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ABSTRACT
Anonymous credential systems allow users to obtain certified
credentials from organizations and use them later without
being traced. For instance, a student will be able to prove,
using his student card certified by the University, that he is
a student living e.g. in Hangzhou without revealing other
information given by the student card, such as his name or
studies. Besides, sanitizable signatures enable a designated
person, called the sanitizer, to modify some parts of a signed
message in a controlled way, such that the message can still
be verified w.r.t. the original signer.

We propose in this paper to formalize the following new
idea. A user gets from the organization a signed document
certifying personal data (e.g. name, address, studies, etc.)
and plays the role of the sanitizer. When showing his creden-
tial, he uses sanitization techniques to hide the information
he does not want to reveal (e.g. name, studies or complete
address), and shows the resulting document, which is still
seen as a document certified by the organization. Unfor-
tunately, existing sanitizable signatures can not directly be
used for this purpose. We thus seek for generic conditions on
them to be used as anonymous credentials. We also provide
a concrete construction based on standard assumptions and
secure in the random oracle model.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public Key Cryptosystems; K.4.1
[Computers and Society]: Public Policy Issues—Privacy ;
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication

General Terms
Algorithms, Design, Security.

Keywords
Cryptographic protocols, Anonymous credentials, Privacy-
enhancing systems, Sanitizable signatures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA CCS’13, May 8–10, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

1. INTRODUCTION
Anonymous credentials. Digital signatures are a widely
used cryptographic tool in our everyday life. We here focus
on the use of digital signatures in credential systems where
a user gets some certified credentials issued by some organi-
zation. These certified credentials enable the user to prove
access rights, get some advantages, or anything else which
requires authentication. For instance a student is given an
electronic student card by the University and later uses this
credential to prove that he actually is a student, if necessary.
Anonymous credential systems [16] allow users to prove pos-
session of credentials in an anonymous way. When a creden-
tial is shown, a proof of possession is done without leaking
(even for the issuing organization) any knowledge about nei-
ther the owner of the credential, nor the credential itself.

Several ways exist to design anonymous credential systems
and some industrial companies seem to be interested. As an
evidence, IBM’s Idemix system [24] is based on the use of
group signatures (or some close variants), as well as several
existing papers [9, 10, 2, 8, 20, 15]. Microsoft prefers the
Brands’ blind signature approach [4] for their UProve tech-
nology [25], as in [23]. Finally, the Orange operator seems
to be interested in the use of aggregate signatures [14].

Sanitizable signatures. Sanitizable signatures [1] enable
a designated entity, called the sanitizer, to modify some
parts of a signed message in a controlled way defined by
the initial signer at the creation of the signature.

In fact, there are multiple ways to handle such a prob-
lem and a lot of works on this subject can be found in the
cryptographic literature. In a nutshell, (i) the sanitization
procedure may be public [26, 5], or restricted to a designated
sanitizer [1, 13, 6, 7, 11], (ii) the signed document can be a
bit string [1, 13, 6, 11] or have a particular data structure [5],
(iii) the sanitizer may be allowed to modify some parts of
the message, or simply remove them [26, 5], and (iv) the
capacity of sanitization can be given to a single sanitizer [1,
13, 6, 11], or to a group of sanitizers [7, 12].

Let us consider the case where only a designated sanitizer
is able to modify a given message. The signer divides a mes-
sage m ∈ {0, 1}∗ into N blocks m1, . . . ,mN , defines the set
adm ⊆ [1, N ] of blocks that are said admissible (i.e. allowed
to be subsequently modified) and then signs the whole mes-
sage, using some key related to the sanitizer. Using this key,
the sanitizer is next able to modify the admissible parts of
the given message so that the resulting signature is still valid
under the signer’s public key.

∗ This work was done while the second author was at Or-
ange Labs, Caen, France and ENS, Paris, France.
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From sanitizable signatures to anonymous creden-
tials. Our idea in this paper is to use sanitizable signatures
to design anonymous credentials, which is, to the best of our
knowledge, a new approach. The underlying idea is very
simple: the organization in the anonymous credential sys-
tem is a signer and the user who obtain certified credentials
plays the role of a sanitizer.

For example, a student (acting as a sanitizer) obtains a
signature (the certified credential) by the University (which
plays the role of the signer) on the message: m := ’Name:
Wang Li; City: Hangzhou; Studies: Computer Science’. This
message is split by the signer into six sub-messages m1 :=
’Name:’, m2 := ’Wang Li’, m3 := ’; City:’, m4 := ’Hangzhou’,
m5 := ’; Studies:’, and m6 := ’Computer Science’, who also
sets adm = {2, 4, 6}. Finally, the whole message m is signed
to obtain σ, using some key related to the student / san-
itizer, and sends the whole result (m,σ) to the student /
sanitizer. The latter can next prove e.g. that he is a stu-
dent living in Hangzhou without revealing his name, nor
his studies. For this purpose, he can use the appropriate
key to replace m2 and m6 by some predefined non rele-
vant symbol (like “#”) of adequate length, to obtain the
message m := ’Name: ######; City: Hangzhou; Studies:
######’ and modify the University’s signature accord-
ingly. This student is hence anonymous inside the group
of students living in Hangzhou but proves such a belonging
since the University’s signature is valid. This simple ap-
proach seems to work but unfortunately, “the devil is on the
details” and, as we will see, additional work is necessary.

Additional needs for sanitizable signatures. An ano-
nymous credential system should be anonymous and un-
forgeable (see e.g. [14, 9]). Regarding sanitizable signature
schemes, different formal security models can be found in
the literature. An initial one has been designed by Brzuska
et al. [6] and gives main procedures (for signing, sanitizing,
verifying, proving accountability of a signature and judging
these proofs) and basic security properties (immutability, ac-
countability and transparency). Based on this initial model,
Brzuska et al. [7] have next added the unlinkability property,
Canard and Jambert [11] have integrated some extensions
and Canard et al. [12] have formalized the concept for mul-
tiple signers and sanitizers. These models do not entirely
match our needs for the design of a secure anonymous cre-
dential system. More precisely, the following questions need
to be addressed.

Verification without sanitizing key. The verification
of a sanitizable signature generally needs the sanitizer’s pub-
lic key. In our case, since we want the user / sanitizer to
be anonymous, a signature should be checkable without the
sanitizer’s public key. We thus modify the verification algo-
rithm accordingly.

Traceability of signatures. The above feature obvi-
ously gives the anonymity of the sanitizer. This implies, for
security purpose, the necessity for an algorithm to recover
the actual designated sanitizer of a given message-signature
pair. However, in order to prevent organizations to trace
users, this algorithm should be carried out by a separate
authority. This algorithm has no equivalent in the litera-
ture of sanitizable signatures. We will call this procedure
FindSan, since it is the counterpart of the FindOri algo-
rithm in the model of [12]. The reader will notice that the
above tracing procedure should not be confused with the

opening procedure in anonymous primitives, like group sig-
natures. In a group signature scheme, the opening aims at
finding the actual producer of a given signature, whereas we
just want here to recover the actual designated sanitizer of
a given message/signature pair. The latter could have not
modified or even seen the signature.

Dealing with the proof algorithm. The above tracing
procedure is not designed to decide whether a given signa-
ture has been sanitized or not, which is the role of the Prove
algorithm in [6] and the AlgOpen procedure in [12]. Such a
procedure is no more useful in our case. In front of a student
proving that he is a student, the verifier sees that the doc-
ument has been sanitized, and some fields hidden, but this
is not a matter of concern here. In fact, we will see that we
do not need the accountability properties of sanitizable sig-
natures, at least as long as there is no opening algorithm in
the anonymous credential system. Such a procedure would
imply a notion of non-frameability, and, consequently, an
accountability property for the signer.

Restrictions on admissible values. We want the true
sanitizer to be able to hide admissible parts of the mes-
sage. However, we do not want him to modify as he wants
these admissible parts so as to be able to prove false state-
ments about his attributes (e.g. proving to be a student in
Hangzhou while being a student in Shanghai). We can use
for this purpose the LimitSet extension of sanitizable signa-
tures given by Canard and Jambert [11], which limits the set
of possible modifications on a single block of the message.

Replaying sessions. Another problem we have to deal
with is that an eavesdropper could intercept sanitized doc-
uments and replay them as often as she wants. To fix this
problem, we let the verifier send at each authentication a
random value and the sanitizer modify a specific admissible
part of the message with this value. The latter may de-
pend on the session data, like the verifier’s identity and the
current time.

