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ABSTRACT

With the recent increase in security breaches in embedded systems
and IoT devices, it becomes increasingly important to search for
vulnerabilities directly in binary executables in a cross-platform
setting. However, very little has been explored in this domain. The
existing efforts are prone to producing considerable false positives,
and their results cannot provide explainable evidence for human an-
alysts to eliminate these false positives. In this paper, we propose to
extract conditional formulas as higher-level semantic features from
the raw binary code to conduct the code search. A conditional for-
mula explicitly captures two cardinal factors of a bug: 1) erroneous
data dependencies and 2) missing or invalid condition checks. As
a result, binary code search on conditional formulas produces sig-
nificantly higher accuracy and provide meaningful evidence for hu-
man analysts to further examine the search results. We have imple-
mented a prototype, XMATCH, and evaluated it using well-known
software, including OpenSSL and BusyBox. Experimental re-
sults have shown that XMATCH outperforms the existing bug search
techniques in terms of accuracy. Moreover, by evaluating 5 recent
vulnerabilities, XMATCH provides clear evidence for human ana-
lysts to determine if a matched candidate is indeed vulnerable or
has been patched.
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1. INTRODUCTION
Recent security breaches in embedded systems and IoT devices

lead to a growing focus on vulnerability detection directly in binary
executables across multiple platforms. That is, when a vulnerable
function is identified in a piece of binary code for a particular plat-
form (e.g. x86), the interest is in determining whether a binary ex-
ecutable for a different platform (e.g. ARM or MIPS) contains the
same vulnerable function. Generally, this belongs to fundamental
research area called cross-platform binary code search.
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Existing efforts have been made to demonstrate the feasibility of
cross-platform binary code search. By exploring the intrinsic fea-
tures shared by different architectures, existing methods are able to
achieve a reasonable accuracy [19,35]. For example, discovRe [19]
utilizes a set of learned syntactic features as filtering to guide the
search to refine the similarity matching results. The work by Pewny
et al. [35] extracts the semantic feature, input and output values for
each basic block to improve the accuracy of CFG matching.

However, the existing techniques tend to produce a considerable
number of false positives. Therefore, even if they could assign high
ranks for the correct target functions based on similarity scores, a
security analyst would have to manually examine each candidate.
This manual process is expensive, tedious, and error-prone.

To further improve search accuracy and facilitate subsequent man-
ual examination, we argue that higher-level semantic features must
be recovered from the raw binary code. Ideally, if we could com-

pletely recover the original source code and perform source-code
level search, we could achieve 100% accuracy and provide rich
information for human analysts to examine the searched results.
Unfortunately, this ideal solution is impractical, because decompi-
lation is still far from being mature.

In this paper, we introduce a novel semantic feature called “con-
ditional formula”, as a middle ground between binary-level syntac-
tic features and source-code level representation. To conduct code
search, we factorize tangled code logic of a vulnerable function
down into conditional formulas as logic-independent units. Gen-
erally, a conditional formula consists of an If-clause and a Then-
clause, and each clause is a symbolic formula, describing under
what condition (stated in the If-clause) a given action (in the Then-
clause) will take place. A conditional formula explicitly captures
two cardinal factors of a buggy code: (1) erroneous data depen-
dencies, and (2) missing or incorrect condition checks. Instead of
treating the vulnerable function as a whole, searching on structured
conditional formulas can effectively localize the possibly vulnera-
ble code logic. By contrasting conditional formulas between the
vulnerable function and a target candidate, an analyst can quickly
diagnose whether the target is vulnerable or a false positive.

Therefore, using conditional formulas for code search has two
advantages: (1) it significantly improves search accuracy, as it ab-
stracts away platform-specific differences at the binary code level;
and (2) it provides explainable evidence for human analysts to scru-
tinize the search results and identify vulnerable functions.

More specifically, to extract conditional formulas, we lift the
binary code into a platform-independent intermediate representa-
tion (IR) and conduct static analysis on the IR. We formulate the
matching of conditional formulas as a linear assignment problem
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and leverage integer programming to match formulas in an op-
timal fashion. Consequently, this method not only computes a
general code similarity score as prior efforts [19, 35] do, but also
presents in-depth matching results as evidence to justify the dis-
covered bugs. In addition to search for security bugs in binary code
based upon their distinctive contextual semantics, we also take a
step further to enable human analysts to examine the searching re-
sults by producing an explainable diagnosis report that pinpoints
the revealed bug code within the target program.

We have implemented a prototype, XMATCH, and systematically
evaluated its performance with existing baseline methods using 72
binaries including 216,000 functions from x86 and MIPS. Exper-
imental results have shown that XMATCH can further improve the
search accuracy of existing bug search techniques with very reason-
able performance overhead. XMATCH gets average recall rate 0.87
at top 1 for small functions (with the number of basic blocks less
than 9). Furthermore, XMATCH can precisely locate well known
vulnerabilities at top 1 in the real-world firmware image [3].
Contributions. In summary, the contributions of this paper are as
follows:

• We propose to extract conditional formulas as semantic fea-
tures for cross-platform binary code search in binaries. Com-
pared to prior work, a conditional formula distills contextual
semantics (including triggering conditions and data-flow re-
lations), therefore leading to higher search accuracy and pro-
viding explainable evidence for human inspection.

• We have implemented a prototype system, XMATCH, and
systematically demonstrated the effectiveness of XMATCH

on real-world samples including well-know libraries and the
vulnerable firmware. The experiment shows that XMATCH

can greatly improve the search accuracy of existing bug search
techniques in the cross-architecture setting. Furthermore, it
can precisely locate well known vulnerabilities at top 1 in the
real-world firmware image where existing approaches failed
for most of vulnerabilities. We also utilizes 5 case studies
to show how XMATCH facilitates the security evaluator by
providing the explanatory search results.

2. APPROACH OVERVIEW

2.1 Problem Statement
Our use scenario is similar to the previous work [19, 20, 35].

Given a vulnerable binary code function in one architecture, we
search for the presence of the same function in other binaries in
different architectures. In addition to ranking candidate functions
based on their similarity scores, we like to provide explainable
matching evidence for human analysts to eliminate false positives
and determine if a matched function has been patched or not.

Motivating Example. We use a real-world vulnerability CVE-
2013-6449 as a motivating example. Figure 1 illustrates two binary
functions of ssl_get_algorithm2 for x86 and MIPS. The x86
version is compiled from the OpenSSL library (version 1.0.1a), and
the MIPS version is directly extracted from the Linux-based router
firmware DD-WRT (version r21676) [3]. Both code snippets con-
tain the vulnerability CVE-2013-6449, which allows remote attack-
ers to launch a denial-of-service attack (daemon crash) via crafted
traffic from a TLS 1.2 client. In this example, the vulnerable func-
tion ssl_get_algorithm2 for x86 is provided to us, we aim to
search the same vulnerable function in the stripped binaries from
the router firmware, and from the matching results determine if
each matched candidate is indeed vulnerable: it is neither a false
positive or a patch that has been applied to the vulnerable function.

push    ebx

mov     eax, [esp+4+arg_0]

mov     edx, [eax+58h]

mov     ebx, [edx+344h]

mov     edx, [eax]

mov     eax, [ebx+24h]

mov     ecx, edx

sar       ecx, 8

cmp     ecx, 3

jz      short loc_80A9550

cmp     edx, 302h

jle     short loc_80A954D

pop     ebx

retn

cmp     eax, 0C030h

mov     edx, 20080h

cmovz  eax, edx

pop      ebx

retn

lw      $v0, 0x58($a0)

lw      $v1, 0($a0)

lw      $v0, 0x344($v0)

sra     $a1, $v1, 8

li      $a0, 3

bne     $a1, $a0, locret_19830

lw      $v0, 0x24($v0)

slti    $v1, 0x303

bnez    $v1, locret_19830

li      $v1, 0xC030

bne     $v0, $v1, locret_19830

nop

la      $v0, loc_20080

jr      $ra

nop

a)  x86 assembly b) MIPS assembly

Figure 1: The control flow graph comparison for the vulnerable
function ssl_get_algorithm2 (CVE-2013-6449) under different
architectures(x86 vs. MIPS).

