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Abstract

Communication complexity has al~vays been an important
issue Ivhen designing group key distribution systems. This
paper systematically studies \vhat can be achieved for the
most common measures of protocol complexity. Lo\ver
bounds for the total number of messages, the total num-
ber of exchanges, and the number of necwsary rounds are
established, ~vherebymodels that allo~vbroadcasting have to
be distinguished from those that do not. For every measure
of protocol complexity, we furthermore show that the corre-
sponding bound is realistic for DiffieHellmau-based prot~
COISby referring to or introducing protocols that match the
bound or exceed it by only one.

1 Introduction

Since the publication of 2-party Diffi&Hellman (DH) key
exchange in 1976, various solutions have been proposed to
extend Diffi~Hellman key exchange to multiparty key dis-
tribution. Lfost notable and best known among those pr~
posrds are the protocols by Ingemarson et al. [1TW82] and
Burmester and Desmedt [BD94], Beyond the security of
the systems, protocol complexity has always been an im-
portant issue when dwiguing group key distribution sys-
tems. Steiner et al. [STW96], for instance, defined a class of
“generic n-party DH protocols” for \vhich they showed that
security is based on the intractability of the DiffieHellman
problem. Subsequently, they introduced t~voprotocols that
have proved to be optimal w~ithinthe class \vith respect to
certain measurm of protocol complexity. Following this line
of research, ~vesystematically analyze Difi&Hellman-based
key distribution protocols in terms of protocol complexity
(see [Be97]). Lowrer bounds for the total number of mes-
sages, the total number of exchanges, and the number of
necessary rounds are established, whereby models that al-
low’ broadcmting have to be distinguished from those that
do not. For every measure of protocol complexity, ~veshow
that the corresponding bound is realistic for DH-based pr~
tocols by referring to or introducing protocols that match
the bound or exceed it by only one.
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The overall objective of multiparty key distribution sys-
tems is to establish securely, for a distinguished set of users,
a common secret communication key. If the group key is
generated and distributed by a central trusted party, then it
is not necessary to discuss the communication complexity.
Therefore, ~veare concerned \vith the efficiency of contrib-
utory group key distribution systems, ~vhich interactively
establish a group key such that

no user is required to hold secret information before
entering the protocol,
each group member makes an independent contribu-
tion to the group key.

The 2-party Diffi~Hellman key exchange is a simple examp-
le of a contributory group key distribution system. We call
a contributory key distribution system Diffi*Hellman-
based if its security relies upon the intractability of the
DiffieHellmrm decision problem i.e., if the resulting key
is always polynomially indistinguishable horn a random
number, presuming the same is true for 2-party DH keys.
This concept is more general than the Diffi~Hellman-based
“generic n-party DH protocols” introduced by Steiner et
d. [STW96]. They require the keys to be of the form
K = ON1“.---Nn, where N1,. . . . Nn are the random valu~
chosen by the individual group members, and assume that
al dues a~~GI ‘i ~vith 1 ~ {1,... , n} might be reveaed
by the protocol.

When studying lo~ver bounds for the communication
complexity of contributory key distribution systems, ~vedis-
tinguish between messages, exchangw, and broadcasts. A
message is a single package of information sent from one
member to a single other member of the group. In an ex-
change, on the other hand, t~voparties may simultmeously
exchange a message; i.e., a member Lfl is allowed to send a
message to party Jf2, who can simultaneously send a mw-
sage to Ml. A broadcast is a message sent by a user and
received by every other member of the group. In order to
measure time complexity, \ve~sume a synchronous round
model, \vhich presumes synchronized clocks ticking at dis-
crete instances, ~vhere each tick is considered to be a new’
round. With respect to the design of communication effi-
cient protocols, the following me~ures of protocol complex-
ity are the ones most commonly found in the literature:

- total messages: total number of messages plus total
number of broadcasts sent according to the protocol.