Comparison with related works. The solution we pro-
pose in this paper is a new way to design an anonymous cre-
dential system. As said before, previous designs make use
of group [24], blind [25] or aggregate signature schemes [14].
We here propose to use sanitizable signatures. The efficiency
and security of the practical scheme we propose in this paper
are close to the one of related works, as we will see at the
end of the paper (see Section 5). Our main aim is clearly
to propose a new approach. In fact, we provide two main
contributions in this paper. The first one is a generic anal-
ysis of the properties for sanitizable signatures in order to
use them in a privacy-preserving context. The second one
is a concrete construction to show that those ideas can be
efficiently implemented. Our proposal also introduces a new
use case to sanitizable signatures, which has not yet been
proposed in the related literature. Furthermore, we may
expect that any improvement in sanitizable signatures will
improve the related anonymous credential system.

One of the most significant interest of our solution w.r.t.
related work is that there is no need, in our solution, for an
interaction between the user and the issuer during the issu-
ing protocol, contrary to other existing systems. The issuer
produces a credential only with the sanitizer’s public key. In
both group and blind signature based anonymous credential
systems, it is necessary for the user to add a random part
of the secret key which will be certified by the organization
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with the attributes, and which is new for each credential.
This is mainly due to the unforgeability of the used signa-
tures. In our case, this is not necessary and only the user
public key is useful. Moreover, in pseudonym systems, an
interactive registration is necessary in order to obtain a non-
interactive anonymous credential issuing [2]. This might be
preferable in practice when the issuer needs to issue creden-
tials without being on-line with the sanitizer. The price to
cost is that there is no anonymity during the registration
process. Nevertheless, if one needs some anonymity during
the registration process, one can add this property at the
cost of an interaction.

Another advantage of our sanitizable signature based so-
lution is that the size of a credential is lower than what exists
today [24, 25, 14].

Independently to our work, [17] addresses the problem-
atic of anonymous authentication in cloud storage, which
implies some kind of “attributes hiding”. However, their
techniques for attributes hiding are based on group signa-
tures techniques rather than sanitization ones (in a strict
sense). More precisely, the hiding of an attribute in [17]
consists in not revealing the attribute by only proving its
knowledge, using for this purpose Groth-Sahai based non-
interactive zero-knowledge proofs. In our case, the attribute
hiding is done by using the technique of sanitizable signa-
tures, and thus e.g. chameleon hash functions [1], accumu-
lators [11] or the split into two related signatures [7]. In our
construction, we use a mix of the last two ideas, and thus
not a zero-knowledge proof of a hidden attribute.

One may argue that our proposal does not permit to prove
some well chosen statements on non-revealed attributes, such
as proving that one has to prove that he has more than 65
years, which is the case for some existing proposals. In fact,
in some particular cases, such as the one in the last sentence,
we can use the power of the LimitSet extension of sanitiz-
able signatures by permitting the user to replace his date of
birth by e.g. the sub message “more that 65”.

Organization of the paper. First of all, anonymous cre-
dentials are formalized in Section 2. Then Section 3 formally
defines sanitizable signatures according to our needs. Sec-
tion 4 shows how to build anonymous credentials from this
new type of sanitizable signatures. Finally, a concrete sani-
tizable signature scheme is presented in Section 5.

2. ANONYMOUS CREDENTIALS

2.1 Notations
All along the paper, we distinguish two types of security

properties. First of all, for any adversary A against a prop-
erty prop and any security parameter λ ∈ N, the success
probability of A is the probability that the related exper-
iment outputs 1. We say that the whole scheme verifies
prop if this success is negligible (as a function of λ) for any
polynomial-time A. Then, for a decisional experiment, a
challenge bit b ∈ {0, 1} is set and for any adversaryA against
a property prop and any security parameter λ, the advantage

of A is Pr
[
Expprop-1

A (λ) = 1
]
− Pr

[
Expprop-0

A (λ) = 1
]
. We

next say that the whole scheme verifies prop if this advantage
is negligible for any polynomial-time A.

2.2 Definition
We base the security model below on the work done in [9,

14], for the case of one single organization (see [14] for mul-
tiple organizations). An anonymous credential system AC
involves users, an organization1 and verifiers, and is given
by the following algorithms.

Setup. This algorithm takes as input a security parameter
λ and outputs global parameters gpk, which are given
to all algorithms as auxiliary input, and the key pair
(opk, osk) for the organization.

UserKG. This algorithm, on input j ∈ N, produces a key
pair (upk[j], usk[j]) for the user j.

Obtain ↔ Issue. The Obtain algorithm takes a user
secret key usk[j] and the organization public key opk;
the Issue algorithm takes the organization secret key
osk, a user public key upk[j] and a list of messages /
attributes {mn}Nn=1. At the end of the protocol, the
user U obtained a credential C.

Show ↔ Verify. The Show algorithm takes a user se-
cret key usk[j], the organization public key opk, a list

of messages {mn}N
′

n=1 and a credential C; the Verify
public algorithm takes the organization public key opk

and a list of messages {mn}N
′

n=1. At the end of the pro-
tocol, the Verify algorithm outputs a bit b ∈ {0, 1}.

2.3 Security properties
We now focus on the security properties related to anony-

mous credential systems. Experiments are played between a
challenger and an adversary A, which may in addition call
the following oracles. The tables cred and reg are global vari-
ables which maintain the issued credentials and the certified
attributes.

AddU(j). It adds j to the set HU of honest users, exe-
cutes UserKG and updates the j-th entry of upk[j]
and usk[j]. It finally returns upk[j].

CrptU(j, pkU ). It adds j to the set CU of corrupted users
and sets upk[j]← pkU .

USK(j). It returns (usk[j], cred[j]) and put j in the set KU
of users for whom the secrets are known2.

SndToUalgo(j,m) (resp. SndToO(osk,m)) , with algo ∈
{Issue,Verify}. It plays the role of the user j (resp.
the organization) which receives the message m from
the corrupted organization – the Issue case – or a cor-
rupted verifier – the Verify case – (resp. the user j).
This may modify the entry cred[j] (resp. reg[j]).

GetCred(osk, j, {mn}Nn=1). It permits the honest user j
to obtain a credential on {mn}Nn=1 from the organiza-
tion. The oracle plays the role of both the user and
the organization. The credentials are added to cred[j],
the attributes to reg[j] and the view is returned.

1For sake of the exposition, we have only one signer in our
model, even if the case of multiple signers can easily be stud-
ied, using [6, 11, 7].
2The reason for the distinction between corruption and se-
cret key leakage concerns the anonymity property. A user
must remain anonymous even if his secret keys leak.
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LoR(b, j0, j1, {m′n′}N
′

n′=1). It takes as input a pair (j0, j1)

of honest users and a set {m′n′}N
′

n′=1 of N ′ attributes
certified to both j0 and j1. It plays the role of the user

jb with the set {m′n′}N
′

n′=1 with the adversary during a
verification protocol.

Correctness. First of all, such a system has to be correct.
This means that honestly obtained credentials must be ac-
cepted by an honest verifier.

Unforgeability. Regarding the unforgeability property, the
aim of the adversary is to prove that she is in possession
of some credentials issued by the organization while this
is not the case. The adversary may (i) interact with the
organization as corrupted user with the help of the SndToO
oracle, (ii) ask for an honest user to obtain credentials on
her choice with the help of the GetCred oracle and (iii)
interact with an honest user as a corrupted verifier with the
help of the SndToUVerify oracle. A forgery may appear
by different ways. For instance, a new credential has been
produced. Another possibility is that several corrupted users
could have colluded and shared their credentials.

In order to properly address this property, we need to in-
troduce the notion of identity extractor, which formalizes the
idea that there exists a well-defined identity underlying an
accepted authentication protocol, even if the user is anony-
mous. We require that there exists a pair of algorithms
{ESetup, Extract} such that (i) parameters returned by
ESetup are indistinguishable from those returned by Setup
and (ii) the Extract algorithm correctly identify the un-
derlying identity. More formally, we require that:

• For all adversary A there exists a negligible function ν(·)
s.t. Pr

[
gpk0 ← Setup(1λ); gpk1 ← ESetup(1λ); b

$←
{0, 1}; b′ ← A(gpkb) : b′ = b

]
< 1

2
+ ν(λ)

• For all (gpk, ek)← ESetup(1λ), all j, all (pkUj , skUj ), all

{mn′}N
′

n′=1 and all C, if Show(osk, skUj , {mn′}N
′

n′=1, C ↔
Verify(osk, {mn′}N

′

n′=1) outputs 1, then Extract(ek, view)
= j, where view is the view of the protocol.

