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ABSTRACT
Designated confirmer signature is an important cryptographic
primitive, it is widely used in E-commerce. In this paper,
we propose a new designated confirmer signature scheme
which is transformed from a new signature scheme. The
proposed scheme has very simple construction and is much
more efficient than the previous ones and does not need any
commitment scheme or strong witness hiding proofs.

Categories and Subject Descriptors
E.3 [Data ]: Data Encryption – Public key cryptosystems

General Terms
Design, Theory

Keywords
Signature, Designated confirmer signature, Bilinear pairings

1. INTRODUCTION
Chaum and van Antwerpen [8] introduced the notion of

undeniable signatures which allows to authenticate a mes-
sage in such a way that the recipient has to interact with
the signer in order to be convinced of its validity. The un-
deniable signatures rely on the signer to be available and
not to act maliciously, otherwise, the recipient cannot make
use of the signature. Chaum [9] introduced the notion of a
designated confirmer signatures (DCS), which overcome the
limitations of undeniable signatures. DCS require the assis-
tance of a trusted third party called the confirmer. Given a
signature σ that the signer issues, the confirmer can execute
a special Confirm protocol to prove that a signature σ is a
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valid signature on a message m, or a Deny protocol to show
that σ is not a valid signature on a message m. Without the
confirmer, however, no party can determine whether σ is a
valid signature for m or not.

Since the invention of DCS, several concrete realizations
of designated confirmer signatures were presented [6, 11, 12,
13, 14, 15]. Okamoto provided [15] the first formal defi-
nition for a DCS scheme and showed constructively that a
DCS scheme is equivalent to a public-key encryption scheme
with respect to existence. Using strong witness hiding proofs
of knowledge, Goldwasser and Waisbard [12] presented sim-
ple transformations of several specific signature schemes into
DCS schemes. Later, Gentry et al. [11] provided an alter-
nate generic transformation to convert any signature scheme
into a DCS scheme without adding random oracles. The
key techniques used are a signature on a commitment and a
separate encryption of the random string used for commit-
ment. At PKC 2007, Wang et al. [17] showed that Gentry et
al.’s DCS transformation does not meet the desired security
requirements by identifying two security flaws and pointed
out the reasons that cause those flaws and proposed a secure
improvement to fix the flaws. Wei [18] also points out the
security flaws of [11] and [12] in his paper showing that their
scheme does not meet essential security requirements under
their security model. He shows successful signature trans-
formation attacks on these schemes, and gives amendments
to improve these schemes into invisible DCS.

In recent years, the bilinear pairings have been found to
be very useful in various applications in cryptography and
have allowed us to construct new cryptographic primitives.
Especially, the bilinear pairings can be used to construct
short signature scheme, including secure signature scheme
without random oracle. Boneh, Lynn and Shacham [4] pro-
posed the first provably secure short signature scheme (BLS
scheme) in the random oracle model provided that the com-
putational Diffie-Hellman problem (CDHP) is intractable.
A very smart application of BLS scheme is to construct the
universal designated-verifier signatures (UDVS) [16]. An-
other two short signature schemes, known as ZSS [22] and
BB04 [2] schemes, depend on the stronger Diffie-Hellman
assumption. The most impressive application of them is to
construct the verifiably encrypted signature (VES) [21].

At VietCrypt 2006, Zhang et al. proposed a new signa-
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ture scheme from bilinear pairings, which we called ZCSM
scheme [20]. In this paper, we will show that we can easily
construct an efficient DCS scheme using ZCSM signature
scheme. Compared with the previous generic transforma-
tion method, our approach does not need any commitment
scheme or strong witness hiding proofs.

2. PRELIMINARIES

2.1 Bilinear Pairings
We briefly review the bilinear pairings using the same no-

tation as in [3, 4]:
Let G be a (mutiplicative) cyclic group of prime order q.

Let g be a generator of G .
Definition: A map e : G×G→ GT (here GT is another mu-
tiplicative cyclic group such that |G| = |GT | = q) is called a
bilinear pairing if this map satisfies the following properties:

1. Bilinearity: For all u, v ∈ G and a, b ∈ Zq, we have
e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) 6= 1. In other words, if g is
a generator of G, then e(g, g) generates GT .