- total exchanges: total number of exchangw plus to
td number of broadcasts necessary in order to perform
the protocol.
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synchronous rounds: minimum number of syn-
chronous rounds required by the protocol, presuming
that every party is allowed to send arbitrarily many
messages with every time tick and to receive arbitrarily
many m=sages sent by other parties at the beginning
ofaround (cf. [Bk193]p. 133).

simple rounds: minimum number of required
synchronous rounds, presuming that every party
sends and receives at most one message Der round.
(cf. [ABh187]).

Whereas the total number of messages of a protocol mea-
sures the number of packages sent, the number of exchang~
can be considered to be the number of connections to be
=tab~ihed during a protocol run. It should be mentioned
that, w’hen counting a broadcast as a single message sent, we
imphcitly assume that the underlying network is completely
connected. Finally, the number of rounds is obviously an
abstract measure of the time needed to perform the pr~
tocol, where simple rounds are usually considered if send-
ing and receiving mmsages incurs high costs relative to the
transmission of data, for instance oting to soft~vare delays
encountered when moving through the protocol layers. Fur-
thermore, for the formulation of lower bounds for the num-
ber of rounds, the distinction between synchronous and sim-
ple rounds is only relevant if broadcasting is allowed. This
is indeed the case because recording synchronous rounds es-
sentially means to permit broadcasts, i.e., different mwsagw
can be sent to different parties in one combined broadcast.
In the follom~ingsection, w’e ~vill prove lower bounds for the
aforementioned measures of protocol complexity and then
discuss various protocols that match the bounds formulated
in Section 3.

2 Bounds for Contributory Key Distribution Systems

Contributory key d~tribution protocols interactively gener-
ate a common group key includlng an independent contri-
bution of every group member. With other w’ords, n parties
each contribute a secret random value to a common key,
n’hich has to be kno~vn by every party after the protocol
h~~ finished. Considering only the information that has to
be distributed in order to establish a contributory group
key, we observe that each member of the group has a piece
of information, which h= to reach every other member of
the group. Therefore, the minimum number of exchanges
or ma~sagtisneeded to distribute this information may serve
as a lo~verbound for the number of exchanges or messagw
required by a contributory key distribution.

The question concerning ho~v many telephone calls are
needed to distribute n pieces of information held by n differ-
ent parties to all the participating parties is known in the lit-
erature as the gossip problem, see [BS72] and [Be72]. Baker
and Shostak [BS72] have shown that the minimum number
of required phone calls is 2. n – 4, assuming that n ~ 4. This
result immediately provides us with a lower bound for the
total number of exchanges required by contributory key dis-
tribution protocols that do not activate broadcasts. In order
to show. that this bound is sharp, ~veintroduce a DH-based
protocol that matches the bound in Section 3. l~lth r~
spect to the minimum number of total messages required by
a key distribution protocol ~vithout broadcasting, we could
reformulate the gossip problem by replacing the phone calls
by letters or postcards. For the gossip problem in terms of
mti%sages,the following lemma can be proved.

Lemma 1 Let h(n) denote the minimum number of mes-
sages (letters) required by the gossip problem among n par-
ties. Then it holds that h(n) =2. n – 2.

Proof It is not difficult to see that h(n) < 2. n – 2;
for instance, dl parties may send their information to one
party, \vhich subsequently distribut~ the entire informa-
tion to everybody. Therefore it remains to be sho~vn that
h(n) >2. n – 2, which can be done by induction on n.

Obviously h(1) = O and h(2) = 2. Assume there ex-
ists a protocol A to distribute the information of n + 1
parties P1,... , P.+l tith the help of 2. n – 1 messages.
There has to be a party Pi whose first message fif contains
only the information originally held by Pi. We no~v show
that protocol A can be modified to protocol A’, which per-
forms the entire information distribution between the par-
ties Pi,... ,P~-l,Pi+l,... , P. in fewer than 2. n – 2 mes-
sages. This contradicts the induction assumption; hence
h(n+l)> 2.n=2. (n+l)–2.

