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ABSTRACT
This paper discusses how to realize practical post-quantum authen-
ticated key exchange (AKE) with strong security, i.e., CK+ secu-
rity (Krawczyk, CRYPTO 2005). It is known that strongly secure
post-quantum AKE protocols exist on a generic construction from
IND-CCA secure key encapsulation mechanisms (KEMs) in the
standard model. However, when it is instantiated with existing
IND-CCA secure post-quantum KEMs, resultant AKE protocols
are far from practical in communication complexity. We propose
a generic construction of AKE protocols from OW-CCA secure
KEMs and prove CK+ security of the protocols in the random ora-
cle model. We exploit the random oracle and instantiate AKE pro-
tocols from various assumptions; DDH, gap DH, CDH, factoring,
RSA, DCR, (ring-)LWE, McEliece one-way, NTRU one-way, sub-
set sum, multi-variate quadratic systems, and more. For example,
communication costs of our lattice-based scheme is approximately
14 times lower than the previous instantiation (for 128-bit secu-
rity). Also, in the case of code-based scheme, it is approximately
25 times lower.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection; E.3 [Data]: Data Encryption—Public key cryp-
tosystems

General Terms
Security

Keywords
authenticated key exchange, CK+ model, key encapsulation mecha-
nism, random oracle model, post-quantum cryptography, ring-LWE
assumption.
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1. INTRODUCTION

1.1 Background
Following the celebrated Diffie-Hellman key exchange [17], re-

searchers proposed several cryptographic schemes based on various
problems. The problems are classified into two classes. The one
is number-theoretical problems such as factoring [50], RSA [53],
and the decisional Diffie-Hellman (DDH) problem [21]. The other
is combinatorial problems such as subset-sum problem [42] and
code problem [41]. After Shor [55] proposed quantum polynomial-
time algorithm for factorization and the discrete logarithm prob-
lem, cryptographic researchers have proposed a great number of
cryptographic primitives based on combinatorial problems, since
combinatorial problems seem hard even for quantum algorithms.
As examples of post-quantum cryptography, we have public-key
encryption (PKE) and key-encapsulation mechanism (KEM) with
provable security based on subset-sum problem [39], lattice prob-
lems [3, 27, 52], code problem [41], and problems on multi-variate
quadratic (MQ) systems [30].

However, we only know a few results on authenticated key ex-
change (AKE) based on the combinatorial problems [10, 23], which
is often employed to construct a secure channel between two par-
ties in a public channel for secrecy and authenticity. When the par-
ties share secret information (called a session key), they can con-
struct a secure channel by symmetric-key encryptions and message
authentication codes with the shared session key. AKE provides
a solution to share a session key even if parts of secret informa-
tion are exposed to an adversary. Formally speaking, in an AKE
protocol, each party has public information, called a static pub-
lic key, which is authorized by a trusted third party, e.g., certifi-
cation authority (CA), and the corresponding secret information,
called a static secret key. A user who wants to share information
with an entity exchanges ephemeral public keys, generated from the
corresponding ephemeral secret keys, and computes some session
state from their static public keys, the corresponding static secret
keys, the exchanged ephemeral public keys, and the corresponding
ephemeral secret keys. Both parties then derive a session key from
these values including session state with a function called the key
derivation function. The desirable security notion of AKE is for-
mulated as CK+ security [34, 23]. Here, CK+ security guarantees
the Canetti-Krawczyk (CK) security [12], weak perfect forward se-
crecy (wPFS), resilience to key compromise impersonation (KCI),
and resilience to maximal exposure attacks (MEX) which may ex-
ploit exposed secret information of the target session.

Recently, generic constructions of AKE from KEM have been
investigated [10, 23]. Boyd et al. [10] and Fujioka et al. [23] gave
constructions of CK and CK+ secure AKE protocols from IND-CCA
secure KEM schemes with pseudo-random functions (PRFs), re-
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spectively. Plugging the existing IND-CCA secure KEM schemes
based on lattice problems and code problems in the standard model
(StdM) into the generic constructions, we obtain AKE protocols
CK and CK+ secure against quantum adversaries.

Unfortunately, KEM schemes secure in the StdM are often inef-
ficient on time and memory. In the case of the KEM schemes based
number-theoretic assumptions, we have less problem on efficiency.
However, when we consider post-quantum cryptography, we have
unsatisfactory inefficiency. For example, on the IND-CCA secure
KEM scheme based on the ring-LWE problem [40], our rough es-
timation says that the sizes of encapsulation key and ciphertext are
about 540 kbits. Consequently, the AKE protocol from the KEM
scheme also are inefficient on the communication costs, 1.12 Mbits
(see 7-th rows in Table 1).

1.2 Our Contribution
In this paper, we investigate how efficiency of AKE is improved

by relaxing the security model, i.e., adapting the random oracle
model (ROM) [5]. We answer the following natural questions:

1. Which level of security in KEM is required to construct CK+

secure AKE?

2. Which (post-quantum) assumptions can be used to construct
CK+ secure AKE?

3. How is efficiency of AKE improved?

As the answer of Question 1, we show that CK+ secure AKE
protocols can be constructed from OW-CCA secure KEM schemes
with hash functions (regarded as the random oracles (RO)).

Regarding to Question 2, we show the followings:

• Rabin-KEM [16] and RSAP-H [15] can be used since they
are OW-CCA secure. Rabin-KEM and RSAP-H are secure
under the factoring and RSA assumptions in the ROM, re-
spectively.