With this notion of extractor, the unforgeability experi-
ment Unforgeability(λ) is given as follows.

– (gpk, (opk, osk), ek)← ESetup(1λ)

– O ← {AddU(·),USK(·),CrptU(·, ·), SndToO(osk, ·),
SndToUVerify(·, ·), GetCred(osk, ·, ·)}

– ({m′n}N
′

n′=1
, state)← AO(gpk, opk)

– A(state) interacts with Verify(opk, {m′n}N
′

n′=1
). The view

of the protocol is denoted view and the response of the Verify
algorithm is denoted d

– j ← Extract(ek, view)

– Return 1 if d = 1 and ∃n′ ∈ [1, N ′] s.t. ∀({mn}Nn=1) ∈ reg[j],

mn′ 6∈ {mn}Nn=1.

A scheme AC is (t, `max, qS , ε)-unforgeable if the probability
for an adversary A to win the Unforgeability(λ) game
in time t, with no more than `max messages in each list of
messages, after qS queries to the SndToO and GetCred
oracles is at most ε. A scheme AC is said unforgeable if ε is
negligible (as a function of λ) for all polynomial-time A.

Anonymity. Regarding the anonymity, the aim of the ad-
versary is to distinguish between two chosen honest users
which one is showing his credentials. For this purpose,

the adversary has access to a left-or-right LoR challenge
oracle. Moreover the adversary can interact with honest
users as a corrupted organization in order to issue them
some credentials or as a corrupted verifier with the help of
the SndToU oracles. The formal anonymity experiment
AnonymityA(λ) is given as follows.

– (gpk, (opk, osk))← Setup(1λ)

– b
$← {0, 1}

– O ← {AddU(·), USK(·), CrptU(·), SndToUIssue(·, ·),
SndToUVerify(·, ·), LoR(b, ·, ·, ·)}
– b′ ← AO(gpk, (opk, osk))

– Return 1 if b = b′.

A scheme AC is (t, `max, qC , ε)-anonymous if the probability
for an adversary A to win the Anonymity(λ) game in time
t, with no more than `max messages in each list of messages,
after qC queries to the LoR oracle is at most ε. A scheme
AC is said anonymous if ε is negligible (as a function of λ)
for all polynomial-time A.

3. OUR NEW PRIVACY-AWARE MODEL
FOR SANITIZABLE SIGNATURES

We now formalize sanitizable signature schemes and their
security according to the considerations we discussed in in-
troduction. Our goal is to model the security requirements
we need in order to use sanitizable signatures as anonymous
credentials. Our work is based on [6, 11, 7, 12]. A sanitiz-
able signature scheme SAN is given by the following seven
algorithms involving one signer and several sanitizers. The
verification and judge procedures only involve public data.

Admissible modifications. As in [6, 11, 7], admissible
modifications are modelled by two functions adm and mod.
adm contains a description of (i) a division of a message
m ∈ {0, 1}∗ of length t into N blocks of respective lengths

{tn}Nn=1 such that
∑N
n=1 tn = t, (ii) a subset A ⊆ [1, N ]

⊆ N indicating the indexes of the modifiable blocks. adm

being fixed, the function fixadm maps a message m to the its
fixed part mfix, i.e. the concatenation of all non-admissible
blocks. By misuse of notation, A is also denoted adm.

mod maps a message m to a modified message m′ =
mod(m) and is essentially a set of pairs (n,m′n) specifying
that the block n has to be replaced by the message m′n.
adm(mod) ∈ {0, 1} indicates whether the modification in-
structions mod matches the admissible modifications adm.

Setup. This algorithm takes as input a security parameter
λ and outputs global parameters gpk, implicitly given
to all algorithms as auxiliary input. A secret key tsk
for tracing is produced as well. Finally, the key pair
(spk, ssk) for the signer is also produced.

SanKG. This algorithm, on input j ∈ N, produces the key
pair (denoted (pksan[j], sksan[j])) for the j-th sanitizer.

Sign. This algorithm takes as input the secret signing
key ssk, a sanitizer public key pksan[j], a message m ∈
{0, 1}∗ and a description adm w.r.t. m. It outputs a
signature σ (or an error message ⊥). We assume that
adm can always be recovered from a signature σ.

Sanitize. This algorithm takes as input a sanitizer secret
key sksan[j], the signer public key spk, a message m ∈
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{0, 1}∗, a signature σ and the modification instructions
mod the sanitizers wants to carry out (according to
adm). It outputs a message m′ and a signature σ′ (or
an error message ⊥).

Verify. This algorithm takes as input the signer public
key spk, a message m and a signature σ. It outputs a
bit b ∈ {0, 1}.

FindSan. This algorithm takes as input the tracing key
tsk, the signer public key spk, a message m and a sig-
nature σ. It outputs the index j ∈ N of a sanitizer
and a proof τ (j = 0 means that the algorithm can not
trace the signature).

Judge. This algorithm takes as input the signing public
key spk, a sanitizer public key pksan[j], a message m, a
signature σ and a proof τ . It outputs a bit b ∈ {0, 1},
indicating whether the tracing is correct.

Set of Admissible Values. As we need the LimitSet exten-
sion [11], we introduce the set V := {Vi ⊆ {0, 1}ti | i ∈ adm}.
Each Vi defines the set for the modifications that can be done
by the sanitizer for the block mi. Following [11], the Sign
and Sanitize procedures are not modified, but the definition
adm is modified in order to contain the public set V.

Security Properties. We now focus on the security prop-
erties related to our notion of sanitizable signatures. It uses
several oracles which mostly corresponds to the execution of
the above procedures (we do not detail them since they ex-
actly correspond to those given above). The sole exception
is the LoR oracle which is formally described below.

LoR(b, spk, (j0,m0, σ0,mod0), (j1,m1, σ1,mod1)). This or-
acle first stops if adm0 and adm1 (contained in the sig-
natures) are different, if the signatures are not valid, or
if (m0,mod0, adm0) 6≡ (m1,mod1, adm1) (which means
that the resulting message, after modification, are dif-
ferent). It next sanitizes the message mb, according to
sksan[jb] to obtain (m′b, σ

′
b). It finally returns (m′b, σ

′
b).

Correctness. The correctness property states that honestly
generated (signing correctness) and sanitized (sanitizing cor-
rectness) signatures will be accepted by the verifier, and that
honestly generated proofs on valid signatures (proof correct-
ness) will be accepted by the judge. The latter implies that
honestly generated signatures will trace to the actual desig-
nated sanitizer.

Traceability. The traceability property states that all valid
signatures should trace to a particular sanitizer. An adver-
sary against this game aims at forging a valid signature such
that the tracing procedure will not identify the designated
sanitizer or will not be able to prove its charge.

– (gpk, tsk, (ssk, spk))← Setup(1λ)

– (m∗, σ∗)← ASign(ssk,·,·,·)(gpk, tsk, spk)

– (j∗, τ∗)← FindSan(tsk, spk,m∗, σ∗)

– Return 1 if

– Verify(spk,m∗, σ∗) = 1 and

– j∗ = 0 or Judge(spk, pksan[j∗],m∗, σ∗), τ∗) = 0.

Immutability. The immutability property states that a sani-
tizer will not sanitize a part of the message he is not allowed
to sanitize. In our case, this can happen either if a modifi-
cation on a fixed part has been done or if a modification on
a modifiable part has been done with a disallowed value.

– (gpk, tsk, (ssk, spk))← Setup(1λ)

– (m∗, σ∗)← ASign(ssk,·,·,·)(gpk, tsk, spk)

– (j∗, τ∗)← FindSan(tsk, spk,m∗, σ∗)

– Return 1 if

– Verify(spk,m∗, σ∗) = 1 and

– Judge(spk, pksan[j∗],m∗, σ∗, τ∗) = 1 and

– ∀(pksan[j],mi,admi) queried to the Sign oracle s.t.
pksan[j∗] = pksan[j], m∗ 6∈ {mod(mi)|mod ⊆ admi}.

Unforgeability. The unforgeability property states that no-
body is able to forge a valid signature without the signing se-
cret key, nor any sanitizer’s secret key. An adversary against
this property is given two challenge keys, a signer public key
and a sanitizer public key, together with oracles for signing
and sanitizing.