No\v, if Pi does not send any further messages bwides
Lf, then A’ can be derived from A by omitting 11 and all
messages addressed to Pi. As Pi has to receive at least
one message, protocol A’ provides the entire gossip bet~veen
Pi,... ,Pi-l, Pi+l,... , P. in fewer than 2. n – 2 mmsages.
Othenvise, if Pi sends a second message &f’ to party Pj, then
A’ can be constructed from A by omitting messages 11 and
J1’ and letting Pj act for Pi. This again provides a gossip
protocol for P1,... ,P,_l, Pz+l,... , Pn requiring fe~verthan
2. n – 2 messages. ❑

Finally, a lower bound for the number of simple rounds re-
quired by a contributory key distribution protocol ~vithout
broadcasts can also be obtained by activating the informa-
tion distribution argument. As every party is allo~ved to
send and receive only one message per simple round, the
number of parties who have a certain piece of information
can at most be doubled in each roun~ i.e., at least d simple
rounds are needed to let 2d parties have a piece of infor-
mation. Therefore, the number of simple rounds required
to gossip information betw~eenn parties cannot be less than
[log~nl, \vhere (z1 denotes the smallest integer greater than
or equal to z (for the gossip problem it can be sho~vnthat the
lo~verbound for odd n is [/092 nl + 1; see [Kn75]). From these
results and observations ~vederive the follo~ving bounds for
contributory key distribution systems \vithout broadcasting.

Theorem 1 (\vithout broadcasts) Let P be a conttibu-
to~ group key distribution system for n parties not using
broadcasts.

1. For the total numbeT of messages V1(P) Tequired by P
it holds that

pl(P)~2.n–2.

2. For the total number of mchanges 92(P) requiTed by
P and n ~ 4 it holds that

p2(P)>2”n–4.

3. For the number of simple rounds 93(P) required by P
it holds that

93(P) 2 [log2nl.

The situation changes if broadcasting is allowed. For ex-
ample, Steiner et d. [STW96] introduced a DH-based con-
tributory group key distribution protocol that requires only
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n- 1 messages and one broadcast. Obviouslv a total of n.
messages is ~ptimd because at least every party has to dis-
close its piece of information. Lower bounds for the dfierent
measur~ of communication complexity for key distribution
systems including broadcasts are summarized in the follow-
ing theorem.

Theorem 2 (with broadcasts) Let P be a conttibuto~
group key distribution system for n patiies allowing broad-
casts.

1. FOT the total number of messages *1(P) TequiTedby P
it holds that

2. FOT the total number of ezchanges 42(P) TqUiTSd by
P and n ~ 3 it holds that

3. For the numbeT of simple rounds +3(P) Tequired by P
it holds that

93 (P) 2 [logznl .

~. For the number of synchronous rounds 44(P) required
by P it holds that

Proof Proposition 2 maybe shown by proving that at least
n exchanges or broadcasts are needed to distribute the n
individual pieces of information (gossiping via broadcasts).
This claim is obviously true for n = 3. Assume there etits
an algorithm A to d~tribute the information of n >3 partiw
which requires fewer than n exchanges and broadcasts. Then
at least one exchange between two partiw Pi and Pj has to
be performed in order to enable every party to disclose its
information. But now, by identi~lng the parties Pi and Pj,
an algorithm A’ can be derived from A, that performs the
gossiping for n – 1 parties with fewer than n – 1 exchanges
and broadcasts, which contradicts the induction assumption.

Proposition 3 holds because every party receiv~ at most
one message per simple round and therefore can hold at most
2d messaga after round d. ❑

3 Efficient Diffi~HelIman-Based Protocols

The aim of this section is to demonstrate that the lower
bounds formulated for protocol complexity are realistic for
Diffi~Hellman-based key distribution systems. Therefore,
we summarize and introduce DiffieHelhnan-b~ed key dis-
tribution protocok, which are efficient with respect to at
least one of the above measurw of protocol complexity.