Challenges. From this example, we observe several challenges for
cross-platform binary code search:

• Syntactic representations are very different. x86 and MIPS
have drastically different instruction sets. They employ dif-
ferent strategies to pass function arguments: x86 often uti-
lizes the stack to pass arguments, whereas MIPS holds ar-
guments in special registers. Moreover, they use different
mechanisms for conditional branching: x86 relies on an im-
plicit EFLAGS register, while MIPS does not. As we can
see in Figure 1, the instruction syntaxes and the instruction
counts are vastly different. Therefore, any code search tech-
niques based on superficial features (e.g., opcode type and
amount) might not produce very good accuracy.

• Control-flow graphs are inconsistent. The control-flow gra
phs of the same function compiled on two platforms bear
very different structures. In Figure 1, while x86 binary con-
tains 4 basic blocks, MIPS function has 5 of them. Such
CFG changes might become significant obstacles for previ-
ous code search efforts [19, 35], which rely on basic-block
level feature extraction and semantics comparison. In con-
trast, to address this problem, we propose to search secu-
rity bugs using the higher-level behavior-based semantics, in-
cluding data dependency and branch predicate. These factors
reveal the fundamental program behavior rather than volatile
code formation, and therefore are insensitive to CFG-level
structural variation.

• Vulnerable code logic often is scattered across multiple

basic blocks. The vulnerability shown in Figure 1 is caused
by an incorrect version check on the argument of ssl_get
_algorithm2, but this code logic spans over multiple ba-
sic blocks and is blended with other code logics. Therefore,
to precisely locate and confirm this vulnerability, it is insuf-
ficient to match individual basic blocks, as prior work [35]
did. Instead, it is necessary to consider the vulnerability, in-
volving multiple basic blocks, as an entirety and reconstruct
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   (([[a0]]/0x10 != 0x3) || ([[a0]] < 0x302) || ([[[[a0] + 0x58] + 0x344] + 0x24] != 0xc030))

a) ssl_get_algorithm2 in x86

b) ssl_get_algorithm2 in MIPS

ret = [[[[a0] + 0x58] + 0x344] + 0x24] 

(([[a0]]/0x10 == 0x3) && ([[a0]] >= 0x302) &&  ([[[[a0] + 0x58] + 0x344] + 0x24] == 0xc030))

ret = 0x20080

   (([[a0]]/0x10 != 0x3) || ([[a0]] < 0x303) || ([[[[a0] + 0x58] + 0x344] + 0x24] != 0xc030))

ret=[[[[a0] + 0x58] + 0x344] + 0x24]

(([[a0]]/0x10 == 0x3) && ([[a0]] >= 0x303) &&  ([[[[a0] + 0x58] + 0x344] + 0x24] == 0xc030))

ret = 0x20080

Figure 2: Conditional Formulas for the Motivating Example

high-level code logic that includes both the data and control
dependency relations across basic blocks.

2.2 Conditional Formula
Definition 1. A conditional formula (CF) consists of an action

(which describes how a function output is computed from one or
more function inputs), and an optional condition (which is a boolean
expression that triggers the execution of the formula).

〈CondFormula〉 ::= 〈Action〉
| 〈Condition〉 ’→’ 〈Action〉

〈Condition〉 ::= 〈Expression〉

〈Action〉 ::= 〈Assignment〉
| 〈Function〉

〈Function〉 ::= 〈FnName〉 ‘(’ 〈ParamList〉 ‘)’

〈ParamList〉 ::= 〈Expression〉
| 〈Expression〉 ‘,’ 〈ParamList〉

〈Assignment〉 ::= 〈Expression〉 ‘=’ 〈Expression〉

〈Expression〉 ::= 〈Name〉
| 〈Number〉
| 〈Function〉
| 〈Expression〉 〈BinOp〉 〈Expression〉
| ‘(’ 〈Expression〉 ‘)’
| ‘[’ 〈Expression〉 ‘]’

Figure 3: Abbreviated BNF for Conditional Formula

An Backus-Naur Form for conditional formula is shown in Fig-
ure 3. A conditional formula <CondFormula> consists of a condi-
tion expression <Condition> with an action statement <Action>,
with a connector → in between. If the triggering condition is al-
ways true, <CondFormula> is simply <Action>. While a con-
dition <Condition> is a standard expression <Expression>, an
action <Action> can be either an assignment <Assignment> or
a function call <Function>. An expression can be as simple as
an integer number, a variable name, a function call, a combination
of two subexpressions connected by a binary operation (such as
‘+’, ‘-’, ‘&&’, etc.), or surrounded by a pair of parentheses ‘()’ or
square brackets ‘[]’. Note that a pair of square brackets ‘[]’ denote
a memory dereference.

Figure 2 shows the conditional formulas for the two binary func-
tions in Figure 1. Given the vulnerable ssl_get_algorithm2 in
x86, we can precisely label the vulnerable logic, the invalid con-
dition check on its conditional formulas. XMATCH searches the
whole OpenSSL binary in DD-WRT and finds a candidate, ssl_get
_algorithm2 in MIPS. It shares the similar code logic. XMATCH

also produces the best match between the conditional formulas in
both functions. As we see, the code logic is interpreted by the con-
ditional formulas, and it becomes evident for an analyst to diagnose
the vulnerability in DD-WRT firmware.

2.3 Workflow
We outline our approach in Figure 4. It consists of the follow-

ing three steps: binary lifting, conditional formula extraction, and
conditional formula matching.

Binary Lifting. We first utilize binary lifting to convert different
native machine code to the same higher-level intermediate repre-
sentation (IR). The lifted binary retains semantics that are consis-
tent with the original binary program. Our subsequent operations
will be directly conducted on the lifted binary.

Conditional Formula Extraction. We apply the binary analysis
techniques on the lifted binary to construct conditional formulas.
We carefully handle the data dependency via pointers. Besides,
not all the variables in a lifted binary function are of interests. We
conduct the action point selection to filter irrelevant variables.

Conditional Formula Matching. We match functions by their uni-
fied conditional formulas. We model such a matching problem as a
linear assignment problem and leverage integer programming tech-
niques to find an optimal solution. The matching result is then a
one-to-one mapping of CFs, in addition to a simple similarity score.
Human analysts can thus inspect the in-depth mapping results to
understand and verify any discovered bugs.

3. BINARY LIFTING
Binary lifting transforms binary code of different architectures

into a common code representation to facilitate subsequent analy-
ses. We need to extract conditional formulas for one function, such
a transformation must preserve the semantics of the entire function.
To do so, we first recover the control flow graph of a function, and
then transform the binary code instruction by instruction following
the control flow graph.

With respect to the implementation, our binary lifting is based on
McSema [14], a code translation framework that translates x86 in-
structions to LLVM IR (Intermediate Representation). To address
the problem of cross-platform bug search, we have extended Mc-
Sema in two fronts: 1) multi-architecture support; and 2) function
prototype based translation.