3. Computability: There is an efficient algorithm to
compute e(u, v) for all u, v ∈ G.

We say that G is a bilinear group if the group operation
in G is efficiently computable and there exists a group GT ,
and a bilinear pairing e : G×G→ GT as above.

2.2 Proofs of Knowledge of Discrete Logarithms
We will use the notation introduced by Camenisch and

Stadler [5] for various proofs of knowledge of discrete loga-
rithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ z = g′αh′γ};
is used for proving the knowledge of integers α, β and γ such
that y = gαhβ and z = g′αh′γ holds. Here y, g, h, z, g′ and
h′ are elements of some groups G =< g >=< h > and
GT =< g′ >=< h′ >.

2.3 The k + 1 Square Roots Assumption
We give the definitions of k + 1 square roots problem and

its assumption that firstly introduced in [20] as follows:

Definition 1. The k+1 Square Roots Problem in (G,GT )
is as follows: For an integer k, and x ∈R Zq, g ∈ G, given

g, α = gx, h1, . . . , hk ∈ Zq, g
(x+h1)

1
2
, . . . , g(x+hk)

1
2
,

compute g(x+h)
1
2 for some h /∈ {h1, . . . , hk}.

Definition 2. We say that the (k +1, t, ε)-square roots as-
sumption holds in (G,GT ) if no t-time algorithm has ad-
vantage at least ε in solving the k+1-square roots problem
in (G,GT ), i.e., k + 1-square roots problem is (t, ε)-hard in
(G,GT ).

2.4 ZCSM Signature Scheme from Pairings
We describe ZCSM signature scheme as follows:
The system parameters are (G, GT , e, q, g).

Key Generation. Randomly select x, y ∈R Z∗q , and com-
pute u = gx, v = gy. The public key is (u, v). The secret

key is (x, y).
Signing: Given a secret key x, y ∈R Z∗q , and a message
m ∈ Zq, pick a random r ∈R Z∗q , and compute

σ = g(x+my+r)
1
2 ∈ G.

Here (x+my+r)
1
2 is computed modulo q. When x+my+r

is not a quadratic residue modulo q we try again with a
different random r. The signature on message m is (σ, r).
Verification: Given a public key (G, GT , q, g, u, v), a
message m ∈ Z∗q , and a signature (σ, r), verify that

e(σ, σ)
?
= e(uvmgr, g).

For the security, we have

Theorem 1. [20] Suppose the (k + 1, t′, ε′)-square roots
assumption holds in (G,GT ). Then the signature scheme
above is (t, qS , ε)-secure against existential forgery under an
adaptive chosen message attack provided that

qS < k + 1, ε = 2ε′ + 4
qS

q
≈ 2ε′, t ≤ t′ −Θ(qST ).

where T is the maximum time for computing a square root
in Z∗q and an exponentiation in G.

3. SECURE DESIGNATED CONFIRMER SIG-
NATURE

We describe designated confirmer signatures following the
exposition of [12]. A DCS scheme consists of three partici-
pants: a signer S, a verifier V, and a designated confirmer
C and is composed of the following algorithms:

• Setup: The setup includes two probabilistic polyno-
mial time key generation algorithms: generating two
pairs of keys KS := (PKS , SKS) and KC := (PKC , SKC)
for S and C.

• Sign: On the input of the signer’s secret key SKS , the
(probabilistic) polynomial time algorithm Sign gener-
ates a signature σ = Sign(m, SKS) for a message m.

• Verify: Takes as input (m, σ, PKS) and outputs Ac-
cept if σ is an output of Sign(m, SKS).

• ConfirmedSign: On the input of the signer’s secret
key SKS and confirmer’s public key PKC , the (prob-
abilistic) polynomial time algorithm ConfirmedSign
generates a signature σ′ = ConfirmedSign(m, SKS , PKC)
of m.

• Confirm: Let (m, σ′) be a supposedly valid message-
signature pair. Confirm is an interactive protocol be-
tween C and V. At the end of the protocol, it outputs
a boolean value which tells whether σ′ is accepted as
a valid signature of m.

• Deny: Let (m, σ′) be an alleged invalid message-signature
pair. Deny is an interactive protocol between C and
V. At the end of the protocol, it outputs a boolean
value which tells whether σ′ is accepted as an invalid
signature.