3.1 Protocols requiring a minimum number of messages

Examples for DH-based key distribution protocols requtilng
a minimum number of messages maybe found in [STW96].
The protocol GHD.1 by Steiner et d. is straightforward,
without broadcasting, and performs with a total of 2. n –
2 messag~. The second protocol they introduce, denoted
GDH.2, requires n messag= to be sent, one of which is a
broadcast.

I protocol GHD.1 I GHD.2

-

3.2 Minimizing the number of exchange=
The octopus protocol

We now introduce a protocol without broadcasting that re
quires only 2- n – 4 exchang=. For the broadcasting case,
no further protocol has to be introduced because the lower
bounds for the number of exchanges and the number of m=
sages are both n. Therefore, the protocol GDH.2 &o proves
that the lower bound for the number of exchmges is sharp
if broadcasting is possible.

In order to describe the subsequent DiffieHellman-based
protocols, let G be a filte cycfic group of order q and let
a be a generator of G (e.g., Diffie and Hellman ~H72] use
G = ~~, where p is a prime). Furthermore, we ~sume that
the individud participants choose their random secrets horn
~q A basic idea of the following protocol is to use a Diffi~
Hellman key computed in one round M a random input for
the subsequent round. Therefore, we further have to assume
that there is a bijection p : G + ~q, which has a short de
scription. Whether there are appropriate bisections from G
into ~q depends on the group G. h the c~e that G = ~~,
there is obviously no problem. But if G is supposed to be a
subgroup of a much larger ~~,, this problem has to be fur-
ther studied for particular groups G and practical solutions
have to be found.

Before introducing the octopus protocol, we fist observe
that four parties A, B, C, and D may generate a group key
using ordy four exchanges. First, parties A and B and par-
ties C and D perform a Diffi~Hellman key exchange gener-
ating keys ~a.b and aed , respectively. Subsequently, A and
C as well as B and D carry out a D~eHellman key ex-
change using as secret dues the keys generated in the first

step; i.e., A (B) sends a~(” a.b) to c (t. D) while C (D)

sends ap(a ‘d) to A (to B) such that A and C (B and D)

can generate the joint key a~(aa.b).q(ac.d).
b the octopus protocol, participants PI,... , P. gen-

erate a common group key by fist dividing themselves
into five groups. Four participants P.-3, P.-2, P.- 1, P.
take charge of the central contro$ we denote these partic-
ipants A, B, C, and D, respectively. The remaining par-
ties distribute themselves into four groups {Pi I i G 1A},
{Pi I ~ C IB}, {pi I ~ c Ic}, ad {Pi I i G ID}, where
IA, ~B, ~c, and ID are p&~Se dSjOint, possibly Of equal
siZe, ~d~AU~BU~CU~D = {1,... ,n–4}. NOW PI,... ,Pn

can generate a group key as follows:

1.

3

For dl X c {A, B, C, D} and dl i c Ix, the party
X generates a joint key ki with Pi by performing a
DiffieHellman key exchage.
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2. The participants A, B, C, rmd D perform the 4party
key exchange dwcribed above using the dues a =
~(~~], b = ~(~B), c = ~(~c), and d = ~(~D), where
K(J) := ~i ~ p(ki) for J G {1,... ,n – 4}. Ther-
after, A, B, 6, and D hold the joint and later group
key

K := a~(=K(rAUrB)).w(=K(rcu~D))

3. JVe describe this step only for ~ the parties B, C, and
D actcorrespondingly. For dl j c IA, the participant
A sends the following two du~ to Pj:

Now P, is able to generate R tist Pj cdctiatw
(a~(rBu~~\{j}))Y(~j) = ~K(~AUrB) ~d then ~ =

(av(a
h-(I~UI~)) ~(a~(rAUlB))

)-

This protocol requirw n – 4 exchanges to generate the
DH keys k~, four exchanges for the key agreement between
A, B, C, and D, and fidly n – 4 messages to be sent from
A, B, C, Dto Pi,..., Pn_4. Hence the protocol performs a
minimum number of 2. n -4 exchanges.