– (gpk, tsk, (ssk, spk))← Setup(1λ)

– (pksan[j∗], sksan[j∗])← SanKG()

– O ← {Sign(ssk, ·, ·, ·),Sanitize(sksan[j∗], ·, ·, ·, ·)}
– (m∗, σ∗)← AO(gpk, tsk, spk, pksan[j∗])

– (j, τ)← FindSan(tsk, spk,m∗, σ∗)

– Return 1 if

– j = j∗ and

– Verify(spk,m∗, σ∗) = 1 and

– ∀(pksan[j],mj) queried to the Sign oracle, we have
(pksan[j∗],m∗) 6= (pksan[j],mj) and

– m∗ has never been queried to the Sanitize oracle.

Remark 1. The accountability properties [6, 11, 7] state
that signers and sanitizers are responsible for the signatures
they produced but we do not need them for the security
of our main construction. As long as we do not have an
opening algorithm in the anonymous credential system, we
do not need the accountability properties.

Unlinkability. The unlinkability property states that it is
infeasible to distinguish sanitized signatures that have been
produced from the same message and / or on the same san-
itizer. We only have a trace-restricted unlinkability notion,
since an adversary could easily win the game with a trace or-
acle on her challenge. The adversary is given a left-or-right
oracle described above. Moreover, the adversary may add
new sanitizers in the system thanks to the SanKG oracle.

– (gpk, tsk, (ssk, spk))← Setup(1λ)

– b
$← {0, 1}

– O ←{SanKG(), Sign(ssk, ·, ·, ·), Sanitize(·, spk, ·, ·, ·),
LoR(b, spk, ·, ·), FindSan(tsk, spk, ·, ·)}
– b′ ← AO(gpk, spk)

– Return 1 if

– b = b′ and

–A has not queried any (m′, σ′) output by the LoR oracle
to the FindSan oracle.

Remark 2. We could ask for a stronger notion than the
existing one in the state of the art (cf. [7]), the notion of
strong unlinkability. According to this notion, the sanitiz-
able signatures must be unlinkable even if the adversary is
given the secret signing key. Formally, the game is the same
as the standard unlinkability game, except that the adver-
sary is given the secret signing key (and, in this case, a Sign
oracle is no more useful).
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Remark 3. The transparency property [6, 11, 7] states that
it is infeasible to distinguish a sanitized signature from a
freshly generated signature. In our case, this is not a matter
of concern if a verifier notices that a value has been hidden.

4. FROM SANITIZABLE SIGNATURES TO
ANONYMOUS CREDENTIALS

We are now in possession of all the elements we need to
build anonymous credentials from sanitizable signatures.

4.1 A Black-box Reduction
Given a sanitizable signature scheme SAN as described in

the above section, we define the following anonymous cre-
dential system AC. We consider in the following that the
character # stands for predefined non relevant symbol that
will be used by sanitizers to hide an information.

Setup and Key Generation. The AC.Setup procedure
runs the SAN .Setup procedure. We thus set the global
parameter gpk as that from the sanitizable signature scheme,
the organization key pair (opk, osk) corresponds to the one
of the signer (output by SAN .Setup). Next, each user can
execute the AC.UserKG by using exactly the SAN .SanKG
of the sanitizable signature scheme, becoming a sanitizer.

Credential Issuing. On input the public key upk[j] of a re-
questing user and a list of messages / attributes {mn}Nn=1 ∈
{0, 1}∗ (mn of length tn) related to this user, the organiza-
tion O specifies adm ⊆ [1, N ] at his convenience3. A specific
field with index n is next chosen. It will be used by the ver-
ifier to verify the freshness of the Show / Verify protocol.

Afterwards, for all admissible blocks with an index n 6= n,
the signer defines a set of admissible values Vn which con-
tains 2 elements: a first element corresponding to the true
sub-message mn he is signing (i.e. the user attribute) and
a second element corresponding to some predefined non rel-
evant symbol (like several # characters) of adequate length
(a black value for an admissible block is always assumed to
be allowed). Then, O produces the signature

σ := SAN .Sign(osk, upk[j],m, adm)

and sends σ to U . User U records σ as his credential C.

Credential Showing. We consider a verifier who aims at
checking that user Uj has previously obtained credentials on

some attributes M = {m′n}N
′

n=1. Let us assume that user Uj
obtained a credential C (a sanitizable signature) on some
attributes {mn}Nn=1 such that M ⊆ {mn}Nn=1.

The verifier first sends a random value r to user Uj , de-
pending of the context of the verification, like the concate-
nation of some verifier’s data and the current time. Then
the user Uj sanitizes his credential according to

mod := {(n, r)} ∪
(⋃

n′|m′n /∈M
{(n′,#)}

)
,

and computes the pair

(m′, σ′)← SAN .Sanitize(usk[j], opk,m, σ,mod).

In a nutshell, the user sanitizes the attributes he wants to
hide (replacing them by some # characters) and set the sub-
message with index n to the random challenge r. The user

3In practice, static fields are stated to non admissible while
the true user attributes are stated to admissible (see our
example in the introduction).

finally sends (m′, σ′) to the verifier who checks the resulting
signature by testing whether SAN .Verify(opk,m′, σ′) = 1
(and verifying the use of value r).

4.2 Security Analysis
The security of the resulting construction relies on the

underlying building block: we prove the security of the AC
scheme under the assumption that SAN is a secure saniti-
zable signature scheme in the sense of Section 3.

4.2.1 From SAN .{ Traceability, Immutability, Unfor-
geability } to AC.Unforgeability

First of all, we define the extractor of the unforgeabil-
ity experiment to be the execution of the tracing algorithm
FindSan. In our scheme, a showing protocol corresponds to
the showing of a modified document (m′, σ′). Given such a
pair, the FindSan algorithm is able to return the identity
of the designated sanitizer, i.e. the identity of the user.

Let now A be an adversary against the unforgeability of
the AC scheme. The winning condition for the experiment
is: for j returned by ESetup, for all {mn}Nn=1 ∈ reg[j], there
exists n′ ∈ [1, N ′] s.t. mn′ 6∈ {mn}Nn=1. Informally, no user
(honest or not) has obtained a certification on the whole
specified list. In other words, for each delivered credential,
there is at least an attribute which is not in the list.

Let us consider the following cases, in excluding order.

Type I. The (m′, σ′) pair is not traceable. We construct
an adversary against the traceability property of the
sanitizable signature scheme.

Type II. Otherwise, let assume that the tracing of σ′ re-
turned an index j∗. If j∗ ∈ HU is honest, then we con-
struct an adversary against the unforgeability property
of the sanitizable signature scheme.

Type III. Otherwise, j∗ ∈ CU ∪KU is dishonest or his keys
have been compromise. We then construct an adver-
sary against the immutability property of the sanitiz-
able signature scheme.

Let us describe each adversary in more details. The chal-
lenger maintains the HU , KU and CU lists of users.

Type I. A successfully pass a showing protocol, but the
signature (m′, σ′) is not traceable, meaning that the extrac-
tor is not able to identify a user underlying the view of the
protocol. This means that the tracing algorithm is not able
to trace the signature (m′, σ′). We construct an adversary B
against the traceability of SAN . The AddU oracle is sim-
ulated by generating fresh key pairs. The SndToO oracle,
together with the GetCred oracle, on list {mn}Nn=1 are sim-
ulated thanks to B’s own Sign oracle on a message m con-
structed following the issuing protocol. The SndToUVerify

oracle is simulated by computing the authentication (B owns
users’ keys). When A successfully pass the protocol, (m′, σ′)
is not traceable, and the game is won.

Type II. A successfully pass the showing protocol, and the
FindSan algorithm returns j∗ such that j∗ ∈ HU . We con-
struct an adversary B against the unforgeability property of
the SAN scheme. B gets two challenge keys (a signer one
and a sanitizer one). B generates other keys and guesses that
the forgery will concern his challenge key. The SndToO and
GetCred oracles on lists {mn}Nn=1 are simulated thanks to
the own Sign challenger’s oracle on a message m built as in
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the issuing protocol. The SndToUVerify oracle is simulated
by B with his own sanitization oracle (or computes the re-
sponse himself if he knows the keys). Let now assume that
A successfully pass the showing protocol. Since j∗ has not
got the whole specified credential, then (from the winning
condition) the Sign oracle has not been queried on the list.
Since the sanitization oracle is queried only on previously
generated signatures, the list did not appear in the saniti-
zation oracle queries. We then got a valid and non-trivial
forgery (m′, σ′) and the game is won.