• Extract: takes as input (m, σ′, SKC , PKS) and re-
turns a string σ such that V erify(m, σ, PKS) outputs
Accept if σ is an output of Sign(m, SKS), and outputs
⊥ otherwise.
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For the security requirements of DCS scheme, we have sep-
arate security requirements for signers and confirmers [12].
Similar to the description for the security of DCS in [12], we
give a formal definition as follows:

a Security for signers/Unforgeability: A DCS is
unforgeable against an adaptive chosen message attack
for signers if it is infeasible for a forger who only knows
the public keys PKS , PKC to produce a valid con-
firmed message-signature pair after executing Con-
firmedSign, Confirm and Deny for polynomially
many adaptively chosen inputs of its choice.

Formally, for every probabilistic polynomial time forger
algorithm F there exist no non-negligible probability
ε such that

Adv(F) =

Pr




〈KS , KC〉 ← 〈Setup〉(1l);
for i = 1, 2, . . . , k,
mi ← F(pk, m1, σ1, . . . , mi−1, σi−1),
σi ← ConfirmedSign(sk, mi),
Confirm(PKS , PKC , mi, σi) = accept
or Deny;
〈m, σ′〉 ← F(pk, m1, σ1, . . . , mk, σk),
m /∈ {m1, . . . , mk},
Confirm(PKS , PKC , m, σ′) = accept




≥ ε.

Even the forger algorithm F knows the secret key SKC

of designated confirmer C, the probability ε is still neg-
ligible.

b Security for designated confirmers: Assume that
A is a probabilistic polynomial time attacking algo-
rithm which, on input strings 1l, PKS , PKC can re-
quest the execution of ConfirmedSign, Confirm and
Deny for polynomially many inputs of his choice and
finally, for a pair (m, σ′) of his choice, A executes
Confirm(PKS , PKC , m, σ′). For all suchA, the prob-
ability

Pr(Confirm(PKS , PKC , m, σ′) = accept)

is negligible.

Even a coalition of Signers, who share the same Con-
firmer, cannot confirm a DCS that was signed with
respect to SKS .

4. AN EFFICIENT DCS SCHEME
A straightforward way to construct a DCS scheme was

suggested by Okamoto [15] using standard cryptographic
primitives, such as public-key encryption schemes and dig-
ital signature schemes: firstly, the message m was signed
by using an ordinary signature scheme, then the signature
was encrypted by using the designated confirmer’s public
key and finally, the resulting ciphertext would serve as the
DCS signature of m. Since the signature is encrypted, only
the designated confirmer can be convinced of its validity.
Moreover, the designated confirmer can easily extract an
ordinary signature from it. In order for the recipient to be
convinced of the validity of the DCS, the signer and recip-
ient interact in a zero knowledge proof in which the signer
proves to the verifier that what he got is indeed an encryp-
tion of an ordinary signature of m. Since the last assertion

is an NP statement, the general zero-knowledge proofs for
NP statements should be used in such constructions.

The above construction is very simple and intuitive and
can be easily proved to be secure. As claimed in [12], the
problem is that we do not know of efficient zero-knowledge
proofs for such an assertion for concrete schemes. Until now,
no scheme follows the above construction. In this section,
for the first time in the literature, we present a concrete
implementation for the above general construction of DCS.

Based on ZCSM signature scheme, a simple and efficient
DCS scheme can be constructed as follows:

• Setup: This is same as ZCSM signature scheme. The
system parameters are (G, GT , e, q, g). The public
key of S is (u, v), the secret key is (x, y). C’s public
key is α = gxc , xc is C’s secret key.

• Sign: Using ZCSM Signing, for a message m ∈ Zq,
the signature is (σ, r).

• Verify: This is same as the Verification of ZCSM.

• ConfirmedSign: Given the public key α = gxc ∈ G
of the designated confirmer C, a message m ∈ Zq, the
signer S picks a random r ∈R Z∗q , and computes

σ′ = α(x+my+r)
1
2 ∈ G.

Here (x + my + r)
1
2 is computed modulo q. When

x + my + r is not a quadratic residue modulo q we
try again with a different random r. The designated
confirmer signature on m is (σ′, r).