• Regarding to lattice problems, which seem to be hard even
for quantum machines, we have efficient KEM schemes [40,
56]. They are secure under the ring-learning with errors
(LWE) assumption, however, they achieve only IND-CPA
security. Thus, we apply the Fujisaki-Okamoto (FO) con-
version [24] to enhance their security to IND-CCA one, and
then, construct CK+ secure AKE protocols using the con-
verted schemes. It may be worth noting that although ap-
plying the FO conversion requires the ROM in their security
proofs, it is no problem since the security proof of the pro-
posed construction needs the ROM, also.

• For a code-based KEM scheme, we can use an IND-CCA
secure KEM scheme under the McEliece one-way assump-
tion [33] as it is OW-CCA secure in the ROM, also.

• NTRU encryption scheme [27, 31] is also IND-CCA secure
under the NTRU one-way assumption in the ROM. We can
construct an efficient AKE from it.

• Similarly, we have a KEM scheme IND-CCA secure in the
ROM under the subset-sum assumption [39]. Thus, the pro-
posed construction generates an AKE protocol CK+ secure
under the subset-sum assumption with help of the FO con-
version.

• Under the new assumption on multi-variate quadratic sys-
tems [30], we have an IND-CCA secure KEM scheme in the
ROM. Thus, we also obtain a CK+ secure AKE protocol from
the assumption in the ROM.

As the answer of Question 3, we show that adapting the ROM in
the security proofs, when we set the security parameter as κ = 128,
each protocol becomes efficient on the communication costs as ap-
proximately half under the factoring assumption (from 22.74 kbits
to 13.00 kbits), approximately 1/14 under the ring-LWE assump-
tion (from 1.12 Mbits to 80.65 kbits), and approximately 1/25 un-
der the code assumption (from 1.31 Mbits to 52.32 kbits). Thus,
adapting ROM brings much benefit in efficiency. The details are in
Section 5.4 and Section 6.

Our contributions are summarized as follows:

• We propose a generic CK+ secure AKE construction from a
OW-CCA secure KEM in the ROM.

• We achieve efficient CK+ secure AKE protocols based on the
hardness of integer factoring, the ring-LWE problem, and the
code problem in the ROM.

• We achieve new CK+ secure AKE protocols based on the
hardness of the NTRU problem, subset-sum problem, and
MQ problem.

• Especially, we have quasi-linear time AKE protocols based
on the hardness of the ring-LWE problem in the ROM.

For the summary, see Table 1.

Table 1: Comparison between the previous schemes and instan-
tiations of our scheme.

Assumption StdM?
Comm.

Costs (bits)
[23] DDH StdM 2, 048
[23] Factoring StdM 22, 736
HMQV [34] GapDH+KEA ROM 512
Ours GapDH/CDH ROM 2, 048
Ours RSA ROM 16, 240
Ours Factoring ROM 12, 992
[23] Ring-LWE StdM ≈ 1, 117, 000
[23] Codes StdM ≥ 1, 312, 672
Ours Ring-LWE ROM ≈ 80, 600
Ours Codes ROM 52, 320
Ours NTRU ROM 19, 756
Ours Subset Sum ROM 1, 295, 960
Ours MQ [30] ROM ≈ 11, 440, 000
Ours MQ [30] ROM ≈ 7, 672, 000

Open problem.
We left an open problem to show our construction is secure in

“quantum accessible” random oracle model. In this paper, we suc-
cessfully showed that our construction is secure in ROM if the un-
derlying KEM is secure. In addition, our proof does not require
rewinding. Hence, one would consider our construction also quan-
tumly secure. However, what we show is that if underlying problem
is hard then there are no quantum adversary violating CK+ security
with classical access to the random oracles. In the real world, the
random oracle is instantiated by a hash function H and a quantum
adversary can evaluate on a quantum superposition of input. A
quantum-accessible random oracle model (QAROM) [9, 60] cap-
tures this ability. Therefore, it would be interesting to show our
construction is secure in the QAROM.
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2. CK+ SECURITY MODEL
In this section, we quote the CK+ model that was introduced by

[34, 23]. We show the model for two-pass protocols. It can be
trivially extended to n-pass protocols for any n > 2.

Ui denotes a party indexed by i. Parties are modeled as prob-
abilistic polynomial-time (PPT) interactive Turing machines w.r.t.
security parameter κ ∈ N. For party Ui, we denote static secret
(public) key by si (S i) and ephemeral secret (public) key by xi (Xi),
respectively. Party Ui generates its own keys, si and S i, and the
static public key S i is linked with Ui’s identity in some systems
like PKI.1

Session.
We call an invocation of a protocol session. A session is acti-

vated by an incoming message of the forms (Π,I,UA,UB) or (Π,
R,UB,UA, XA), where Π is a protocol identifier, I and R are role
identifiers, and UA and UB are user identifiers. If UA is activated
with (Π,I,UA,UB), then UA is called the session initiator. If UB

is activated with (Π,R,UB,UA, XA), then UB is called the session
responder. The initiator UA outputs XA on activation, then may
receive an incoming message of the forms (Π,I,UA,UB, XA, XB)
from the responder UB, then computes the session key SK if UA

received the message. On the contrary, the responder UB outputs
XB, and computes the session key SK.