Type III. A successfully pass the showing protocol, and
the FindSan algorithm returns j∗ such that j∗ ∈ CU ∪KU .
We construct an adversary B against the immutability prop-
erty of the SAN scheme. The AddU, SndToO, GetCred
oracles on attributes lists {mn}Nn=1 and the SndToUVerify

oracle are simulated as in the two games above. WhenA suc-
cessfully pass the showing protocol, the winning condition
says that for all {mn}Nn=1 ∈ reg[j∗], there exists n′ ∈ [1, N ′]
such that mn′ 6∈ {mn}Nn=1. We want to show that the im-
mutability winning condition is satisfied. The last condition
says that for all (jk,mk, admk) queried during the attack,
we have pksan[j

∗] 6= pksan[jk] or m∗ 6∈ {mod(mk) | mod s.t.
admk(mod) = 1}. This means that, when the pksan[j

∗] key
appeared in a query to the Sign oracle, the message m∗ did
not come from the modification of one of the mk queried to
the oracle. One can easily be convinced of that, since for
all obtained credential (i.e. call to the Sign oracle), there
exists m∗ which was not involved. These attributes can not
be the masking value, since the latter is always allowed. The
game against the immutability is then won.

In the beginning of the game, the challenger chooses one of
the three game above with uniform probability. Therefore,
the security loss is 1/3|U|, which is still negligible if the
underlying probabilities are negligible. ut

4.2.2 From SAN .Unlinkability to AC.Anonymity
The anonymity property of the anonymous credential sys-

tem directly relies on the unlinkability fo the sanitizable sig-
nature scheme. LetA be an adversary against the anonymity
of the AC scheme. We construct an adversary B against the
unlinkability of the SAN scheme. Regarding the left-or-
right challenge, A asks for a showing protocol from the user

j0 or j1 on a list {m′n′}N
′

n′=1 such that both users already got
a credential on them. Since both credentials have already
been issued, B retrieves them and computes a query to his
own oracle with the corresponding modification instructions
mod. Finally, A returns a bit b that B returns to her own
challenge. The probability that B wins is that of A.

We note that, if SAN is a strongly unlinkable sanitizable
scheme, then the credential system is anonymous against
a corrupted organization. If SAN is an unlinkable saniti-
zable scheme, then the credential system is proven anony-
mous only with respect to an honest organization, and the
adversary is not given the organization secret key. In other
words, the anonymity level of the credential system depends
on the unlinkability level of the underlying signature scheme.

5. A CONCRETE CONSTRUCTION
We now give a concrete sanitizable signature scheme that

meets the features described in Section 3 and that can thus
directly be used to design a secure anonymous credential
system as shown just above.

5.1 Useful tools
Let us consider an asymmetric bilinear environment (p,

G1, G2, GT , e) where p is prime, G1, G2 and GT three
groups or order p, and e a map e : G1×G2 → GT such that
(bilinearity) for all g1, g2 ∈ G1 × G2 and a, b ∈ Zp, we have
e(ga1 , g

b
2) = e(g1, g2)ab = e(gb1, g

a
2 ) and (non-degenerate) for

all g1, g2 ∈ G1 \{1G1}×G2 \{1G2}, we have e(g1, g2) 6= 1GT .

Proofs of knowledge. Our scheme makes use of zero-
knowledge proofs of knowledge (ZKPK) which correspond
to interactive protocols during which a prover convinces a
verifier that he knows a set (α1, . . . , αq) of secret values ver-
ifying a given relation R without revealing any information
about the known secrets. We denote by PoK{〈α1, . . . , αq〉 :
R(α1, . . . , αq)} such a proof of knowledge. A signature of
knowledge, denoted SoK in the following and taking on in-
put a message m, is a ZKPK that has been transformed into
a signature scheme, using the Fiat-Shamir heuristic [19], and
secure in the random oracle model4.

Pseudo-random functions. We will also need pseudo-
random functions (PRF). A PRF is given by a pair of algo-
rithms PRF := {KeyGen, PRF} (cf. Appendix A.2).

Bilinear signatures. Finally, the signer is in the following
able to produce a particular signature related to the Boneh-
Boyen one [3]. Let PRF := {KeyGen, PRF} be a pseudo-
random function and (p,G1,G2,GT , e) be an asymmetric
bilinear environment. During the KeyGen procedure, the

signer picks g1, u1, . . . , u`, v
$← G1, g2

$← G2 and γ
$← Zp,

and next computes X := g2
γ and Y := h2

γ . Next, pk :=
(X,Y ), sk := γ and parameters are

(p,G1,G2,GT , e, g1, u1, . . . , u`, v, g2, h2)

During the Sign procedure, the signer generates two scalars
r ← PRF(k, 0‖m1‖m2‖ . . . ‖m`) and s← PRF(k, 1‖m1‖m2

‖ . . . ‖m`) thanks to the pseudo-random function, sets S :=

(g1u1
m1 · · ·u`m`vs)

1
γ+r and returns σ := (S, r, s).

The Verify algorithm consists in checking that

e(S, g2
rX)

?
= e(g1u1

m1 · · ·u`m`vs, g2).

This scheme is studied in details in Appendix A.3.

5.2 Algorithms

5.2.1 Setup
Global parameters. An asymmetric bilinear group environ-
ment (p,G1,G2,GT , e) is generated. Random generators g1,

u1, u2, v
$← G1 and g2

$← G2 are chosen, together with

α
$← Zp. h1 := g1

α and h2 := g2
α are computed. Let H1 :

{0, 1}∗ −→ Zp be a cryptographic hash function. The global
parameters of our system are

gpk := (p,G1,G2,GT , e, g1, u1, u2, v, h1, g2, h2,H1)

and the tracing key is tsk := α.

Signer’s keys. The signer picks γ
$← Zp and computes X :=

g2
γ and Y := h2

γ as the keys for the signature scheme.
It also picks a key for the pseudo-random function k ←
PRF .KeyGen(1λ). The signer’s public key is spk := (X,Y )
and the corresponding secret key is ssk := (γ, k).

4For example, SoK{〈α〉 : h = gα}(m) denotes a Schnorr
proof of knowledge of a discrete logarithm transformed into
a signature scheme by the Fiat-Shamir heuristic.
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Sanitizers’ keys. Finally, each sanitizer j picks yj
$← Zp, sets

pksan[j] := zj = u
yj
1 and sksan[j] := yj . Each value (j, zj) is

registered in the table pksan.

5.2.2 Structure of a signature
Let us now explain the idea behind our construction. Let

us assume that a signer wants to sign a message m ∈ {0, 1}∗
of length t, split into N blocks of length {tn}Nn=1 with ad-
missible blocks M ⊆ {1, . . . , N} and the specific field n ∈
N \M . According to our needs, we have adm := {(n,>)} ∪
{(n,⊥) | n ∈ M}, which means that (i) mn could be mod-
ified with any value m′n ∈ {0, 1}tn while (ii) a value mn for
n ∈M should only be replaced, if needed, by a specific black
block of message. The designated sanitizer with index j is
represented by his value zj . A sanitizable signature is next
divided into three parts.

Handling the fixed part. The fixed part mfix of the mes-
sage is handled by giving a signer’s signature on both yj
(the sanitizer’s secret) and hfix (a hash value of the fixed
part), using the key generated by the signer during the set-
up phase. The resulting signature corresponds to three el-
ements (S, r, s) where S is a group element and where the
randomness (r, s) are derived via the PRF .

However, to reach unlinkability, we should not give di-
rectly the signature and we use for this purpose encryption
techniques. We thus compute an ElGamal encryption [21]
(B0:1, B0:2) of the S part of the signature. During the Sign
procedure, the signer picks at random t0 ∈ Zp and gen-
erates c1 ← H1(mfix‖adm). It next generates the random-
ness of the signature scheme as r ← PRF(k, 0‖0‖mfix‖adm)
and s ← PRF(k, 0‖1‖mfix‖adm), and computes the sig-

nature S := (g1zju2
c1vs)

1
γ+r . The ElGamal ciphertext of

S is finally (B0:1 := g1
−t0 , B0:2 := Sh1

t0) and is sent to
the sanitizer (while the initial signature is not). During the
Sanitize procedure, as the ElGamal encryption scheme is
randomizable, the sanitizer can easily randomize such a cou-
ple (B0:1, B0:2), which provides us the unlinkability property.
For this purpose, the sanitizer chooses t′0 ∈ Zp and computes

(B′0:1 := B0:1g1
−t′0 , B′0:2 := B0:2h1

t′0).