3.1 Support for Multiple Architectures
McSema only supports translation from x86 instructions to LLVM

IR. In our use scenario, we would like to translate binary code from
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Figure 4: The overview of our approach. The inputs are binaries implementing the ssl_get_algorithm2 function for x86 and MIPS, which
contains the vulnerability CVE-2013-6449. First, the two binaries are lifted into an intermediary representation (IR). Second, conditional
formulas are extracted from the lifted binary function. Finally, the conditional matching works for the similarity score, and one-to-one
mapping results are outputted.

a wide variety of CPU architectures into LLVM IR. Therefore, we
have to extend its support for other architectures. Fortunately, Mc-
Sema provides a generic framework enabling us to easily support
other instruction sets. In the current implementation of XMATCH,
we extended its support for MIPS, since it is the popular CPU ar-
chitecture for embedded systems and IoT devices.

McSema requires two steps to translate a binary function: 1)
control flow graph recovery, and 2) bitcode generation. The control
flow-graph recovery will disassemble a binary function, retrieve its
basic blocks as well as control flow dependencies among these ba-
sic blocks. The bitcode generation walks through the control flow
graph, conducts the one-by-one instruction translation and gener-
ates the LLVM bitcode file. We utilize IDA Pro to retrieve the
control flow graph for a MIPS binary function. McSema translates
each instruction in a x86 binary by modeling its execution seman-
tic. We follow the similar instruction translation process. MIPS
belongs to RISC instruction sets, so the amount of work for adding
such support in McSema is much simpler than that of adding sup-
port for CISC instruction sets like x86. In our case, we add less
than 1K LOC in McSema, and it is one-time effort work.

3.2 Function Prototype Based Translation
For function call translation, McSema introduces a global "con-

text registers" data type and uses this as the only argument for all
lifted functions. "context register" includes all the registers under
corresponding CPU architecture. At the beginning of a lifted func-
tion, McSema first allocates several local variables, and spills all
the registers in the global "context register" argument to those vari-
ables. Then the following operations are performed based on the
variables. When a function returns, the "context register" will be
wrapped up with the latest variables value. At each function call
site, which means a lifted function would be called, the "context
register" is first wrapped up, and then is passed to the callee as the
only argument. As a result, McSema can preserve the control and
data flow dependencies among functions without the need of func-
tion prototype recovery. However, this translation strategy will un-
dermine the efficacy of XMATCH. Firstly, the generated condition
formula fails to represent execution semantics on the real argument
of a function without the function prototype recovery, since some
flaw code logic could be related to the real argument on a function
call such as memcpy. Secondly, unified function prototypes will re-
duce the accuracy of XMATCH, since we cannot rely on the number
of arguments to further refine the search result.

To address these issues discussed above, we require McSema to
translate function call instruction based on the function prototype.
More specifically, there are three steps to achieve this goal: the

function prototype recovery, the function call translation, and argu-
ment passing modeling. We first recover the function prototype for
a binary function, and modify the function call translation mecha-
nism in McSema based on recovered function prototype. We also
add additional IR instructions to model the argument passing to the
corresponding callsite.

The function prototype includes function name, its arguments
and return values. We utilize IDA pro to obtain the recovered func-
tion prototypes. Compared with many other function prototype al-
gorithms and platforms [10, 18, 31], IDA pro could have the limi-
tation. However, it is user friendly and supports multiple platform.
Besides, our experiments show that it is enough for our experiment
purpose. In the future, we will adopt more robust approach for the
further improvement. We assign all functions on the function call-
site with a return value during the translation. We will take the
screening process in Section 4.1 to reduce the impact of fake return
value on the generated conditional formulas.

When McSema translates the function call instruction, it will
predefine the number of arguments to translate. In its original de-
sign, it always assumes the number of argument to be 1. In our sce-
nario, the number of arguments is defined by the recovered function
prototype. We create argument variables with the same number of
arguments defined in the function prototype. We also create the
return variable for each lifted function.

Since the function call instruction translation has been changed
in McSema, we also need to add corresponding argument pass-
ing instructions to preserve the data-flow dependency between the
caller function and its callee. Modeling the argument passing de-
pends on the calling convention type of the original binary function.
We model calling conventions by their types, and check the calling
convention type by matching our modeled patterns. With the call-
ing convention type, we add corresponding argument passing IR
instructions before the function call instruction.

Figure 5 shows a concrete example of how to translate a call on
both x86 and MIPS architecture. In this example, from the analy-
sis in IDA, we know that the function bar has two parameters, so
at the call site, call bar and jal bar will be translated into a
number of IR instructions shown on the right hand side of the fig-
ure. Instructions before the call instruction describe how arguments
are passed into the corresponding function.

3.3 Other Issues
McSema does not support translation for all sorts of x86 instruc-

tions. For instance, it only supports a small portion of floating point
instructions. However, McSema is well documented and it is not
difficult to add support for other instructions that needed. In our
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1.%158 = load i32* %a0_val

2.%159 = load i32* %a1_val

3.%160 = call i32 @bar(i32 %158, i32 %159)

a) x86 bar call -> LLVM IR

b) MIPS bar call -> LLVM IR

1. call     bar

1. jal     bar

  %158 = load i32* %ESP_val

  %159 = inttoptr i32 %158 to i32*

  %160 = load i32* %159

  %161 = add i32 %158, 4

  %162 = inttoptr i32 %161 to i32*

  %163 = load i32* %162

  %164 = call i32 @bar(i32 %160, i32 %163)

Figure 5: The example of the code translation for the call instruc-
tion.

case, it is important for us to provide support for the conditional
branches which is necessary to conditional formula extraction, so
we add support this kind of floating point instructions that McSema
has not supported. We believe that supporting all instructions is en-
gineering work and leave it as future work.

4. CONDITIONAL FORMULA EXTRACTION
We conduct static analysis directly on the lifted function to ex-

tract its conditional formulas. More specifically, we conduct intra-
procedural dataflow analysis to construct formulas for actions, and
perform the path slicing to retrieve the corresponding conditions.
All static analysis are conducted on top of LLVM framework [1].

4.1 Action Construction
An action is a data-flow equation on a specific IR variable, which

serves as a function output. To construct an action, we first discover
all the function outputs (we call them “action points”) that have ex-
ternal impacts. Then, starting from each action point, we compute
the use-def chain to evaluate the reachability from function output
to inputs. Eventually, we fold all the IR statements on each trace to
produce an data-flow equation as an action for the corresponding
action point.

Action Point Selection. Intuitively, we can compute data-flow
equations for any IR variables hosted in a function. However, the
lifted function still keep many architecture specific variables, such
as ESP_val in Fig. 5a) and a0_val in Fig. 5b). This will make the
generated conditional formulas to be dramatically different across
architectures. Therefore, we only focus on the stable output states,
which indicate consistent program behavior. To this end, we aim to
calculate backward data-flow from three types of function outputs:
1) return values, 2) memory variable, 3) function calls.

1) Return value. We conduct a conservative analysis to iden-
tify the variables that hold return values, even if we assume
all functions in a lifted binary have the return values dur-
ing the binary lifting process discussed in Section 3.2. First,
we seek IR variables with specific register names. This is
due to the fact that a certain architecture uses specific reg-
isters to hold return values and IR variables, though lifted
from binary, still preserve the original register names. Sec-
ond, among these candidate variables, we further search for
those that are never redefined in the same function. We then
consider these variable to contain the return values.

2) Memory variables. A function can also write to memory.
This is translated into a memory write operation in lifted bi-

nary. Therefore, we obtain memory variables by first search-
ing for memory write instruction storeinst in LLVM-IR.
Next, we perform value-set analysis [7] to determine the mem-
ory region a pointer points to. Once a memory region is not
updated in a function, its pointer is now pointing to the actual
output, and thus can be considered as an action point.