If UA is the initiator of a session, the session is identified by
sid = (Π,I,UA,UB, XA) or sid = (Π,I,UA,UB, XA, XB). If UB is
the responder of a session, the session is identified by sid = (Π,R,
UB,UA, XA, XB). We say that UA is the owner of session sid, if the
third coordinate of session sid is UA. We say that UA is the peer
of session sid, if the fourth coordinate of session sid is UA. We
say that a session is completed if its owner computes the session
key. The matching session of (Π,I,UA,UB, XA, XB) is session (Π,
R,UB,UA, XA, XB) and vice versa.

Adversary.
The adversary A, which is modeled as a PPT interactive Turing

machine, controls all communications between parties including
session activation by performing the following adversary query.

• Send(message): The message has one of the following forms:
(Π,I,UA,UB), (Π,R,UB,UA, XA), or (Π,I,UA,UB, XA, XB).
The adversaryA obtains the response from the party.

To capture exposure of secret information, the adversary A is
allowed to issue the following queries.

• SessionKeyReveal(sid): The adversary A obtains the ses-
sion key SK for the session sid if the session is completed.

• SessionStateReveal(sid): The adversaryA obtains the ses-
sion state of the owner of session sid if the session is not
completed (the session key is not established yet). The ses-
sion state includes all ephemeral secret keys and intermediate
computation results except for immediately erased informa-
tion but does not include the static secret key.

• Corrupt(Ui): This query allows the adversary A to obtain
all information of the party Ui. If a party is corrupted by a
Corrupt(Ui) query issued by the adversary A, then we call
the party Ui dishonest. If not, we call the party honest.

1 Static public keys must be known to both parties in advance. They
can be obtained by exchanging them before starting the protocol or
by receiving them from a certificate authority. This situation is
common for all PKI-based AKE schemes.

Freshness.
For the security definition, we need the notion of freshness.

Definition 1. Let sid∗ = (Π,I,UA,UB, XA, XB) or (Π,R,UA,UB,
XB, XA) be a completed session between honest users UA and UB. If
the matching session exists, then let sid

∗
be the matching session of

sid∗. We say session sid∗ is fresh if none of the following conditions
hold:

1. sid
∗

exists and the adversaryAmakes either of the following
queries;

• SessionKeyReveal(sid∗) or

• SessionKeyReveal(sid
∗
):

2. sid
∗

exists and the adversaryAmakes either of the following
queries;

• SessionStateReveal(sid∗) or

• SessionStateReveal(sid
∗
):

3. sid
∗

does not exist and the adversaryA makes the following
query; SessionStateReveal(sid∗).

Security experiment.
For the security definition, we consider the following security

experiment. Initially, the adversaryA is given a set of honest users
and makes any sequence of the queries described above. During
the experiment, the adversaryA makes the following query.

• Test(sid∗): sid∗ must be a fresh session. Select random bit
b ∈U {0, 1}, and return the session key held by sid∗ if b = 0,
and return a random key if b = 1.

The experiment continues until the adversary A makes a guess
b′. The adversary A wins the game if the test session sid∗ is still
fresh and if the guess of the adversary A is correct, i.e., b′ = b.
The advantage of the adversaryA in the AKE experiment with the
PKI-based AKE protocol Π is defined as

Advake-ck+
Π,A (κ) = Pr[A wins] − 1

2
.

We define the security as follows.

Definition 2. We say that a PKI-based AKE protocolΠ is secure
in the CK+ model if the following conditions hold:

1. (Completeness:) if two honest parties complete matching
sessions, then, except with negligible probability, they both
compute the same session key.

2. (Soundness:) for any PPT bounded adversary A, its advan-
tage Advake-ck+

Π,A (A) is negligible in security parameter κ for
the test session sid∗,

(a) if sid
∗

does not exist, and the static secret key of the
owner of sid∗ is given toA.

(b) if sid
∗

does not exist, and the ephemeral secret key of
sid∗ is given toA.

(c) if sid
∗

exists, and the static secret key of the owner of
sid∗ and the ephemeral secret key of sid

∗
are given to

A.

(d) if sid
∗

exists, and the ephemeral secret key of sid∗ and
the ephemeral secret key of sid

∗
are given toA.
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(e) if sid
∗

exists, and the static secret key of the owner of
sid∗ and the static secret key of the peer of sid∗ are
given toA.

(f) if sid
∗

exists, and the ephemeral secret key of sid∗ and
the static secret key of the peer of sid∗ are given toA.

Note that the item 2.a corresponds to resistance to KCI, item 2.e
corresponds to wPFS, and items 2.b, 2.c, 2.d and 2.f correspond to
resistance to MEX.

3. GENERIC AKE CONSTRUCTION
FROM KEM

In this section, we propose a generic construction (GCwR) of
CK+ secure AKE from one-way KEMs in the random oracle model.
Before describing our GCwR, we recall the notion of KEM.

3.1 Security Notions of KEM Schemes
Let us recall the model and security notions of KEM.

Definition 3. A KEM scheme KEM consists of the following 3-
tuple (KeyGen, EnCap, DeCap):

(ek, dk) ← KeyGen(1κ; rg): a key-generation algorithm which on
inputs 1κ and rg ∈ RSG, where κ is the security parameter and
RSG is a randomness space, outputs a pair of an encapsula-
tion key and a decapsulation key (ek, dk).