Handling the admissible part. As an admissible sub-message
is necessarily an accepted sub-message, the sanitizer may
not modify it but the verifier should be convinced that it
has been validated by the signer. For this purpose, we use
the same technique as for the fixed part, but for each admis-
sible sub-messages mn, independently of each other. Next
each admissible block is signed and next encrypted, as above
(again to reach the unlinkability property). During the Sign

procedure, the signer picks, for all n ∈ M , a value ti
$← Zp,

computes hn ← H1(mfix‖adm‖n‖mn) thanks to the hash
function and rn ← PRF(k, n‖0‖mfix‖adm‖mn) and sn ←
PRF(k, n‖1‖mfix‖adm‖mn) thanks to the pseudo-random

function. The signature is Gn := (g1zju2
hnvsn)

1
(γ+rn) and

the resulting ciphertext is (Bn:1 := g1
−tn , Bn:2 := Gnh1

tn).
All these steps are repeated for all admissible parts of the
message. During the Sanitize procedure, the modification
instructions mod are given by the set {(n,m′n)}∪{(n,⊥)}n∈J ,
meaning that the sanitizer wants to replace mn by m′n and
hide a subset J ⊆M . There are consequently two cases for
admissible parts, as explained above.

In the first case, the sanitizer is able to modify as desired
an admissible part of the message. As we do not need the

transparency property (contrary to existing sanitizable sig-
nature constructions), the sanitized message-signature pair
can still include the ElGamal ciphertext of the signer’s signa-
ture with the initially signed sub-message mi. The new sub-
messagem′n should however be signed by the authorized san-
itizer, which will be done in the proof of validity of the whole
signature below. Moreover, as we need unlinkability, the El-
Gamal ciphertext should be randomized, as for the fixed part
above. Next, for all n ∈M \ J , the sanitizer again random-
izes each ElGamal ciphertext by choosing at random t′n ∈ Zp
and computing (B′n:1 := Bn:1g1

−t′n , B′n:2 := B′n:2h1
t′n).

In the second case, the sanitizer can only replace the ad-
missible sub-message by a sequence of |mn| times the ‘#’
character. As this black value is, by convention, always al-
lowed, we do not need to supply a proof that the value is
indeed authorized (contrary to [11]). However, as the ini-
tially signed sub-message should not be retrieved, we ask
the sanitizer to remove the corresponding ElGamal cipher-
text. Thus, for all n ∈ J , (Bn:1‖Bn:2) is removed from the
sanitized signature. Any other modification of such part of
the message will be obviously refused by the verifier who has
access to the variable adm.

Proof of validity of the whole signature. It finally remains
to prove the validity of the signature. In fact, from the
sanitizer’s point of view, we only need to prove the knowl-
edge of yj in the above relations to prove that this signature
comes from an authorized entity (since yj is signed S). The
verification procedure of a signature whether coming from
Sign or Sanitize should be unique. However, in our case,
the signer does not know the secret value yj . Our solution
consists in using a proof of the “or” statement [18, 27].

5.2.3 Signing, sanitizing, verifying and tracing
Putting all these elements together, a signature on a mes-

sage m w.r.t. admissible modifications adm is a signature of
knowledge, on the message

M := B0:1‖B0:2‖r‖s‖
⋃
n∈M

(Bn:1‖Bn:2‖rn‖sn)‖m‖adm‖X‖Y

that should be produced as:

U := SoK

{〈
ρ
〉

: e(g1, g2)ρ = e(g1, X) ∨(
e(u1, g2)ρ =

e(B0:2, g2
rX)e(B0:1, h2

rY )

e(g1u2
c1vs, g2)

∧ ∀n ∈M,

e(u1, g2)ρ =
e(Bn:2, g2

rnX)e(Bn:1, h2
rnY )

e(g1u2
hnvsn , g2)

)}
(M)

Signing. During the Sign procedure, the signer, knowing γ
such that X = g2

γ can perform the first part of the proof.

Sanitizing. During the Sanitize procedure, the sanitizer,
knowing yj can perform the second part of the “or” proof,
but this time with the message M′ :=

B′0:1‖B′0:2‖r‖s‖‖
⋃

n∈M\J

(B′n:1B
′
n:2‖rn‖sn)‖m′‖adm‖X‖Y.

Verification. A sanitizable signature is next composed of
the ElGamal ciphertexts together with the randomness r, r1,
. . . , s, s1, . . . and signature of knowledge U . The verification
procedure simply consists in verifying the signature U .
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Tracing. The authority in possession of tsk := α can de-
crypt the ElGamal ciphertext (B0:1, B0:2) to retrieve S∗ =
B0:2B0:1

α, and use the table pksan to retrieve an entry (j, zj)
such that e(S∗, g2

rX) = e(g1zju2
c1vs, g2). The proof of va-

lidity of such a tracing is done by proving that the decryption
has been correctly done, using the knowledge of α.

Security . The following theorem is proved in Appendix A.

Theorem 1 The SAN scheme is a traceable, immutable,
unforgeable and unlinkable signature scheme in the sense of
the Section 3 if the DDH problem is hard in G1 and the SDH
problem is hard in (G1,G2), in the random oracle model.

5.3 Comparisons
We have now introduced all the useful elements to make

a quantitative comparison between related works and an
anonymous credential system based on the sanitizable sig-
nature of this section. We then give in Figure 1 several
elements of comparison between our solutions and [25, 24,
14]. “This1” is the scheme described above, while “This2” is
a variant with some optimizations described in Appendix B.

Underlying algebraic structures may be RSA environment
[24], Z∗n with a subgroup of prime order q [25], or bilinear
groups (G1,G2) over a base field Fp [14]. L denotes the
maximum number of attributes issued by an authority into a
single credential. Bandwidth columns denote the exchanged
quantity of data during the protocols runnings, whereas the
other columns denote a cost either in memory (size of a
public key or a certificate) or in computation (number of
operations in the underlying algebraic structure). We give
asymptotic complexity as well as some concrete sizes in bits.

As said before, Figure 1 explicitly shows that our solutions
are direct signatures, and thus, the issuing process is for free
for the user. Moreover, in our variant This2, our multiple-
use credential is rather short, compared to existing schemes.
UProve’s technology is based on blind signatures, so brings
very efficient but single-use credentials. The other solutions
bring multiple-use credentials.

6. CONCLUSION
In this paper, we proposed a new way to design anony-

mous credential systems. As an interesting remark, one can
notice that an existing way to design anonymous credential
(as stated before) is to use group signatures. The question
now is the exact link between these primitives. How do ar-
ticulate each other group signatures, (strongly) unlinkable
sanitizable signatures and anonymous credentials ?
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Dominique Schröder. Unlinkability of sanitizable
signatures. In PKC ’10, pages 444–461, 2010.

[8] Jan Camenisch, Markulf Kohlweiss, and Claudio
Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In PKC
’09, pages 481–500. Springer, 2009.

[9] Jan Camenisch and Anna Lysyanskaya. An efficient
system for non-transferable anonymous credentials
with optional anonymity revocation. In EUROCRYPT
’01, pages 93–118, 2001.

[10] Jan Camenisch and Anna Lysyanskaya. Signature
schemes and anonymous credentials from bilinear
maps. In CRYPTO ’04, pages 56–72, 2004.
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[12] Sébastien Canard, Amandine Jambert, and Roch
Lescuyer. Sanitizable signatures with several signers
and sanitizers. In AFRICACRYPT ’12, pages 35–52.
Springer, 2012.
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APPENDIX
A. PROOF OF THEOREM 1

We now analyze the security of our concrete scheme. First
of all, we state the hard problems under which the security
relies. Then we give a proof of security of the underlying
signature scheme and, at last, we prove the main properties.

A.1 Hard Problems
Let us fix a group G of prime order p and a bilinear en-

vironment (p,G1,G2,GT , e). For a problem X, the X as-
sumption in G says that X is hard to solve in G.

Problem 2 (DL) Given (g, h) ∈ G2, find α s.t. h = gα.