3) Function calls. A function may call another function. If the
caller function uses or checks the return value of the callee
function, then the callee function will be eventually included
in the data-flow expression of the variable that uses the return
value. If the return value of the callee function is never used
inside the caller function, we will treat it as an action point.

Data-Flow Analysis. Once we have discovered all the action points,
we then compute backward data-flow for each one of them. To this
end, we first perform use-def chain analysis. The use-def chain
analysis needs to consider two types of variables in a lifted binary:
register variables and memory variables. LLVM IR is already in
SSA (Static Single Assignment) form, so we can directly retrieve
the use-def chain for register variables. However, memory vari-
ables are address-taken variables which are not in SSA form in
LLVM IR. We need promote memory variables to register variables
first to obtain their use-def chains.

Memory promotion is to promotes memory references to be reg-
ister references. It firstly collects all possible memory variables
by finding pointers holding their addresses. The pointer variable is
transformed to a register variable by rewriting the lifted IR func-
tion, then traversing the function in depth-first order to rewrite all
its uses as appropriate. This just follows the standard SSA con-
struction algorithm.

The binary lifting translates the pointer variable by using “int-
toptr” instruction. We find all potential pointer variables by scan-
ning the whole binary function for this instruction. The next step is
to rewrite the pointer as well as its all uses. We need conduct the
value-set analysis [7] on pointer variables to find all its uses. Since
the memory variable is not in SSA form, it is hard for us to know
which pointers share the same value. To this end, each pointer is
labeled by its address, the a-loc (known as “abstract location”) of
the memory region that it accesses. Hence, the reaching-definition
analysis on the pointer variable aims to track its Kill and Gen sets
of a-locs. The result of this analysis in effect recovers the data-
flow dependencies among memory regions that are accessed using
pointers, and therefore help bridge the disconnected data-flows. Af-
ter recovering the data-flows among pointer variables, we convert
them into SSA form by the standard SSA construction algorithm.

We utilize the data-flow expression on the index of a pointer
variable to determine its a-loc. This is also widely adopted in
other works [6]. The data-flow expression on the index describes
how the index is computed. Pointers of the same memory variable
should share the similar data-flow expression. We utilize a theorem
prover [2] to further unify the data-flow expression for a-loc.

There are three types of pointers: global pointers, local point-
ers and pointers from function arguments. The a-loc of a global
pointer is a constant address which is different cross architectures.
We assign each of global variables, by orders of their addresses, a
new variable “GN”, where “N” is the its order. We also follow the
same rule to rename the local pointers into “LN”, and pointers from
arguments into “a0” to “aN”.

We will rewrite the IR function by renaming all pointer variables
according to their a-locs, and by traversing the function in depth-
first order to rewrite all its uses as appropriate. The result IR func-
tion has the complete use-def chain for both register variables and
memory variables.
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1.   t1 = esp - 4

2.   t2 = t1 + 8

3.   t3 = *t2

4.   If t3 > 0 goto 5

      else goto 6

5.   t4 = t3 + 2

6.   t5 = t3 + 1

7.   *t2 = (t4, t5)

8.   t6 = esp -4

9.   t7 = t6 + 8

10. eax = *t7
Memory V

*t2

*t7

Data-flow equation 

*((esp-4) + 8)

*((esp-4) + 8)

Register V

a0

a0

b) The use-def chain on *t2 and eax d)  Use-def chain after the 

memory promotion on *t2
1.   t1 = esp - 4

2.   t2 = t1 + 8

3.   t3 = *t2

5.   t4 = t3 + 2

7.   t2* = t4

8. t6 = esp -4

9. t7 = t6 + 8

10. eax = *t7 5. t4 = a0 + 2

10. eax = a0

3. t3 = a0

7. a0 = t4

a) Pseudo LLVM-IR code

c) Promote memory variables to registers

!"#"$%&'(

t3 +2

Figure 6: The example of lifted IR code and generated statements
for its variables.

Action Generation. The action generation works on the rewritten
IR function. Starting from an action point, we fold all the instruc-
tions on every single data-flow path and produce a data-flow equa-
tion. One such equation is further simplified using theorem prover
and the result is then considered to be one action.

Running Example. Figure 6 illustrates the action construction pro-
cess. For readability purpose, we utilize pseudo code instead of
LLVM-IR in the demonstration. Figure 6(a) shows the IR in SSA
(Static Single Assignment) form. The action point in this example
is eax, which holds the return value. Figure 6(b) shows the incom-
plete use-def chain without the memory variable promotion on *t2
and *t7. We can see that the data flow between eax and t4 is miss-
ing, so we cannot know the current value of eax is [esp+4]+2.
Figure 6(c) and (d) illustrates the effectiveness of memory variable
promotion. By analyzing data-flow equation on pointers *t2 and

*t6, we identify that these two pointers access the same a-loc a0.
Such a discovery helps us further connect the use-def chain from
eax to *t2. Figure 6(d) demonstrates the updated use-def chain by
considering pointers. Eventually, we compute two data-flow equa-
tions for the action point eax: a0+1 and a0+2, each of which is
generated from one single path.

Figure 7: The condition generation for IR variable eax.

4.2 Condition Extraction
We further utilize the path slicing algorithm [26] to generate con-

ditions for each action. In our scenario, the path slicing is used to
extract conditions for the specific path holding the action in the
lifted binary function.

Given the action and the computed data-flow, we set the slic-
ing criterion to include all variables in the action. With the slicing
criterion, the path slicing algorithm will trace backwards to find
the path slice which contains all the variables in the slicing crite-
rion. We extract all the comparison variables from the path slice
and generate predicate expressions for these variables. Each pred-

icate expression includes the condition expression and its boolean
value that will cause the action to be executed. In LLVM-IR, the
comparison variable is the first operand of the branch instruction, if
it is the conditional jump. We generate the data-flow equation for
the condition variable to get the condition expression on this basic
block. We can obtain the boolean value by checking the succes-
sor block on the path. If its address is the second operand of the
branch variable, the boolean value is true. Otherwise, false. If
the boolean value is false, we will negate the condition expression.
We make a conjunction of the discovered predicate expressions on
the path slice as the condition for the action v.

Running Example. Figure 7 demonstrates the condition genera-
tion process for actions of eax. Figure 7(a) lists two actions for
eax: a0+2 and a0+1. This indicates that the eax may hold two
different values depending on which data-flow path to take. Fig-
ure 7(b) shows the path criterion of the two actions, each of which
involves 3 IR variables. The corresponding path slices for the ac-
tion are also presented in Figure 7(b). This slices include not only
the data-flow but also all the conditions. We then can walk through
these path slices, extract all branch variables and make a conjunc-
tion of their data-flow equations. The result becomes the condition
for this action. The outputs of condition generation for action a0+1
and a0+2 are listed in Figure 7(c).

Condition Expression

((%t3-0)==0, ((%t3-0)<0) == and(lshr(and

(xor([esp-8],3),xor(xor([esp-8],3)), (%t3-0))),31),1)))

(%t3-0)==0

Arch

X86

MIPS

Figure 8: The demo example for condition expression in x86.

Architecture-specific Conditional Expression. For some archi-
tectures, such as x86, we cannot directly use the generated con-
dition for comparison, since its conditions are data equations on
status registers. As a result, the condition expression is completely
different from those in other architectures, such MIPS. For exam-
ple, Figure 8 shows the condition expression for comparison vari-
able %t3 in x86 and MIPS. We address this issue by building the
model for each condition expressions on status registers. Then we
map them into corresponding real conditional expressions.