~ = ~p(aK(rA ‘rB)).w(aK(’cuID))

protocol Ottopus

messages 3.n–4
exchan~w 2.n–4

simple ~oun~II 2. [&l + 2
svn. rounds 4

I bc

3.3 Minimizing the number of rounds:
The 2d-octopus protocol

The number of simple rounds can be minimized by genera-
lizing the idea of the 4party key agreement described above.
In general, 2d parties can agree upon a key within d simple
rounds by performing DH key exchangw on the edges of a
d-dimensiond cube.

In order to describe formally the cube protocol for 2d
particip-ts, we identify the 2d participants with the vec-
tors of the d-dimensiond vector space GF(2)d and choose a
basis ~1,... , ~d of GF(2)d. Now the protocol may be per-
formed in d rounds as follows

1.

i.

I

I

.

h the first round, every participant V E GF(2)d gen-
erates a random number rt an! performs a DH key 6
exchmge with participant Z + bl using the Au= TF I

and rc+gl, respectively.

k the i-th round, every participant E G GF(2)d per-
forms a DH key exchange with participant ti+~~, where
both parties use the due generated in ro~d i – 1 as
the secret Aue for the key exchange.

h every round, the participants cornruunicate on a maxi-
mum number of pardel edges of the d-dimensional cube (in
round i in the direction ii); thus, every party is involved
in exactly one DH exchange per round. Furthermore, dl
parties share a common key at the end of this protocoI b-
cause the vectors ~L,... , id forma b~is of the vector space
GF(2)d. ThE cube pattern is dso used in ~75] to man-
age the gosip problem with a minimum number of rounds.
~u90] suggests using parallel classes in more general ge~
metric structures to distribute information between n par-
ties, which might as well serve as a basis for group key dis-
tribution protocoh.

h order to formtiate a protocol for an arbitrary number
of participants (# 2d), which requires a low number of simple
rounds, the idea of the octopus protocol can be adopted
again- k the 2d-octopus protocoI the participants act
m in the octopus protocol introduced above with the only
Merence that 2d instead of four parties are distinguished
to take charge of the central control, whereas the remaining
n— 2d parties divide into 2d groups. In other words, in steps
1 and 3 of the octopus protocol, 2d participants manage
communication with the rest and in step 2 these 2d parties
perform the cube protocol for 2d participants. If the number
of participants is n and if d is the largest integer smaller
than log2n, then the 2d-octopus protocol requires 1 + d +
1 = [log2nl + 1 simple rounds. In general, we obtain the 1
following dues of protocol complexity for the cube and the
2d-octopus protocol.

protocol 2d-cube 2d-octopus

messages n.d 3.(n–2dj+2d. d
exchan~es n - d12 2.(n–2d)+2d-’. d

simple rounds d 2.r*l+~
syn. rounds d 2+d
bc

The 2d-octoDus Drotocol is wDecidlv interesting because it
provides a t~ade~ff option bet~veen tke total nu~ber of mes-
sages or exchanges needed and the number of rounds. For
d = 2 (octopus protocol) the number of exchanges is opti-
mal, whereas the number of simple rounds is comparatively
high. On the other had, if d satisfies 2d-1 < n s 2d, the
number of simple rounds required is very low and the to-
tal number of messages is high. Furthermore, the protocol
enables the group to decide how many participants should
share control of the protocol.

\Vlth the 2d-octopus protocols we have introduced a
class of key distribution systems without broadcasting which
matches the lower bound [logznl for the total number of
simple rounds if n is a power of 2; otherwise the protocols re-
quire [log2 nl + 1 simple rounds. Furthermore, the l-octopus
protocol (d= O) is a protocol that requires two synchronous
rounds, which is at least close to optimal. In other words,
with respect to the bounds formulated for the number of
rounds required by contributory key distribution protocols,
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we have formulated protocols that exceed the bounds by at
most one round. It remains an open question whether there
exist, for n # 2d, protocols (with or without broadcasting)
that require only [log2n] simple rounds. Another interest-
ing question is whether one can formulate a contributory
key distribution system that requires only one synchronous
round.