Problem 3 (DDH) Given (g, ga, gb, gc) ∈ G4, for uniform-

ly picked g
$← G, and a, b

$← Zp, decide whether c = ad
mod p or if c was also uniformly picked in Zp.

Problem 4 (XDH) Given G1, G2 and GT , while the DDH
problem could be easy in G2, the XDH assumption states that
the DDH problem is still hard in G1.

Problem 5 (q-SDH) Given (g1, g1
θ, g1

θ2 , . . . , g1
θq , g2, g2

θ)

∈ G1
q+1 × G2

2 for a uniformly picked θ
$← Z∗p, find a pair

(c, g1
1/(θ+c)) ∈ Zp ×G1.

A.2 Dealing with the PRF
The security of a PRF states that for any efficient algo-

rithm B the value
∣∣Pr[BPRF(k,·)(1λ) = 1]− Pr[BR(1λ) =

1]
∣∣ is negligible, where the first probability is taken over

k ← KeyGen(1λ) and B’s internal coin tosses, and the sec-
ond probability is over the choice of the random function
R : {0, 1}∗ → {0, 1}λ and B’s randomness. We replace in
the security proofs all invocation to the PRF by a truly ran-
dom value in Zp and maintain a list of these values in order
to be consistent. Then, for any successful adversary against
each property we construct a successful distinguisher against
the PRF. In each case, we can decide whether an adversary
has won or not. In the case of the immutability, this decid-
ability follows from the fact that we can decide if a message
m′ belongs to the set of the possible resulting of a saniti-
zation of a message m with respect to admissibility adm.
Indeed, it suffices to parse the message block per block and
to check whether the modification has been allowed or not.

A.3 Signing Several Messages
We study here the signature scheme, denoted S(`), used in

our sanitizable signature scheme and prove its unforgeability.

Theorem 6 If the SDH problem is (q, t′, ε′)-hard in (G1,

G2), then the S(1) signature scheme is (qS , t, ε)-unforgeable
as long as t ≤ t′ −O(q2), qS ≤ q and ε ≤ ε′/q.

Proof. Let A be an adversary that (qS , N, t, ε)-win the EUF-
CMA existential unforgeability game against chosen message
attacks for signature schemes (cf. [22]). We set q = qS . Let

(g1, g1
θ, g1

θ2 , . . . , g1
θq , g2, g2

θ) be a q-SDH challenge, for an
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unknown and uniformly distributed θ ∈ Z∗p. We build an

algorithm B which outputs (c, g1
1/(θ+c)), for a c ∈ Zp\{−θ}.

Parameters. Pick k
$← {1, . . . , q} and scalars r1, s1 . . . , rq,

sq in order to simulate the signatures. For {r1, . . . , rq} ∈ Fp,
define polynomials P , P−, Pm− on Fp[Z] respectively by

q∏
n=1

(Z + rn − rk),

q∏
n=1
n6=k

(Z + rn − rk),

q∏
n=1
n6=m
n6=k

(Z + rn − rk).

Expanding P on θ, we get P (θ) =
∑q
n=0 anθ

n for some

{an}qn=0 depending on the rn. Since we know g1
θn by the

q-SDH challenge, we are able to compute g1
P (θ), without

knowledge of θ. Set X ← g2
θg2
−rk as a challenge key. Pick

sk, α, β, δ, ρ
$← Z∗p, and compute g1

′ ← g1
β(ρP (θ)−skP−(θ)),

u ← g1
βδP (θ), v ← g1

βP−(θ), h2 ← g2
α, Y ← (g2

θg2
−rk )α.

Thanks to α, β, δ, ρ, the public key is correctly distributed.
Finally A is given (p,G1,G2,GT , e, g1

′, u, v, g2, h2, X,Y ).

Simulating Sign(mn). We keep a counter n for the queries.

If n = k, we set Ak ← g1
βP−(θ)(ρ+δmk) and if n 6= k, An ←

g1
βPn−(θ)(ρθ+δθmn+sn−sk).

Forgery. A eventually outputs a valid and non-trivial forge-
ry (m∗, (A∗, r∗, s∗)) such that

A∗ = (g1
′um∗vs∗)

1
γ+r∗ = g1

βP−(θ)(ρθ+δθm∗+s∗−sk) 1
θ+r∗−rk

Solving the SDH challenge. We distinguish two cases.

I. r∗ 6∈ {r1, . . . , rq}. Let us consider βP−(θ)(ρθ+δθm∗+s∗−
sk) as a polynomial A in θ. If we carry out the euclidean
division of A by (θ + r∗ − rk), we get Q and R such that
A(θ) = (θ + r∗ − rk)Q(θ) + R(θ). As (θ + r∗ − rk) is a
first degree polynomial X − (rk − r∗), we know that R(θ) =
A(rk − r∗), so we are able to compute: C := R(θ) = A(rk −
r∗) =

[∏q
n=1,n6=k (rn − r∗)

]
((ρ + δm∗)(rk − r∗) + s∗ − sk).

As A∗ = g1
C

θ+r∗−rk
+Q(θ)

, we are able to compute C and
g1
Q(θ) from the SDH challenge. We again have two cases.

1. (s∗ − sk) 6= (ρ + δm∗)(r∗ − rk). In this case, C 6= 0.

Compute g1
1

θ+r∗−rk = (A∗g1
−Q(θ))

1
C , set c = r∗ − rk,

and (c, g1
1/(θ+c)) as a solution to the SDH challenge.

2. (s∗ − sk) = (ρ+ δm∗)(r∗ − rk). B returns ⊥.

II. r∗ ∈ {r1, . . . , rq}. We distinguish two cases.

1. r∗ = rk. In this case, we have (A∗
skAk

−s∗)
1

sk−s∗ =

g1
β(P (θ)(ρ(sk−s∗)+δ(m∗sk−mks∗)) 1

sk−s∗
−P−(θ)sk)

1
θ . Since

P vanishes in 0, but not P−, then when we divide
β(P (θ)(ρ(sk− s∗) + δ(m∗sk−mks∗))

1
sk−s∗

−P−(θ)sk)

by θ and we get R and Q such that C := R(0) =

−βsk
[∏q

n=1,n6=k (rn − r∗)
]

and (A∗
skAk

−s∗))
1

sk−s∗ =

g1
C
θ
+Q(θ) with C 6= 0. B computes

g1
1/θ = ((A∗

skAk
−s∗)

1
sk−s∗ g1

−Q(θ))1/C ,

sets c = 0 and obtains a SDH solution (0, g1
1/θ).

2. r∗ 6= rk. B returns ⊥.

We now have to estimate the probability for B to fail. No
information is available about k from A’s point of view. So
if r∗ ∈ {r1, . . . , rq}, r∗ = rk with probability 1/q, and if r∗ 6∈

{r1, . . . , rq}, (s∗− sk) = (ρ+ δm∗)(r∗− rk) with probability
no more than 1/q. Therefore if A outputs a valid forgery
with probability ε′, then the probability ε that B solve the
challenge is ε′/q. We need O(q) multiplications in order to

compute g1
P (θ), and we need to carry out an division of a

polynomial of degree q by a polynomial of degree 1, which
we can do in O(q2). ut

Theorem 7 If the S(1) scheme is (qS , t, ε)-EUF-CMA-secu-

re, then the S(`) scheme is (qS , t − O(`), ε/2`)-EUF-CMA-
secure.

Proof. Let A an adversary that (qS , t, ε)-breaks the S(`)

scheme. A outputs valid and non-trivial (m∗1, . . . ,m∗`),
(S∗, r∗, s∗) with probability greater than ε. Let u1, . . . , u` be

parameters for the S(`) scheme. We distinguish two types
of adversary.

Type I. With probability greater than ε/2, for all i and
(mi1, . . . ,mi`) queried during the attack, we have∏`
j=1 u

m∗j
j 6=

∏`
j=1 u

mij
j .

Type II. With probability greater than ε/2, ∃i ∈ [1, qS ] s.t.
(mi1, . . . , mi`) has been queried during the attack and

we have
∏`
j=1 u

m∗j
j =

∏`
j=1 u

mij
j .

From type I adversaries we construct an EUF-CMA adver-
sary B against the S(1) scheme. From type II adversary, we
construct an adversary against the DL problem.

Type I. Given (p,G1,G2,GT , e, g1, u, v, g2, h2), together

with public key (X,Y ) for the S(1) scheme, for all j ∈ {1,

. . . , `}, B picks αj
$← Z∗p and computes uj := uαj . A is

next given the parameters. When A asks for a signature on
(mi1, . . . ,mi`), B asks for a signature on mi =

∑`
j=1 αjmij .