5. CONDITIONAL FORMULA MATCHING
We match two functions by their conditional formulas. It con-

sists of two steps. Firstly, we compute the matching cost of two
CFs. Secondly, we seek the optimal matching among CFs by se-
lecting the minimum matching costs between two sets of CFs, and
then output the similarity score of two functions.

Intuitively, one can utilize string edit distance to calculate the
match cost between two CFs. However, two semantically equiv-
alent CFs may appear to be different due to different ordering.
For instance, ((a>0) && (b>0)) / ret = 0x20800 will be considered
unequal to ((b>0) && (a>0)) / ret = 0x20800, even though they
share the same behavior-level semantics because of the commu-
tative property. To avoid the reordering problem, we instead match
two CFs by their AST structure. Since the AST is a tree-like struc-
ture, we adopt the graph edit distance to calculate the cost to trans-
form between two CFs.

We utilize the algorithm [38] to compute the graph edit distance
ged(cfi, cfj). In our case, not all nodes are inter-changeable. For
example, the condition related node cannot be replaced by action
related node. Therefore, in the pre-computed mapping cost matrix
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in the algorithm, we assign the infinite number for the mapping cost
between action and condition node.

The distance of two CFs is then used to calculate the match cost
of two functions. Suppose we are given two functions f1 and f2,
where f1 contains the CF set {cf1, cf2, . . . , cfn} and f2 holds the

set { ˆcf1, ˆcf2, . . . , ˆcfm}. Let mij be the matching factor for a CF

pair: if cfi matches ĉf j , mij = 1; otherwise, mij = 0. Hence,
all the matching factors form a matching matrix Mn×m, which
demonstrates how these two functions correspond to each other.

Following the graph edit distance, we define the function dis-

tance as the minimum distance of all matched CF pairs between f1
and f2. As we see, finding the function distance is equivalent to

finding the M that minimizes
∑

(i,j)∈{mi,j=1} dist(cfi, ĉf j). In

other words, we need to find the best match (with the minimum
distance) between two functions. Note the greedy approach, which
matches the CF in each function individually, cannot be applied as
it can only produce the suboptimal solutions. To find the global
optimal solution, we formulate the following objective function:

min

n∑

i=1

m∑

j=1

mij × dist(cfi, ĉf j)

subject to

n∑

i=1

mij = 1, ∀j ∈ {1,m}

m∑

j=1

mij = 1, ∀i ∈ {1, n}

mij ∈ {0, 1}∀i ∈ {1, n}, ∀j ∈ {1,m}.

(1)

The objective in Eq. (1) is to calculate the distance between
matched CF pairs, and minimize this value. The constraints indi-
cate every CF in the functions can be matched only once. Based on
Eq. (1), we can formally introduce the function distance.
Definition 2. The function distance of f1 and f2 is the minimum
distance of all matched CF pairs between f1 and f2. Let M∗ repre-
sent the optimal solution of Eq. (1), i.e. the best match between the
two functions, the distance is calculated from:

dist(f1, f2) =

n∑

i=1

m∑

j=1

m
∗
ij × dist(cfi, ĉf j), (2)

where m
∗
ij is an element in the optimal solution M

∗.
The function distance provides a finer-grained comparison for

two functions. It not only quantifies the dissimilarity between two
functions (minimum distance transforming one set of CFs into the
other), but also explains how the statements of the two functions
are matched together. The best match is stored in M

∗, where for
all m∗

ij = 1, we can plot a best match between the statement ci
in f1 and the statement cj in f2. By tracking the conditional for-
mulas in a vulnerable function, this matching helps human analysts
locate potential vulnerable statements in other functions. We will
elaborate this point in our experiments.

According to Definition 2, to calculate the function distance, we
need to find the optimal solution of Eq. (1). Fortunately, the prob-
lem in Eq. (1) is a well studied problem called integer linear pro-
gramming which can be efficiently solved by various techniques
such as constraint relaxation [22, 43]. In this paper, we leverage
the solution in [30] to solve the problem. Our experimental results
show that the employed matching algorithm is efficient.

The function distance quantifies the difference between two func-
tions which could be roughly proportional to the sum of the func-
tions sizes (in bytes). Thus, two larger functions are likely to be
more dissimilar. To reduce the bias, we normalize this absolute
distance by the total length of conditional formulas in the two com-

pared functions. We define the function similarity of f1 and f2 as:

sim(f1, f2) = 1−
dist(f1, f2)∑n

i=1 len(cfi) +
∑m

j=1 len(ĉf j)
, (3)

where len counts the string length of each conditional formula. Its
enumerator is the function edit distance and its denominator de-
notes the largest possible string edit distance between two com-
pletely different functions.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate XMATCH with respect to its accu-

racy, explainability and runtime performance. First, we systemati-
cally compare the performance of XMATCH against existing base-
line methods under the cross-platform setting (Section 6.2). Sec-
ond, we apply XMATCH and baseline methods to detecting real-
world vulnerable code snippets (Section 6.3). Then, we evalu-
ate the precision of XMATCH via matching vulnerable code with
patched ones (Section 6.4). Further, we demonstrate the explain-
ability of XMATCH (Section 6.5). In the end, we measure the run-
time performance of our tool (Section 6.6).

Table 1: The vulnerabilities used in our experiments.

Codebase Function Type

OpenSSL

EVP_DecodeUpdate CVE-2015-0292
X509_cmp_time CVE-2015-1789
dtls1 process heartbeat CVE-2014-0160
tls_decrypt_ticket CVE-2014-3567
dtls1_buffer_record CVE-2015-0206
X509_verify CVE-2014-8275
c2i_ASN1_OBJECT CVE-2014-3508
ssl_get_algorithm2 CVE-2013-6449

BusyBox make_device CVE-2013-1813
xmalloc_optname_optval CVE-2011-2716

6.1 Experiment Setup
All experiments have been conducted on a machine with an In-

tel(R) Core i5 @ 2.9GHz and 16 GB DDR3-RAM, running 64-
bit Ubuntu 14.04. We compiled the source code of two typical
software OpenSSL and BusyBox, which are widely used in the
firmware of IoT devices, and perform code search on the gener-
ated binaries. Specifically, we have compiled two versions (1.0.1.a,
1.0.2.d) of OpenSSL and two revisions (1.19.0, 1.20.0) of BusyBox,
both on two 32-bit architectures (x86 and MIPS), with three com-
pilers (gcc v4.8.4, gcc v4.8.1 and clang v3.4), and across three ma-
jor OSes (Windows, Linux and Mac OS X). Thus, we have created
72 binaries in total as the baseline dataset. All the code searching
experiments were conducted on the dataset, and we kept their de-
bug symbols because they provide the ground truth to enable us to
verify the correctness of matched functions. We also selected 10
representative vulnerabilities for evaluation, including the notori-
ous HeartBleed bug.

6.2 Cross-Platform Baseline Comparison
To demonstrate the efficacy of XMATCH in terms of cross-platform

code search, we compare our system with baseline methods.

Preparation of Baseline Systems. We have prepared 4 baseline
systems for the comparative experiments. They include the state-
of-the-art cross-architecture bug search technique discovRe [19], a
decompiler-based approach, the n-gram based permutation-resistant
matching technique Nperm [28] and the tracelet-based method [13].
Notice that, although Nperm and tracelet-based methods are not
designed for cross-platform code matching, their techniques can be
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Figure 9: The cross-platform baseline recall comparisons under different function sizes. Recall@k means that the recall rate if we consider
top k candidates as positives.

applied to cross-architecture setting once a binary is lifted to a uni-
formed code representation (i.e., intermediate representation).