The protocols introduced should, of course, be elab~
rated further, for example by includlng authentication pr~
cedures. But here our main objective w= to clarify system-
atically the qu=tion of protocol complatity rather than to
design detailed protocols. Therefore we do not discuss re-
finements of those protocols further and conclude this paper
with a security analysis of the protocols.

4 Security of the Protocols

It was claimed in the previous section that the protocols
introduced are Diffi~Hellman-based, which remains to be
proved. The main new building block of those protocols
is the cube protocol for 2d participants. Therefore, we re-
strict our discussion to proving that the cube protocol for
2d participants is DiffieHellman-based; a very similar proof
appli~ to the 2d-octopus protocol.

In the following, it hm to be shown that the key gen-
erated by the cube protocol cannot be distinguished by a
polynomial algorithm horn a random number if dl valuw
transmitted during a protocol run are known. This claim
has to be derived under the assumption that the same holds
for the 2-party DH protocol. The method of the subsequent
proof is similar to that used in [STW96] to show that the
class of generic DH protocols is Diffi&Hellman-based.

Let G denote again the group underlying the protocol;
let q be the order of G, a a generator of G, and p a bijection
from G into ~q. Furthermore let d be a positive integer and

.Y = (N,,... , N2~) randomly chosen from ~~~. Now we
consider a cube protocol with 2d participants P1, . . . , P2d,
where P, has chosen N, as the secret starting due. Then

. v(d, .S) denotes the ordered 2d-tuple of all mlues
transmitted during the performance of the cube pr~
tocol (we presume a fixed order) and

● K(d, X) denotes the find common key generated
by the cube protocol with starting dues X =
(~,,... ,~zd).

Now we consider the probability distribution Ad :=
(v(d, X), y) obtained by the probability of (v(d, X), y) if

-Y c ~~d and y c G are randomly chosen. Furthermore we
define the probability distribution Fd := (v(d,X), K(d, X))

obtained if we chose X randomly from ~~d. The polynomial
indistinguishability between two probablhty distributions is
denoted by ZPOIV. Then the claim that the cube protocol
is Diffi~Hellman-based can be expressed as in the following
theorem.

Theorem 3 Al ZPOIY F~ impiies Ad ZP.lY Fd for e~ew
positive integer d.

Proof [sketch] The implication claimed in the theorem may
be proved by induction on d. First we observe that one can
re~~ite ~(d, .~) with ~’ = (N1,... , ~2d ) as a permutation
of

(U(d -1, x,), V(d – 1, x,), a~(d-1’xl),a~(d-l’xz)),
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where Xl = (NI, . . . ,~2d-1) and X2 = (~2d-1+~,.. . ,~2d).

Furthermore, it holds that

K(d, x) = ~(a K(d-I,X1).K(d-l, X2)
).

In order to show Ad XPOIYFd, we define probabihty dis-

tributions Bd, Cd, Dd, and Ed on ~~d X G with Ad ZPo~V
Bd =POIY cd =POIY Dd =POIY Ed SP.ty Fd, which impli=
Ad XPoly Fd. All of the following probability distributions

are defined on Z~d x G by randomly choosing X’1, A“2 from
d-l

z: andy, cl, c2 c G

Ad = (V(d – l,x,), v(d – l,x2),a~(d-l~xl),

~~(d–1.X2),V),

Bd = (v(d – 1, Xl), v(d – 1, X2), a“ , @~(d-1’x2), y),

cd = (V(d – l,x,), v(d – l,x2), a’’, a’2,y),

Dd = (v(d - l, X1),v(d - l, X2), a’1,ac2,~clc2),

Ed = (v(d - l,xl), v(d– l,x2), a’l, a~(d-’’x2),

~cl. K(d-l,X2)
)!