(K,C) ← EnCapek(re): an encapsulation algorithm which takes
as inputs encapsulation key ek and re ∈ RS E , outputs session
key K ∈ KS and ciphertext C ∈ CS , where RS E is a random-
ness space, KS is a session key space, and CS is a ciphertext
space.

K/⊥ ← DeCapdk(C): a decapsulation algorithm which takes as
inputs decapsulation key dk and ciphertext C ∈ CS , outputs
session key K ∈ KS or a rejection symbol ⊥.

We next recall the definitions of one-wayness under chosen-ciphertext
and chosen-plaintext attacks (denoted by OW-CCA and OW-CPA)
for key encapsulation, respectively.

Definition 4. A KEM scheme KEM is (t, ϵ)-OW-CCA secure for
KEM if the following property holds for security parameter κ; For
any adversaryA = (A1,A2) with a time complexity at most t,

Advow-cca
KEM,A(κ) = Pr


(ek, dk)← KeyGen(1κ; rg);
state← ADO⊥(dk,·)

1 (ek);
(K∗,C∗)← EnCapek(r);
K′∗ ← ADOC∗ (dk,·)

2 (ek,C∗, state);
K′∗ = K∗

 ≤ ϵ
where DOa(dk,C) is the decapsulation oracle that returns K =

DeCapdk(C) if C , a and returns a reject symbol otherwise, state
is state information whichA wants to preserve fromA1 toA2, and
A runs in at most t steps.

We say a KEM scheme is OW-CPA secure for key encapsulation
ifA does not accessDO.

3.2 Construction from One-way KEM
We propose a generic construction (GCwR), which is based on a

OW-CCA secure KEM and the ROM. (GCwR stands for generic
construction with random oracles.) At the price of using ROs,
we can weaken the assumption on the KEM from IND-CCA to
OW-CCA. Since a OW-CCA secure KEM is efficiently obtained
in the ROM (e.g., RSAP-H, RSA-KEM, and ECIES-KEM) and we

do not need PRFs and a strong randomness extractor, we can effi-
ciently instantiate GCwR. The details of instantiations are given in
Section 5 and Section 6. To achieve ephemeral secret key exposure
resistance, the ordinary NAXOS technique [36] is known and used
in some protocols [36, 43, 23]. The NAXOS technique means that
the DH-exponent is set as an output of a RO on inputs static and
ephemeral secret keys. Since adversaries are not allowed to expose
both static and ephemeral secret keys, the DH-exponent is not ex-
posed if one of secret keys are exposed. In GCwR, we also apply
the NAXOS technique to generating randomness of EnCap instead
of generating the DH-exponent.

Generic construction GCwR.
Let KEM = (KeyGen,EnCap,DeCap) be a OW-CCA secure

KEM and wKEM = (wKeyGen,wEnCap,wDeCap) be a OW-CPA
secure KEM.

The protocol of GCwR is as follows.
Public Parameters: Let κ be the security parameter and let H1 :
{0, 1}∗ → RS E and H2 : {0, 1}∗ → {0, 1}κ be hash functions modeled
as ROs. These are provided as a part of the public parameters.
Secret and Public Keys: User UI randomly selects rI ∈ RSG, and
runs the generation algorithm (dkI,1, ekI,1) ← KeyGen(rI). User
UI’s static secret and public keys are (dkI,1, ekI,1).
Key Exchange: User UA with secret and public keys (dkA,1, ekA,1),
who is the initiator, and user UB with secret and public keys (dkB,1,
ekB,1), who is the responder, perform the following two-pass key
exchange protocol.

1. To initialize the protocol, user UA selects ephemeral secret
keys rA,1 ∈ {0, 1}κ and rA,2 ∈ RSG randomly. User UA com-
putes (CA,1, KA,1) ← EnCapekB,1

(H1(rA,1, dkA,1)) and (dkA,2,
ekA,2) ← wKeyGen(rA,2), and sends (UA,UB,CA,1, ekA,2) to
user UB.

2. Upon receiving (UA,UB,CA,1, ekA,2), user UB chooses ephem-
eral secret keys rB,1 ∈ {0, 1}κ and rB,2 ∈ RS E uniformly at
random, computes (CB,1, KB,1)← EnCapekA,1

(H1(rB,1, dkB,1))
and (CB,2, KB,2)←wEnCapekA,2

(rB,2), and sends (UA,UB,CB,1,
CB,2) to user UA.

User UB computes KA,1 ← DeCapdkB,1
(CA,1), sets the session

identity sid = (UA,UB, ekA,1, ekB,1,CA,1, ekA,2,CB,1,CB,2) and
the session key SK = H2(KA,1, KB,1, KB,2, sid), and completes
the session.

3. Upon receiving (UA,UB,CB,1,CB,2), user UA computes KB,1

← DeCapdkA,1
(CB,1), KB,2← wDeCapdkA,2

(CB,2), sets the ses-
sion identity sid = (UA,UB, ekA,1, ekB,1,CA,1, ekA,2,CB,1,CB,2)
and the session key SK = H2(KA,1, KB,1, KB,2, sid), and com-
pletes the session.

The session state of a session owned by UA contains ephemeral
secret keys (rA,1, rA,2) and a KEM key KA1 . Similarly, the ses-
sion state of a session owned by UB contains ephemeral secret keys
(rB,1, rB,2) and KEM keys (KB,1,KB,2).

Security.
We show the following theorem.