• discovRe: Due to unavailability of the source code, we have
re-implemented discovRe1 and set the iteration limitation to
be the same (i.e., 10,000) as the one used in the prior work.

• Decomp: We have also implemented a decompiler-based bug
search system Decomp. It relies on the on-line retargetable
decompiler service [4] to conduct decompilation and lever-
age a prior technique [25] to compute the similarity between
two recovered C functions in order to perform code search.

• Nperm: We employed the “N-perms” technique in lifted bi-
naries. The length parameter N is set to be 3, as suggested
in the previous work [29].

• Tracelet: Similarly, we applied tracelet-based method to lifted
binaries. Besides, to facilitate the matching process, we re-
placed the original optimization algorithm with a maximum
value section. That is, we select the similarity score of two
most similar traces as the one for the two functions.

Our baseline experiments mainly focuses on the function-level
matching on the aforementioned 72 binaries. Given a function,
we use each method to calculates its similarity scores against all
functions in the binaries and produce a list of functions sorted in
descending order of the scores. We disable function inlining dur-
ing compilation since XMATCH does not currently support inclined
code. Notice that this is a common limitation also shared by prior
CFG-based approach [19].

Metrics. We used recall rate to evaluate the performance of the
proposed and baseline methods. It is a standard evaluation metric,
which calculates the fraction of correctly matched functions in the
top-k retrieved instances. Here, k means we consider top k candi-
dates as positives. Intuitively, a larger k leads to a higher recall for
every method.

Comparison Results. We conducted two sets of experiments for
baseline comparison. Firstly, we investigated the performance of
proposed and baseline methods when handling different sizes of
functions. Secondly, we systematically compared XMATCH with
baseline methods on a real-world library OpenSSL.

For the first experiment, we clustered functions of different names
in our dataset by the number of basic blocks. We randomly selected
500 functions for each cluster i. For each function, we collect its
x86 and MIPS versions compiled by gcc v4.8.4. As a result, we

1We contacted the author of discovRe to assist us by providing their
search results, but they have not responded.
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Figure 10: The cross-platform baseline comparison on 1,000 func-
tions randomly selected from the dataset.

have a new data set C={c1, . . . , ci} where ci contains 1000 func-
tions with same size i. For each function in cluster ci, we search
the MIPS version using its x86 version in ci. We use Recall@K
to measure its accuracy. We ran XMATCH and baseline methods
in different clusters ci and obtained the evaluation results for Re-
call@1, Recall@5 and Recall@10.

Figure 9 shows their matching accuracy for functions from size 1
to 18. In general, it demonstrates the accuracy of XMATCH is better
than the state-of-the-art approaches. It is worth noting that the per-
formance is evaluated 7,000 functions from the same benchmark,
and the advantage of XMATCH over all other methods is statistically
significant, according to a paired t-test (at the level p = 0.05).

Particularly, XMATCH outperforms all of the baseline methods
for small functions (size≤12). Figure 9 indeed justifies our argu-
ment: although discovRe is accurate for matching large functions
whose basic block number is greater than 15, this technique is not
favorable in searching small functions. This is because small func-
tions have fewer constraints for CFG-based approaches to utilize.
In contrast, XMATCH can achieve better accuracy due to the con-
ditional formula based matching. Even small functions still have
semantic-rich and thus unique conditional formulas. For instance,
function X509_verify has only one basic block and therefore Dis-
covRe cannot rank it at recall@100. On the contrary, XMATCH can
give it a top ranking because the enclosed conditional formulas are
relatively unique.

In the second experiment, we randomly selected 1,000 func-
tions without considering their sizes, and applied all mentioned ap-
proaches on this dataset. For each method, we also collected its
recall rates for different threshold K. Figure. 10 shows the com-
parison results. We also can see that XMATCH can still outperform
all baseline methods.

We also notice that the decompiler-based approach does not pro-
vide meaningful results in two sets of experiments. Most false pos-
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Table 2: The vulnerability ranking baseline comparison on DDWRT firmware and BusyBox

Software Function Name
Decomp N-perm Trace DiscovRe Xmatch

Rank Rank Rank Rank

OpenSSL1.01.a x86→
DDWRT(r21676)

dtls1_process_heartbeat 50 14 843 1* 1*
EVP_DecodeUpdate 63 40 1569 10 1
X509_cmp_time 266 4 1662 81 1
tls_decrypt_ticket 90 7 1913 1 1
X509_verify 844 413 540 125 1*
c2i_ASN1_OBJECT 1100 624 689 3 1
dtls1_buffer_record 574 7 1108 12 1
ssl_get_algorithm2 59 230 1009 6 1

BusyBox1.19.0 x86 →
BusyBox1.20.0 MIPS

make_device 180 69 4 6 1
xmalloc_optname_optval 87 93 428 10 1

* means that there are multiple functions with the same similarity scores.

itives are caused by the decompilation errors. This justify the mo-
tivation of our approach.

We investigated false positives of XMATCH and found that most
of them are caused due to two reasons. First, different functions
share the similar code logics. We found that different functions
may have similar code patterns except that they access different
fields of the same object. This is common in the functions with
small amount (e.g., only one) of basic blocks. We can handle
such cases by further introducing context information, such as its
callers and callees. Second, different functions share the same con-
stants. Sometimes, identical constants such as object offsets are
encoded into conditional formulas that are originated from bina-
ries compiled with even different architectures. Such noises may
dominate the similarity computation and lead to false matching.
Nevertheless, XMATCH has already reduced false positive rate sig-
nificantly, compared to baseline methods, due to its fundamental
advantage of semantic and contextual awareness. Furthermore, the
self-explanatory property of conditional formulas can facilitate fur-
ther manual verification and help human experts easily screen these
false positives.

6.3 Real-World Software Evaluation
To understand the effectiveness of our technique, we apply both

XMATCH and the baseline methods to real-world vulnerable bina-
ries. Specifically, we focus on 10 representative vulnerabilities in
OpenSSL and BusyBox, each of which is corresponding to an
individual function as presented in Table 1.

We further perform cross-platform search on a DD-WRT router
firmware (r21676) [3]. Considering known vulnerable functions
in OpenSSL1.0.1a binary (x86 using gcc 4.8.1) as the bug signa-
tures, we search in OpenSSL binary from this DD-WRT firmware
for the same bugs. Similarly, to uncover cross-platform vulnera-
bilities in BusyBox binary, we examine its MIPS distribution us-
ing bug signatures generated from x86 binary code. More con-
cretely, we first compile an x86 version of BusyBox1.19.0 using
gcc 4.8.1; we create a MIPS version of BusyBox1.20.0 using gcc
4.8.4. Then, we attempt to match the vulnerable functions from the
former one with the unknown functions in the latter.

Table 2 illustrates the comparison results. XMATCH can always
correctly discover the vulnerable functions as top candidates in the
target binary. On the contrary, none of the baseline methods, in-
cluding the state-of-the-art technique DiscovRe, can produce a high
ranking for most of the buggy functions. For example, XMATCH

can rank X509_cmp_time at top 1; on the contrary, discovRe can
only rank it at top 81.

In the case of function X509_verify, aside from the true vulner-
able function, XMATCH also identifies three other functions (e.g.,

X509_REQ_verify) to be top candidates because these functions
all bear the same conditional formulas. By investigating these false
positives in source code, we find that these “same” conditional for-
mulas in fact access different types of data objects. However, due
to the lack of high-level type information, XMATCH cannot distin-
guish such formulas from one to another. However, it is worth not-
ing that these three functions may potentially be vulnerable since
the presence of same conditional formulas could indicate the iden-
tical buggy program logics, which are left unpatched. We have
contacted OpenSSL team to request further confirmation.

