v(d-1,X,),aKE LX)
aK(d—l,Xg)’y),

By = (v(d-1,X1),v(d—1,X2),a%,aX0@"1X2) 4y

Ca (v(d—1,X1),v(d ~- 1, X2), 0, a2, ),

Dy (v(d — 1, X1),v(d — 1, Xa), &, 02, a1 °°2),

E; = (w(d-1,X1),v(d-1,X,),a%,aKd"1X2)
ac;-K(d—l,Xz)),

Fs = (w(d-1,X1),v(d-1,Xz),aKE@"1X1)

oK - LXa) aK(d—l,Xl)-K(d—l,Xz))‘

Proposition I: Ag—1 Rpoty Fy-1 implies Ag pory By.

Assume that there exists a polynomial algorithm that
can distinguish between Ay and By. We show that this
algorithm can be used to distinguish between A4 and Fy_,
in polynomial time as well. Let (¢(d—1,Z), z) be an instance
of Ag—1 =po1y Fi-1. Then we consider the instance X =
(v(d-1,2),v(d~-1,X3),0%,aX@"1X2) 4y of Ay xpor, Ba.
We observe that (v(d—1, Z), z) belongs to Fy—; iff X belongs
to Ag. On the other hand, if (v(d — 1, 2),2) belongs to
Ag-1, then X belongs to By and conversely. This provides
an polynomial algorithm to distinguish between A4 and B;.

Proposition 2: Aa—1 =poty Fy-1 implies By X0y Cg and
Dd Ropoly Ed poly Fd-

This can by proved analogously to Proposition 1.

Proposition 3: Ay Rpory F1 implies Cg &poty Dy.

Again we assume that there exists a polynomial algo-
rithm that can distinguish between C; and Dy. Now let
(u, v, w) be an instance of A; Xpo1y Fi. Then we may con-
struct an instance of Cy ®po1y Dg by X = (v(d—1,X1),v{d—
1, X2), u,v,w) for which the following holds: if (u,v,w) be-
longs to Ai, then X belongs to Cy, and if (u,v,w) belongs
to F1, then X belongs to Dy. This completes the proof. O
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