Theorem 1. If a KEM scheme KEM = (KeyGen,EnCap,DeCap)
is OW-CCA secure, and a KEM scheme wKEM = (wKeyGen,
wEnCap,wDeCap) is OW-CPA secure, then the AKE scheme with
GCwR is CK+ secure where H1 and H2 are modeled as ROs.

The precise proof of Theorem 1 is in Appendix A.
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Here, we give an overview of the security proof for the case that
the test session has a matching session.

We have to consider the following four exposure patterns in the
CK+ security model:

2-(c) the static secret key of the initiator and the ephemeral secret
key of the responder

2-(d) both ephemeral secret keys

2-(e) both static secret keys

2-(f) the ephemeral secret key of the initiator and the static secret
key of the responder

Intuitively speaking, in case 2-(c), KA,1 is protected by the se-
curity of CTA,1 because H1(rA,1, dkA,1) is hidden and dkB,1 is not
exposed. In case 2-(d), KA,1 and KB,1 are protected by the secu-
rity of CA,1 and CB,1 because H1(rA,1, dkA,1) and H1(rB,1, dkB,1) are
hidden, and dkA,1 and dkB,1 are not exposed. In case 2-(e), KB,2

is protected by the security of CB,2 because dkA,2 and rB,2 are not
exposed. In case 2-(f), KB,1 is protected by the security of CB,1

because H1(rB,1, dkB,1) is hidden and dkA,1 is not exposed.
Then, we construct a reduction from the OW-CCA game (for

cases 2-(c), 2-(d), and 2-(f)) or the OW-CPA game (for 2-(e)) to
the CK+ security game. The simulator embeds the challenge ci-
phertext in the OW-CCA (OW-CPA) game into the hash list of
H2 corresponding to the test session. If an adversary in the CK+

security game succeeds with non-negligible probability, then the
simulator in the OW-CCA (OW-CPA) game also succeeds with
non-negligible probability. The simulation of SessionStateReveal
queries is done by the power of the decryption oracle in the OW-CCA
game. For case 2-(e), the simulator does not need the decryption or-
acle because he knows all static secret keys. We can show a similar
proof in non-matching cases.

4. FUJISAKI–OKAMOTO CONVERSION,
RECONSIDERED

In this section, we briefly review the Fujisaki–Okamoto (FO)
conversion [24] and discuss that we can slightly weaken the condi-
tions.

Let us review the model and security notions of public key en-
cryption (PKE) scheme. The model for PKE schemes is summa-
rized as follows:

Definition 5. A PKE scheme PKE consists of the following 3-
tuple (Gen, Enc, Dec):

(pk, sk) ← Gen(1κ; rg) : a key-generation algorithm which on
input 1κ, where κ is the security parameter, outputs a pair of
keys (pk, sk). pk and sk are called public key and secret key,
respectively.

C ← Encpk(M; re) : an encryption algorithm which takes as input
public key pk and plaintext M, outputs ciphertext C.

M/⊥ ← Decsk(C) : a decryption algorithm which takes as in-
put secret key sk and ciphertext C, outputs plaintext M or a
rejection symbol ⊥.

We say PKE has perfect correctness if for any (pk, sk) generated by
Gen, M ∈ MS , and re ∈ RS E , we have that Decsk(Encpk(M; re)) =
M.

The security of PKE schemes is defined by several notions like
one-wayness and indistinguishability. Here, we recall the defini-
tion of indistinguishability under chosen-ciphertext and chosen-
plaintext attacks (denoted by IND-CCA and IND-CPA) for PKE,
respectively.

Definition 6. A PKE scheme is (t, ϵ)-IND-CCA secure if the fol-
lowing property holds for security parameter κ; For any adversary
A = (A1,A2),

Advind-cca
A (κ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr



b← {0, 1};
(pk, sk)← Gen(1κ);
(M0,M1, state)← ADO⊥(sk,·)

1 (pk);
C∗ ← Encpk(Mb);
b′ ← ADOC∗ (sk,·)

2 (pk,C∗, state);
b′ = b


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ ϵ,

where DOa(sk,C) is the decryption oracle that returns a message
M = Decsk(C) ∈ MS ∪ {⊥} if C , a and returns a reject symbol
otherwise, state is state information (possibly including pk, M0 and
M1) whichA wants to preserve, andA runs in at most t steps. We
say a PKE scheme is IND-CPA secure, ifA does not accessDO.

Review of the FO conversion.
The conversion transforms an IND-CPA secure PKE scheme,

which has perfect correctness and γ-uniformity (defined later) into
an IND-CCA secure PKE scheme in the ROM.

Let wPKE = (wGen,wEnc,wDec) be a PKE scheme with a
message space wMS , randomness spaces wRSG and wRS E , and a
ciphertext space wCS . We define γ-uniformity, which essentially
says that ciphertext has a min-entropy at least − lg γ.

Definition 7. We say a PKE scheme wPKE = (wGen,wEnc,
wDec) is γ-uniform if for any (pk, sk) ← Gen(1n; rg), M ∈ wMS ,
and C ∈ wCS , the inequality Prre

[
Encpk(M; re) = C

]
≤ γ holds.

We decompose wMS into two finite sets MS and RS E , that is,
wMS = MS ×RS E . Let H : wMS → wRS E be a hash function mod-
eled as the random oracle. The FO conversion converts wPKE into
an encryption scheme PKE = FO(wPKE) = (Gen,Enc,Dec) with
a message space MS , a randomness space RS E , and a ciphertext
space CS = wCS defined as follows:

Gen(1n; rg): Output (pk, sk)← wGen(1n; rg).