The response (Ai, ri, si) is transferred to A. Adversary A
eventually outputs (m∗1, . . . ,m∗`), (A∗, r∗, s∗). B sets m∗ =∑`
j=1 αjm∗j and returns (m∗, (A∗, r∗, s∗)).

Type II. Given a discrete logarithm challenge (g, h) ∈ G1,

we pick k
$← [1, l], v, h′

$← G1, g2
$← G2 and γ, α1, . . . , α`

$←
Z∗p. Set (u1, . . . , uk−1, uk, uk+1, . . . , u`) := (gα1 , . . . , gαk−1 ,
hαk , gαk+1 , . . . , gα`). A is given the parameters and the pub-
lic key (X,Y ) = (gγ , g2

γ). For each request (mi1, . . . ,mi`),

a S(`) signature is produced with γ. When A returns a
forgery (m∗1, . . . ,m∗`, (A∗, r∗, s∗)), with probability greater

than ε/2, ∃i ∈ [1, qS ] s.t.
∏`
j=1 u

m∗j
j =

∏`
j=1 u

mij
j , and

logg h =

∑`
j=1,j 6=k αj(m∗j −mij)

αk(m∗k −mik)

if αk(mik − m∗k) 6= 0. It remains to bound the proba-
bility that αk(mik − m∗k) = 0. Since (mi1, . . . ,mi`) 6=
(m∗1, . . . ,m∗`), and since k has been uniformly picked and
is independent of the adversary’s view, then the probability
that mik 6= m∗k is at least 1/`.

In front of an adversaryA, we pick a Type I or II adversary
with probability 1/2, so the global security loss is ε/2`. ut

A.4 Security of the Main Scheme

Theorem 8 (Traceability) The SAN scheme is traceable
in the sense of definition 3.
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(Sketch of proof). Let A be a successful attacker against
the traceability property. If the tracing is not able to con-
clude, then a valid signature has been produced during the
attack on a new y∗, which contradict the unforgeability of
the underlying signature scheme. More precisely, we extract
the underlying y∗ via the forking lemma and, since we know
the extraction key, we extract a signature on y∗ and win the
unforgeability game against the S(2) scheme. ut

Theorem 9 (Immutability) The SAN scheme is immu-
table in the sense of definition 3.

Proof. The immutability property refers to the fact that an
adversary with oracle access to the signer algorithm cannot
create a valid message-signature for a sanitizer with key y∗

s.t. for all previous queries i we either have y∗ 6= yi or m∗

6∈ {mod(m) | mod with admi(mod) = 1}. Moreover, recall
that this condition takes into account the case where a non-
allowed modification has been done on a modifiable block.

Let A be an efficient successful attacker against immuta-
bility. We construct a forger B against the S(2) signature
scheme. B receives as input a public key pks := (X,Y ) of the
signature scheme. B generates parameters for our scheme,
including h1 := g1

α and h2 := g2
α, knowing α. When A ask

B for a signature on m for sanitizer y with respect to admis-
sible modifications adm, B ask her own oracle for |M |+1 sig-
natures on (y,H(mfix‖adm)) and (y,H(mfix‖adm‖n‖mn))
for all n ∈ M and generates a sanitizable signature thanks
to these individual signatures. A eventually outputs y∗,
m∗ and σ∗ = (B∗0:1, B

∗
0:2, r

∗, s∗, {(B∗n:1, B∗n:2, r∗n, s∗n)}n∈M∗ ,
R∗, s∗y, adm

∗). Let m∗fix be the fixed part of message m∗

w.r.t adm∗, i.e. m∗fix := fixadm∗(m
∗). If A succeeds, then

y∗ 6= yi for all query i.
Then our adversary B computes S∗ := B0:2B0:1

α and
returns (S∗, r∗, s∗) as forgery on (y∗,m∗fix‖adm∗).

Or (y∗,m∗fix‖adm∗) has not been submitted by B to the
signature oracle before.
We then have fixadm∗(m

∗) 6= fixadmi(mi), i.e. m∗fix 6=
mfix,i. Then B computes S∗ := B0:2B0:1

α and returns
(S∗, r∗, s∗) as forgery on (y∗,m∗fix‖adm∗).

Or fixadm∗(m
∗) = fixadmi(mi), but sincem∗ 6∈ {mod(m) |

mod s.t. admi(mod) = 1}, there exists n ∈M∗ such that
mn is not an admissible value.
Set G∗ := B0:2B0:1

α. (G∗, r∗n, s
∗
n) is a valid and non

trivial forgery on (y∗,m∗fix‖adm∗‖n‖mn).

In either case we have a forgery on S(2), which concludes
the proof. ut

Theorem 10 (Unforgeability) The SAN scheme is un-
forgeable in the sense of definition 3.

(Sketch of proof). Our scheme is unforgeable since both

(1) the signature scheme S(2) for the fixed part and (2) the
signature of the modifiable part are unforgeable (which is an
adaptation of the proof of the Schnorr signature). ut

Theorem 11 (Unlinkability) The SAN scheme is (tra-
ce-restricted-)unlinkable in the sense of definition 3.

Proof. Given access to a signing oracle, a sanitizing oracle
and a trace oracle, an adversary cannot essentially distin-
guish left or right outputs of a left-or-right type LoR oracle

better than a flipping coin. In addition, the adversary has
access to an oracle for generating sanitizers’ keys. The LoR
oracle is initialized with a random bit b, takes two pairs
(j0,m0,mod0, σ0, adm0) and (j1,m1,mod1, σ1, adm1) where
adm0 = adm1, both signatures are valid, the modified mes-
sage mod0(m0) = mod1(m1) coincide, and both sanitizers
j0 and j1 are able to sanitize the respective messages. It
outputs Sanitize(sksan,jb ,mb, σb,modb).

First note that for each query to LoR, we have adm :=
adm0 = adm1 and since admissible modifications do not
change the fixed part of messages and the modified messages
of a query coincide, it also holds mfix,0 = mfix,1. So the r, s
signature component for the fixed parts must be the same
for both messages. If an adversary submit distinct r, s, both
signatures Sfix,0 6= Sfix,1 contains in the B0:1, B0:2 part are
valid, and it contradicts the strong unforgeability of S: since
an honest signer produces those signatures deterministically,
it has output at most one signature.

Hence, such a query with identical messages and distinct
signatures for the fixed part must thus contain a forgery,
and the signature part r, s for the sanitized messages must
be identical. By a similar argument, the rn, sn part for each
restricted modification n ∈M must be identical.

Since a new signature for the same message m′0 = m′1
is computed from scratch, both signatures are identically
distributed in both cases. It follows that the probability
of predicting b is 1

2
, unless the adversary creates a forgery

against S(2). We notice that the Bn:1, Bn:2 parts, including
the case n = 0, are randomized. They are then identically
distributed for each sanitization. For a successful distin-
guisher against the unlinkability game, we are able to con-
struct a distinguisher against the semantic security of those
ElGamal encryptions, namely the DDH assumption in G1.

ut
Remark 4. Unfortunately, our scheme is not strongly un-
linkable. The reason is that the signer is supposed to be
honest in the generation of the randomness. If not, he could
use different randomness to link several sanitizing processes.

B. A MORE EFFICIENT SCHEME
We now give a slightly more efficient variant of our scheme.

Instead of producing a signature per attributes, the issuer
certifies them together in a single signature. We use the S(`)

signature scheme, for ` = |M |+2. For (S, r, s) ∈ G1×Zp×Zp,
we have :

S :=

(
g1u0

h0u1
yj

|M|+1∏
n=2

un
hφ(n−1)vs

) 1
γ+r

where φ maps the modifiable blocs to their position in the
message. A signature σ on a message m is

σ :=
(

(B1, B2, r, s), (~R,~c, ~sρ), adm
)

The signature of knowledge becomes :

(~R,~c, ~sρ) := SoK

{〈
ρ, {hn}

n∈M
n6∈K

〉
: e(g1, g2)ρ = e(g1, X) ∨

e(u1, g2)ρ =
e(B2, g2

rX)e(B1, h2
rY )

e(g1u0
hfix

∏|M|+1
n=2 un

hφ(n−1)vs, g2)

}
(M)

on the message M := B1‖B2‖r‖s‖m‖adm‖X‖Y .
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