Fd = (V(d – 1,X,), V(d – 1, x,), aK(d-1’xl),

~K(d-l,X2) ,aK(d-l,X1).K(d- l,X2)
).

Proposition 1: Ad-1 ZP.ly Fd- 1 impliw Ad XP.ly Bd.
Assume that there ~ists a polynomial algorithm that

can distinguish between Ad and Bd. We show that this
algorithm can be used to distinguish between Ad-l and Fd_~
in polynomial time as well. Let (v(d— 1, Z), z) bean instance
Of Ad-1 =PO/y Fd_l . Then we consider the instance X =
(v(d– 1, Z), v(d – 1, x2), a=, ~K(d-1’x2), y) of Ad xPO~vBd.
We observe that (v(d–l, Z), z) belongs to Fd-1 iff X belongs
to Ad. On the other hand, if (v(d – 1, Z), z) belongs to
Ad_l, then X belongs to Bd and conversely. This provides
an polynomial algorithm to distinguish between Ad and Bd.

Proposition 2 Ad-1 XPoly Fd-1 implies Bd ~P.ly cd and
Dd =Poly Ed =Po[y Fd.

This can by proved analogously to Proposition 1.
Proposition & Al XPO(YF1 impliwcd ~p~lyDd.
Again we assume that there e.tists a polynomial dg~

rithm that can distinguish between cd and Dd, Now let
(u, v, w) bean instance of Al NP.ly F1. Then we may con-
struct an instance of cd spO~yDd by X = (v(d–l, Xl ), v(d–
1, X2), u, v, w) for which the following holds: if (u, v, w) be-
longs to Al, then X belongs to Cd, and if (u, v, w) belongs
to F1, then X belongs to Dd. This completw the proof. ❑

Acknowledgements: We wish to thank Victor Shoup, I
Michael Steiner, Gene Tsudik, and Michael Waidner for
vrduable comments and huitful discussions.

References

[ABM87] Alon, N., Barak, A., Manber, U., On disseminat-
ing information retiably without broadcasting. In
IEEE Proceedings of the 7th International Confer-
ence on Distn.buted Computing Systems. Berfin,
September 1987, 74-81.

[BM93] Babaoglu, O., Marzullo, K., Consistent Globrd ~
State of Distributed Systems: Fundamentd Con-
cepts and Mechanisms. b S. Mullender (cd.), Dti-
ttibuted Systems. W ACM Press, 1993, 55-145.

—.. —.—.— ..-—



[BS72] Baker, B., Shostak, R., Gossips and Telephones.
Discrete Mathematics, 4, 1972, 191-193.

[Be97] Becker, K., Design und Analyse von Konferen-
zchltisselsystemen. PhD Dissertation, Giessen
1996.

[Be72] Berman, G., The Gossip Problem. Discrete Math-
ematics, 4, 1972, 91.

[Bu90] Beutelspacher, A., How to Communicate Eff-
iciently. Journal of Combinatom.al Theoy, Sen.es
A, 54, 1990, 312-316.

[BD94] Burmester, Nf., Desmedt, Y., A secure and ef-
ficient conference key distribution system. In
A. De Santis (cd.), Advances in C~ptology-
EUROCRYPT ’94, LNCS 950, BerEn: Springer
1994, 275-286.

[DH72] Difie, W., Hellman, M., New diiectio~ in
crypt o~aphy. IEEE ~ansactions on Information
Thw~, 22(6), 1976, 644-654.

[1TW82] bgemarson, I., Tang, D., Wong, C., A confer-
ence key distribution system. IEEE Dansactions
on Information Theo~, 28(5), 1982, 714-720.

[Kn75] Kn6del, W., New Gossips and Telephones. Dis-
crete Mathematics, 13, 1975, 95.

[STW96] Steiner, M., Tsudik, G., Waidner, M., Diffie
Hellman Key Distribution Extended to Groups.
3rd AChl Conference on Computer and Commu-
nications Security, ACM Press, 1996, 31-37.

I

6

. ..—.. — c . ..7-- .---