Encpk(M; re): Output C ← wEncpk((M, re); H(M, re)).

Decsk(C): Compute M′ ← wDecsk(C). If M′ = ⊥ then output
⊥. Otherwise parse (M, re) ← M′ and verify C by checking
C = wEncpk(M′; H(M′)). If the verification is not passed
then output ⊥. Otherwise output M.

They showed that PKE is IND-CCA secure if wPKE is IND-CPA
secure, γ-uniform, and perfectly correct.

Relaxation.
We define semi-uniformity in order to relax the requirements on

a PKE scheme. We only require that the min-entropy of the cipher-
text is at least − lg γ for all but δ fraction of key pairs rather than
any key pairs.

Definition 8. We say a PKE scheme wPKE = (wGen,wEnc,
wDec) is (δ, γ)-semi-uniform if for all M ∈ wMS and C ∈ wCS ,

Pr
rg

[
Pr
re

[wEncpk(M; re) = C] ≤ γ : (pk, sk)← wGen(1n; rg)
]
≥ 1 − δ.

It is obvious that (0, γ)-semi-uniformity implies γ-uniformity.
This relaxation does not harm the security of the converted scheme.

Without modifications, we can adapt the proof of the security by in-
troducing δ into the bound below.
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Theorem 2 (Theorem 5.4 in [24], adapted). Suppose that wPKE
is a (δ, γ)-semi-uniform PKE scheme. Let PKE = FO(wPKE) be
the converted scheme from wPKE. If wPKE is (tcpa, ϵcpa)-IND-CPA
secure then PKE is (tcca, ϵcca)-IND-CCA secure, where

tcca ≤ tcpa − QH · (TwEnc + O(κ)),

ϵcca ≤
1

(1 − γ)QD
· ϵcpa +

2QH

|wRS E |
+ δ,

QD and QH denote the numbers of the queries to the decryption
oracle and the random oracle H, and TwEnc denotes the computa-
tional running time of wEnc.

5. INSTANTIATIONS FROM RING-LWE
We have new concrete AKE protocols based on the worst-case

hardness of the (ring-)LWE problems derived from our generic con-
struction, GCwR. We can employ IND-CCA secure PKE schemes
in the standard model [47, 45, 13, 1, 2, 57, 40] as OW-CCA se-
cure KEM schemes, as Fujioka et al. did [23]. Unfortunately, the
obtained AKE protocols are inefficient since these PKE schemes
require huge keys, say, the quadratic or cubic order of the security
parameter.

In order to instantiate practical AKE protocols with CK+ secu-
rity, we construct efficient OW-CCA KEM schemes in the ROM
from IND-CPA secure PKE scheme under the ring-LWE assump-
tion. Formally speaking, we construct IND-CCA secure PKE schemes
by applying the Fujisaki–Okamoto conversion [24] to IND-CPA se-
cure PKE schemes [40, 56]. Since IND-CCA secure PKE schemes
with sufficiently large plaintext space are OW-CCA secure, we
have instantiated OW-CCA secure KEM schemes from them. An
obstacle to applying the Fujisaki–Okamoto conversion is that the
(ring-)LWE-based PKE schemes do not have perfect correctness
but negligible decryption errors. To eliminate this obstacle, i.e.,
eliminate the decryption errors, we carefully choose parameters and
slightly strengthen the assumptions. We should note that one can
also eliminate errors by using the technique proposed by Dwork,
Naor, and Reingold [20]. We do not adopt it since it uses pseudo-
random generators.

Remark 1. We note that our CCA-secure schemes are based on
the worst-case hardness of the ring-LWE problem and not based on
the worst-case hardness of the approximating shortest vector prob-
lem. This is because we employ the Fujisaki-Okamoto conversion
and the proof of the conversion in quantum setting is still open [9,
60].

5.1 Ring-LWE Assumption
We next review the ring-LWE assumption [40]. For simplicity,

practical issues, and limitation of space, we adapt a simplified no-
tion of the ring-LWE problem by Ducas and Durms [19] with pa-
rameter n = 2z.

Hereafter, an element c ∈ Zq is represented by a corresponding
integer in [−(q−1)/2, (q−1)/2]. For an element c ∈ Zq, |c| denotes
the Lee value, which is defined by |c| = c if 0 ≤ c < q/2 and −c if
−q/2 < c < 0. For a real x ∈ R, ⌊x⌉ denotes the nearest integer, that
is, ⌈x − 1/2⌉. In what follows, lg(x) denotes log2(x).

Let Rq = Zq[X]/(Xn + 1) and R∗q = {x ∈ Rq : ∃y, xy = 1}. We
identify a polynomial f = f0 + f1X + · · · + fn−1Xn−1 ∈ Rq with a
vector f⃗ = ( f0, . . . , fn−1)T ∈ Zn

q. The ℓp and maximum norm of a
polynomial f is denoted by ∥f∥p and ∥f∥∞, which is (

∑
i| fi|p)1/p and

maxi | fi|, respectively.
The Gaussian distribution with mean 0 and variance σ2 is de-

noted by N(0, σ). For a real s and q ∈ N, Ψ̄s denotes the folded and

discretized Gaussian distribution over Zq, that is,
⌊
N(0, s2/2π)

⌉
mod

q. For s ∈ R, we define n-dimensional Gaussian function ρs as
ρs(x⃗) = exp(−π · ∥x⃗∥22/s2). For countable set L ⊆ Rn, the dis-
crete Gaussian distribution over L with parameter s is DL,s(x⃗) =
ρs(x⃗)/(

∑
y⃗∈L ρs (⃗y)) for x⃗ ∈ L. Identifying Rq and Zn

q, we may choose
a polynomial in Rn

q from the distribution Ψ̄n
s or DZn ,σ over Zn.