6.4 Unpatched versus Patched Code
One major challenge of bug search lies in that a patched ver-

sion may have some differences with the original vulnerable func-
tion. Such difference may confuse XMATCH to get some false neg-
atives. Thus, we would like to evaluate XMATCH with both buggy
code and the corresponding patch in order to understand whether
XMATCH can find the patched version or not. Furthermore, we
hope to perform such a measurement in a cross-platform setting.

To this end, we first compiled a vulnerable OpenSSL (1.0.1a),
with 5 representative bugs, using gcc 4.8.1 under both x86 and
MIPS, and compiled a patched one (1.0.2d) using Clang 3.4 also
under the same architectures. Then, we matched generated x86
binaries to MIPS ones. This involves four classes of matching:
1) patched-to-unpatched, 2) patched-to-patched, 3) unpatched-to-
unpatched, and 4) unpatched-to-patched. Table 3 shows the results
on 5 representative vulnerabilities. For each function, the matching
result includes a candidate ranking and a similarity score.

Patched-to-Patched and Unpatched-to-Unpatched As a base-
line, we first evaluated the matching between two patched or two
unpatched binaries on different architectures. As depicted in Ta-
ble 3, XMATCH can produce fairly high similarity scores (around
0.98 on average) between matched functions in these two classes.
This again demonstrates that our conditional formulas can distill
the essential program logics (vulnerable or not) while abstracting
away the low-level architecture-specific details. However, we did
notice that we cannot always exactly match the conditional formu-
las extracted from binaries in two different architectures and there-
fore cannot achieve a 1.00 similarity score. In a further investi-
gation, we found that this imperfection is caused by the existence
of global variables: indexes for global pointers used in conditional
formulas may be different across architectures. We will address
this issue in the further work by proposing a better way to index
global pointers.

Patched-to-Unpatched and Unpatched-to-Patched For the func-
tion matching in these two classes, we noticed that a patched func-
tion is still considered as the top candidate of an unpatched one and
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Table 3: Cross-platform patch code matching.(unpatched:OpenSSL 1.0.1a vs. patched:1.0.2d, x86 vs MIPS)

Vulnerable Function P(x86) →U(MIPS) P(x86)→P(MIPS) U(x86)→U(MIPS) U(x86)→P(MIPS)

dtls1_process_heartbeat 1/0.81 1/0.97 1/0.96 1/0.83
EVP_Decode_Update 1/0.90 1/0.99 1/0.99 1/0.88

X509_cmp_time 1/0.74 1/0.95 1/0.95 1/0.74
tls_decrypt_ticket 1/0.90 1/0.99 1/0.99 1/0.90

c2i_ASN1_OBJECT 1/0.66 1/0.99 1/0.99 1/0.66
P means patched version, and U means unpatched version. For each matching result x/y, x means ranking and y is similarity score.

vice versa. For instance, the patch for tls_decrypt_ticket con-
sists of merely 3 lines of code and the one for c2i_ASN1_OBJECT,
which is already fairly large, contains only 12 lines of code. In such
cases, the rest of conditional formulas, which are left unchanged,
may dominate the similarity computation.

6.5 The Case Study On Explainability
In this section, we demonstrate that the conditional formulas is

able to provide self-explanatory evidence to human experts for fur-
ther verification. In the paper, we will analyze one example as a
demonstration. More examples can be found in Appendix.

To exemplify the intrinsic explainability of conditional formulas,
we study the matching results from an unpatched x86 function to a
patched MIPS version. Due to the page limit, we only demonstrate
our analysis on the function dtls1_process_heartbeat whose
unpatched version bears the Heartbleed bug (i.e., CVE-2014-0160).
The analyses on other functions are presented in Appendix.

CVE-2014-0160 The result for the dtls1_process_heartbeat

is shown in Figure. 11. The code snippet on the left represents con-
ditional formulas extracted from patched MIPS and unpatched x86
binaries, respectively. The one on the right presents corresponding
source code. The matched formulas are linked by red dotted lines.

The root cause of Heartbleed vulnerability is the missing length
check for memcpy() arguments and such a check is introduced in
the patch code. In contrast, the dataflow that reaches memcpy()

remains intact. Both the modified condition and invariant dataflow
can be directly observed from the two matched conditional formu-
las. Specifically, the If-clauses are different due to the introduction
of new boundary check (depicted in bold), while the Then-clauses
denoting memcpy() activities remain unchanged.

In this case, the identical and sophisticated Then-clauses indi-
cate that the two functions are indeed very similar to one another.
This explains why XMATCH considers the patched MIPS function
to be the top matching candidate for a vulnerable one. Neverthe-
less, since two functions bear different behaviors in terms of con-
dition check, their similarity score is relatively low (0.81).

In addition, due to the behavior level matching, XMATCH can
explain that these two functions, buggy and patched, are corre-
sponded to one another exactly because they share these similar
conditional formulas. Thus, by assessing the difference between
two CFs, which includes barely 2 predicates in the If-clauses, a hu-
man analyst can easily understand and rule out such a false alarm.
In contrast, prior work can only output the similarity score and
matched control flow graphs without pinpointing the exact match-
ing regions. In that case, human experts will have no choice but
to manually analyze the binary code to dig out the vulnerable logic
for further verification.

6.6 Runtime Performance
We tested XMATCH on 1000 randomly selected functions from

the dataset in Section 6.1 and evaluated the runtime in three steps,
i.e. binary lifting, conditional formula extraction, and function
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Figure 12: The runtime performance of XMATCH

matching. The first two steps are offline steps that can be prepro-
cessed beforehand; whereas the last step is an online search step.

The results are presented in Figure 12. On average, the binary
lifting and conditional formula extraction take 2.3 seconds, and it
takes 0.029 seconds to perform the function level matching. Over-
all, no matching takes longer than 0.55 seconds for all functions.
The maximum preprocessing time (binary lifting and conditional
formula extraction) is about 2.9 seconds. The preprocessing can
be easily executed in parallel across multiple machines, and thus is
not the bottleneck of our system. The search time grows linearly
with the number of searched functions, and thus the function search
is reasonably fast. We plan to further improve the performance of
XMATCH by using the indexing techniques in our future work.

7. DISCUSSION
In this section, we discuss about the limitation and potential chal-

lenges of this work.

Loop Handling We only unroll the loop once during the data
flow analysis. This is a safe strategy, because it does not increase
the false negatives of the match result. Besides, this strategy is
also attempted in other works [9], In the future, we could apply the
existing loop analysis such as the technique [23] to further improve
the accuracy of our approach.

Vulnerability across multiple functions. The goal of XMATCH

is not to create the abstract formula cross multiple functions to find
the potential vulnerabilities. If the vulnerability is related to multi-
ple functions. XMATCH will find all related functions for the fur-
ther vulnerability diagnosis.