• Confirm: C first checks that (σ′, r) has been signed
with S using the provided C’s public key α, and aborts
if the check fails.

e(σ′, σ′)
?
= e(uvmgr, α)xc .

Then, C performs an interactive zero-knowledge proof
with the verifier V for knowledge

loge(uvmgr, α)e(σ
′, σ′) = loge(g, g)e(α, g)

This is an interactive zero-knowledge proof system for
the equality of two discrete logarithms [10]. For the
details, please refer to [10].

• Deny: To disavow a purported signature (σ′, r) on
m, C performs an interactive zero-knowledge proof
with the verifier V for proving that the discrete loga-
rithms loge(uvmgr, α)e(σ

′, σ′) and loge(g, g)e(α, g) are
unequal. We borrow the method in [7] and provide
such a proof as follows:

1. The confirmer C chooses s ∈R Z∗q , computes the
auxiliary commitment

C = (e(uvmgr, α)xc/e(σ′, σ′))s,

and sends C to the verifier.

2. C executes the protocol denoted

PK{(γ, β) : C = e(uvmgr, α)γ( 1
e(σ′, σ′) )

β ∧
1 = e(g, g)γ( 1

e(α, g)
)β}

with the verifier.
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3. The verifier accepts if it accepts in step 2, and if
C 6= 1; otherwise, the verifier rejects.

• Extract: For (m, σ′, r), C can extract an ordinary
ZCSM signature on m using his secret key xc:

σ = σ′x
−1
c .

5. ANALYSIS OF THE DCS SCHEME

5.1 Completeness
The completeness can be justified by the following equa-

tions:

1. For the verification of ConfirmedSign by the con-
firmer:

e(σ′, σ′) = e(α(x+my+r)
1
2
, α(x+my+r)

1
2
)

= e(gxc , gxc)(x+my+r)
1
2 ·(x+my+r)

1
2

= e(g, gxc)xc·(x+my+r)

= e(gx+my+r, α)xc

= e(uvmgr, α)xc

2. For the confirm and deny protocol, if (σ′, r) is a valid
designated confirmer signature on m, i.e., e(σ′, σ′) =
e(uvmgr, α)xc , then C can give the confirm proto-
col using any protocol for the equality of two discrete
logarithms. Otherwise, C can give the deny protocol
using any protocol for the inequality of two discrete
logarithms. For the correctness of the protocol, please
refer to [7].

3. For Extract,

σ′x
−1
c = (α(x+my+r)

1
2
)x−1

c = g(x+my+r)
1
2

= σ.

This is an ordinary ZCSM signature on m.

5.2 Security
We show that the proposed scheme satisfies the properties

of a designated confirmer signature scheme.

Lemma 1. If there exists a (t, qCS , qC , qD, ε)-forger F us-
ing adaptive chosen message attack for the proposed DCS
scheme which executing qCS times ConfirmedSign, qC times
Confirm and qD times Deny, then there exists a (t′, qS =
qC , ε)-forger F for ZCSM signature scheme. Here t′ = t+T
and T is the time for computing an exponentiation in G.

Proof. We consider the strongest case, i.e., the forger
algorithm F knows the secret key SKC of designated con-
firmer C. Let (G, GT , e, q, g) be the system parame-
ters of ZCSM signature, the public key is (u, v). We set
PKS = (u, v), PKC = gxc .

Suppose that there exists a forger F , after executing qCS

times ConfirmedSign, qC times Confirm and qD times
Deny for adaptively chosen inputs of its choice, F can out-
put a forgery (m, σ′) on message m with probability at least
ε in time t, such that

Confirm(PKS , PKC , m, σ′) = accept.

Here m has never been requested by F to ConfirmedSign.

Let σ = σ′x
−1
c , then we have a forgery on ZCSM signature

scheme. This is because of

e(σ, σ) = e(uvmgr, g).

So, from the Theorem 1 and above Lemma 1, we have

Theorem 2. The proposed DCS scheme is secure against
existential forgery under an adaptive chosen message attack
for signers.

The security of proposed DCS scheme for designated con-
firmers is obtained from the following theorem:

Theorem 3. Under the assumption that the discrete log-
arithm problem is hard in G and GT , for any probabilistic
polynomial time adversaries A, the probability

Pr(Confirm(PKS , PKC , m, σ′) = accept)

is negligible.