For a polynomial s ∈ Rq and a distribution χ over Rq, we define
the oracle As,χ as follows: (1) take samples a ← Rq and e ← χ
and (2) output (a, as + e). Let U(R2

q) be a oracle which returns two
random elements in Rq.

Let us define the RLWEq,χ problem and an assumption related to
the problem.

Definition 9. Let n = 2z, let q be a prime congruent to 1 modulo
2n, and let χ be a distribution over Rq. The RLWEq,χ problem is
distinguishing As,χ from U(R2

q), where s is chosen at random from
Rq. The advantage ofA is defined as

AdvRLWE
A (n) =

∣∣∣∣Pr[AAs,χ (1n) = 1] − Pr[AU(R2
q)(1n) = 1]

∣∣∣∣ ,
where the probability is defined by A’s random coins, choices of
s ∈ Rq, and randomness of the oracles. We say that the RLWEq,χ as-
sumption holds if for any PPT adversaryA its advantage AdvRLWE

A (n)
is negligible in n.

Lemma 1 ([4, Lemma 2], adapted, and [56]). Let n = 2z and q
be a prime with q ≡ 1 mod 2n. Then, for any k ≥ 1, there is
a randomized reduction from distinguishing As′ ,χ from U(R2

q) with
k + 1 samples where s′ ← χ to distinguishing As,χ from U(R2

q) with
k samples where s← U(Rq).

We finally note that the RLWEq,χ problem is reduced to the ap-
proximating shortest vector problem in any ideal of the polynomial
ring. The details are in [40, 19].

5.2 The Lyubashevsky–Peikert–Regev Scheme
We here describe the modified version of the PKE scheme which

appeared in the presentation of [40]. The differences are error
checking steps to wGen and wEnc, which make the scheme per-
fectly correct.

Let us define the parameters as the follows:

q = poly(n) : prime, p = 2, t = ω(
√

lg n),

s ≤
√

q − p
2(2n + 1)pt2 , χ = Ψ̄n

s , λ = n lg(s),

γ = 2−λ/2, δ = 2−λ/2,

where t is a threshold parameter.
The following is a description of the PKE scheme wPKELPR =

(wGen,wEnc,wDec) with wMS = Zn
p, wRS E = {0, 1}∗, wCS =

R2
q. The public parameter contains the security parameter and a

polynomial a chosen from R∗q uniformly at random.

wGen(1n; rg): (1) Generate two polynomials s, e ← χ. (2: error
checking) If ∥s∥∞, ∥e∥∞ ≤ st, then go to next step; otherwise
go to step (2). (3) Compute b ← as + e ∈ Rq. (4) The
encryption key is pk = (a, b) and the decryption key is sk = s.

wEncpk(k; re): (1) Generate three polynomials t, e1, e2 ← χ. (2:
error checking) If ∥t∥∞, ∥e1∥∞, ∥e2∥∞ ≤ st, then go to next
step; otherwise go to step (1). (3) Compute u ← at + e1

and v ← bt + e2. (4) Compute c ← v + ⌊(q/p)k⌉. (5) The
ciphertext is (u, c).

wDecsk(u, c): (1) Compute d ← c − us ∈ Rq. (2) Output k′ ←
⌊(p/q)d⌉ mod p.
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We can show the following lemmas from our parameter settings.

Lemma 2 (Perfect Correctness). There are no decryption er-
rors in wPKELPR.

Lemma 3 (IND-CPA Security). Under the RLWEq,χ assump-
tion, the scheme wPKELPR is IND-CPA secure.

Lemma 4 (Semi-Uniformity). wPKELPR is (δ, γ)-semi-uniform.

The proofs of the above lemmas will appear in the full version.
Applying the FO conversion, we obtain an IND-CCA secure

PKE scheme, PKELPR, based on the RLWEq,χ problem.

Theorem 3. Let PKELPR = FO(wPKELPR) where we employ the
random oracle H : Zn

p → wRS E with MS = RS E = Z
n/2
p . Then

PKELPR is IND-CCA secure if the RLWEq,χ assumption holds.

5.3 The Stehlé and Steinfeld Scheme
Moreover, we can employ a secure variant of the NTRU encryp-

tion scheme [27] by Stehlé and Steinfeld [56] with the simplified
variant of Ring-LWE by Ducas and Durms [19].

Comparing with the LPR scheme, there are additional parame-
ters. A parameter σ and a constant ϵ defines the uniformity of the
public key. We define the parameters as follows:

q = poly(n) : prime, p = 2 ∈ R∗q, t = ω(
√

lg n),

s ≤ q
4nσtp(4p + 1)

, ϵ ∈ (0, 1/4), σ ≥ 2n
√

ln(8nq) · q 1
2 +2ϵ ,

χ = Ψ̄n
s , λ = n lg(s),

γ = 2−λ/2, δ = 2−λ/2.