Function Inlining. XMATCH can handle the inlined function
which does not affect the most of code logics in the caller function.
If the inlined function changes most of code logics in the caller
function, we need to extend XMATCH to support inter-procedure
analysis to not only generate the conditional formulas for one func-
tion but a set of functions. We will study how to systematically
address this problem in future work.
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X86:     [[a0+0x58]+0x118]]==1
X86:     memcpy(func(or([[[a0+0x58]+0x118]+0x1],[[[a0+0x58]+0x118]+0x2])+0x13,0x1b060,0x596)+0x3,
             [[a0+0x58]+0x118]+0x3, or([[[a0+0x58]+0x118]+0x1],[[[a0+0x58]+0x118]+0x2])) 

[[v+0x58]+0x118]]==0x1 &&  
(([[a0+0x58]+0x110] <0x4001) && 

(([[a0+0x58]+0x110] > 0x13)

([[a0+0x58]+0x110] > or([[[a0+0x58]+0x118]+1],[[[a0+0x58]+0x118]+0x2])+0x13)))

memcpy(func(or([[[a0+0x58]+0x118]+1],[[[a0+0x58]+0x118]+2])+0x13,0x660000,0x596)+0x3,
[[a0+0x58]+0x118]+0x3, or([[[a0+0x58]+0x118]+0x1],[[[a0+0x58]+0x118]+2]))

 [[a0+0x58]+0x110] < 0x13
 ret = 0

[[a0+0x58]+0x110] > 0x4001

ret = 0

MIPS:  +

MIPS:  +

MIPS:  +

MIPS: +

 [[a0+0x58]+0x110] < or([[[a0+0x58]+0x118]+1],[[[a0+0x58]+0x118]+2])+0x13))

 ret = 0

if (1 + 2 + 16 > s->s3->rrec.length)                                             

return 0;                         

if (s->s3->rrec.length > SSL3_RT_MAX_PLAIN_LENGTH)     

return 0;         

if (1 + 2 + payload + 16 > s->s3->rrec.length)

return 0;

if (hbtype == TLS1_HB_REQUEST) {
unsigned int write_length = 1 /* heartbeat type */ +
2 /* heartbeat length */ +
payload + padding;
if (write_length > SSL3_RT_MAX_PLAIN_LENGTH)

return 0;

buffer = OPENSSL_malloc(write_length);
d1bp = buffer;
memcpy(bp, pl, payload);

.1405

.1406

.1407

.1408

.1412

.1413

.1416

.1417

.1418

.1419

.1421

.1422

.1430

.1431

.1436

source code in ssl/d1_both.cMIPS Patched

X86 Unpatched

Figure 11: The explainability demo for dtls1_process_heartbeat vulnerability

8. RELATED WORK
We have discussed closely related work throughout the paper. In

this section, we briefly survey additional related work. We focus on
approaches using code similarity to search for known bugs. There
are many other approaches that aim at finding known bugs [25, 27,
32] in source code, or unknown bugs, such as fuzzing or symbolic
execution [5, 11, 12, 37, 40, 42]. Since they are orthogonal to our
approach, we will not discuss these approaches in this section.

Binary-only Code Search. Compared with source-code-level search
techniques, binary-level code search is far more challenging. Most
of these works do not focus on matching functions by their code
logics. Instead, they focus on matching syntactic features [24, 29],
semantic features [36], basic-block-level I/O dependencies [35], or
code environments [17]. All these approaches only give the sim-
ilarity scores. Therefore, they cannot provide a reasoning scheme
which can also give effective evidence about why the target code
is vulnerable. Tracelet-based approach [13] gives the accountable
matching result, which shares the similar idea with ours. How-
ever, it cannot be applied on the lifted binaries. We have demon-
strated this point in Section 6. Furthermore, BinHunt [21] and iBin-
Hunt [33] utilize symbolic execution and a theorem prover to check
semantic equivalence between basic blocks. These two approaches
are expensive and cannot be applied for large scale firmware bug
search, since they need to conduct binary analysis to extract the
equations and conduct the equivalence checking.

Existing Binary Analysis Tools. In this paper, we do not invent
new binary analysis techniques. Instead, we leverage the existing
binary analysis techniques to extract conditional formulas for code
search. Therefore, our proposed approach can be applied into more
mature platforms such as BAP [8], Bitblaze [41], or Panda [15].
Besides, lifting binaries into the intermediate representation has
been well studied. We choose LLVM-IR, because LLVM frame-
work is mature and has many excellent optimization features. The
binary lifting of the paper can also be implemented by other types
of IR such as Valgrind VEX [34], BAP BIL [8], or REIL [16].

Decompilation Related Approach. Decompilation can provide
more readable code, but that is not explainable. This is because
it does not conduct the factorization on the function to extract in-
dependent code logics. An analysis still needs to manually check
the text to locate the potentially vulnerable code logic. Program
analysis on generated C code could facilitate this process, but the
quality of decompiled C code cannot be guaranteed, due to the lim-
itations of decompilation [39]. We also substantiate this point in
Section 6. Instead of conducting the source code analysis on de-
compiled C code, XMATCH targets on the lifted binary code which
is more accurate than decompiled C code. Furthermore, it is more

explainable, since it can locate potentially vulnerable code logics
in the function. This is substantiated in Section 6.

9. CONCLUSION
In this paper, we adopted feature representation conditional for-

mulas to conduct the cross-architecture code search. The condi-
tional formula explicitly captured two cardinal factors of a bug:
1) erroneous data dependencies and 2) missing or invalid condi-
tion checks. To better facilitate human bug verification, we formu-
lated conditional formulas matching as a linear assignment problem
and leverage integer programming techniques to correlate the state-
ments in two binary programs in an optimal fashion. We had im-
plemented a prototype, XMATCH, and evaluated it using the well-
known software OpenSSL and BusyBox. Experimental results had
shown that XMATCH outperforms existing bug search techniques.
At the same time, it also provided evidence of detected vulnerabil-
ities, which can then be easily examined via human inspection.
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APPENDIX

A. THE DEMOS FOR MORE VULNERA-

BILITIES

A.1 CVE-2014-3567
This vulnerability is caused by tls_decrypt_ticket function.

Memory leakage in this function allows remote attackers to cause a
denial of service via a crafted session ticket that triggers an integrity-
check failure. This vulnerability incorrectly handles the session
ticket cleanup by not adding the proper cleanup function. We can
still capture its vulnerability in terms of conditional formulas. Un-
like Heartbleed, this vulnerability is not about missing conditional
checking on a specific statement, but rather about missing a specific
conditional formula. In this case, as shown in Figure 15, XMATCH

locates the extra conditional formula in the MIPS version that can-
not be matched by any existing conditional formulas in x86. By
comparing the two matched conditional formulas for both x86 and
MIPS, we see that the bolded part indicates that an extra function
is added under a certain condition. This is a clear explanation of
why their function similarity is 0.90. Their difference also provides
strong evidence that the target function is patched.

A.2 CVE-2015-0292
This shows the integer overflow in EVP_DecodeUpdate which

allows remote attackers to cause a denial of service. The vulnerabil-
ity is missing a specific conditional formula for boundary checking.
XMATCH locates this missing conditional formula by comparing
the conditional formulas of two matched functions. Its condition
and statements clearly explain its semantics in in Figure 13. An
expert can directly investigate this specific program logic and diag-
nose that the MIPS version is patched.

A.3 CVE-2015-1789
This allows remote attackers to cause a denial of service via a

crafted length field in ASN1_TIME data. X509_cmp_time is re-
sponsible for this vulnerability. Although the patch in source code
level spans several lines as shown in Figure 14, it is only repre-
sented as two lines of conditional formulas. This is because that
most of the patch source code only renames names of the original
variables, such as variables from line:1809 to line:1811. The real
patch in the source code is on line:1820. This explains why the
conditional formulas for this patch are so small.

A.4 CVE-2014-3508
This vulnerability is related to the function c2i_ASN1_OBJECT.

By comparing it against the MIPS version, an expert can clearly un-
derstand that the MIPS version adds conditional formulas for vari-
able checking in Figure 16.

358



Figure 13: The explainability demo for EVP_Decode_Update vulnerability

Figure 14: The explainability demo for X509_cmp_time vulnerability

Figure 15: The explainability demo for tls_decrypt_ticket vulnerability

Figure 16: The explainability demo for c2i_asn1_object vulnerability
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