Proof. Suppose that there exicts an adversary A which
on input strings 1l, PKS , PKC can request the execution
of ConfirmedSign for polynomially many inputs of his
choice and finally, for a pair (m, σ′) of his choice, A exe-
cutes Confirm(PKS , PKC , m, σ′) with the non-negligible
probability

Pr(Confirm(PKS , PKC , m, σ′) = accept).

Then we will use A to construct an algorithm B to solve the
discrete logarithm problem in G.

Suppose B is given a challenge:
“Given g, α = ga ∈ G, compute a ∈ Zq”

Now B sets (G, GT , e, q, g) to be the system parameters
and set PKS = (u, v), PKC = α. B can play the role
of the signer in ConfirmedSign. For any valid confirmed
signature (m, σ′), where

σ′ = α(x+my+r)
1
2 ∈ G,

B plays the role of the verifier and executes Confirm(PKS , PKC =
α, m, σ′) with A, A will confirm it using an interactive zero-
knowledge proof with a non-negligible probability.

Since Confirm is an interactive zero-knowledge proof,
i.e., an interactive zero-knowledge proof system for the equal-
ity of two discrete logarithms

loge(uvmgr, α)e(σ
′, σ′) = loge(g, g)e(α, g), (∗)

So, using the “Reset Lemma” (or rewrite technique) for-
mulated in [1], it is not hard to find xc, the discrete loga-
rithm of α. For details, B selects c ∈ Zq as the challenge
and runs the interactive zero-knowledge proof for (∗) with
A to obtain its response t ∈ Zq. Then B runs the interactive
zero-knowledge proof again with the same state as before
but with different challenge c′ ∈ Zq , obtains its response

t′ ∈ Zq. B now can extract xc = t−t′
c′−c

mod q.
Therefore, if the discrete logarithm problem is hard in G,

then for any probabilistic polynomial time adversaries A,
the probability

Pr(Confirm(PKS , PKC , m, σ′) = accept)

is negligible.
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Notice, at the above proof of Theorem 3, we assume that
the adversary A is “passive”, i.e., A did not request the
execution of Confirm and Deny with the simulator. It
seems that it is not easy to give a security proof when the
adversary A is adaptive, we remain an interesting problem
to find a such proof in the further work.

5.3 Efficiency
The proposed new designated confirmer signature scheme

can be implemented by elliptic curve over finite fields. So,
for the ConfirmedSign, it only needs one elliptic curve
point multiplication.

We note that the computation of the pairing is the most
time-consuming in pairing based cryptosystems. We can
pre-compute a = e(u, g), b = e(g, g) and c = e(v, g),
and publish them as part of the signer’s public key. At the
same time, we can pre-compute a′ = e(u, α), b′ = e(g, α)
and c′ = e(v, α), and publish them as part of the desig-
nated confirmer’s public key. Therefore, in the confirm and
deny protocol, C and V only compute some exponentia-
tions. The confirm protocol in our resulting scheme requires
8 exponentiations (compared to 10 for Gentry et al. and 320
for Goldwasser-Waisbard) and our disavow protocol requires
one pairing and at most 20 exponentiations (compared to 41
for Gentry et al. and using a general zero-knowledge proof
for Goldwasser-Waisbard).

Our designated confirmer signature contains of two ele-
ments (σ′, r), where one element is in G and the other ele-
ment is in Z∗q . We can select the parameter such that the ele-
ments in G are 171-bits strings. Therefore, we obtain a des-
ignated confirmer signature whose length is 171+160=331
bits. However, to achieve such short size, currently, we can
only use supersingular elliptic curve to implement ZCSM
signature scheme.

6. CONCLUSION AND FURTHER WORKS
A new designated confirmer signature scheme is proposed

in this paper. The new scheme is much more efficient than
the previous schemes and does not need any commitment
scheme or strong witness hiding proofs. For the further
work, we will study how to construct the designated con-
firmer signature scheme which is secure against adaptive ad-
versaries (Such model was considered in [6]) and the secure
confirmer signature scheme under the new definitions pro-
posed by [19] and [18] from the proposed DCS scheme in
this paper.
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