We modify the original scheme by adding error checking steps to
wGen and wEnc. The following is a description of the PKE scheme
wPKESS = (wGen,wEnc,wDec) with wMS = R/pR, wRS E =

{0, 1}∗, wCS = Rq.

wGen(1n; rg): (1) Generate a random polynomial f′ ← DZn ,σ and
compute f = pf′ + 1; if f < R∗q, re-sample; if ∥f∥2 ≥ 4p

√
nσ,

re-sample. (2) Generate a random polynomial g ← DZn ,σ; if
g < R∗q, re-sample; if ∥g∥2 ≥

√
nσ, re-sample. (3) Compute

h ← pg/f ∈ R∗q. (4) The encryption key is pk = h and the
decryption key is sk = f.

wEncpk(k; re): (1) Generate three polynomials s, e ← χ. (2: error
checking) If ∥s∥∞, ∥e∥∞ ≤ st then go to next step; otherwise,
go to step (1). (3) Compute c ← hs + pe + k ∈ Rq. (4) The
ciphertext is c.

wDecsk(c): (1) Compute d← cf ∈ Rq. (2) Output k′ ← d mod p.

The properties of the scheme are summarized as follows:

Lemma 5 (Perfect Correctness). There are no decryption er-
rors in wPKESS.

Lemma 6 (IND-CPA Security). Under the RLWEq,χ assump-
tion, the scheme wPKESS is IND-CPA secure

Lemma 7 (Semi-Uniformity). wPKESS is (δ, γ)-semi-uniform.

The proofs will appear in the full version.
Applying the FO conversion, we again obtain an IND-CCA se-

cure PKE scheme based on the RLWEq,χ assumption.

Theorem 4. Let PKESS = FO(wPKESS) employing the random
oracle H : Zn

p → wRS E with MS = RS E = Z
n/2
p . Then PKESS is

IND-CCA secure if the RLWEq,χ assumption holds.

The proof is obtained by combining the previous lemmas.

Remark 2. We note that Steinfeld et al. [58, Sect. 4] proposed
an IND-CCA secure PKE scheme based on wPKESS. From their
parameter settings [58, Sect. 4.2], a public key and a ciphertext
includes at least 8 polynomials, while ours consists of one polyno-
mial.

5.4 Efficiency of the Ring-LWE-based Construc-
tion

As a concrete example, we consider the AKE protocol instan-
tiated from PKELPR. In the protocol, the initiator sends C ∈ R2

q

and ek ∈ Rq and the responder sends C ∈ R2
q twice. Hence, the

communication costs are seven polynomials, which are 7n lg q bits.
Next, we take parameters chosen by Rückert and Schneider [54,

Table 12], which are more conservative than these chosen by Lind-
ner and Peikert [38, Section 1.2]. We let n = 512 and q = 5941249
by following them. We additionally set s = 8.0 and t = 4.5 in
order to make scheme perfectly correct. Such parameters yield
7n lg q ≈ 80.65 kbits as the concrete communication costs.

On the above parameter (n, q) = (512, 5941249), Pöppelmann
and Güneysu [49] reported FPGA implementation of the computa-
tions in Zq[X]/(X2z

+ 1). Their implementation requires 53 µs per
polynomial multiplication on a Spartan-6 LX100.

We compare the existing AKE protocol with our instantiated pro-
tocol under the Ring-LWE assumption. Using the generic construc-
tion by Fujioka et al. [23] with IND-CCA secure KEM scheme un-
der the ring-LWE assumption, we obtain an AKE protocol based
on the ring-LWE problem. There are CCA secure PKE schemes
based on the ring-LWE assumption in the StdM: the ring-LWE ver-
sion of the Peikert PKE scheme [45] over polynomial ring, and the
scheme [37] obtained by applying the CHK conversion [8] to the
ring-LWE version of the ABB IBE scheme [1]. Those schemes
require larger keys and ciphertext, κ · O(lg q) polynomials in the
former scheme and O(lg q) polynomials in the latter scheme, and
q should be larger than ours from technical reasons. As a con-
crete example, we can set 2

⌈
lg q
⌉
+1 as the number of polynomials

in keys and ciphertexts. If we adopted (n, q) = (512, 5941249)
as the parameters, then a ciphertext consists from 47 polynomi-
als and the length of it results in approximately 541.50 kbits. In
the protocol, the initiator sends a ciphertext of IND-CCA KEM
and an encapsulation key of IND-CPA KEM, and the responder
sends a ciphertext of IND-CCA KEM and that of IND-CPA KEM.
Adopting wPKELPR as IND-CPA KEM, we obtain 97 polynomi-
als ≈ 1.12 Mbits as the communication costs. For comparison, see
Table 1.

6. OTHER INSTANTIATIONS

Instantiations from Diffie-Hellman problems.
We can realize various AKE protocols as concrete instantiations

of our generic construction GCwR in Section 3 from OW-CCA
KEM schemes based on the hardness of the DH problem and its
variants. For instance, we can adopt the following efficient KEM
schemes based on computational DH (CDH) assumption and gap
DH (GDH) assumption.

From the CDH assumption, we have PSEC-KEM [32] that is
IND-CCA secure in the ROM under the CDH assumption [24].

From the GDH assumption, we have ECIES-KEM [32] that is
IND-CCA secure in the ROM under the GDH assumption [16].
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In addition, we have a KEM scheme (ek = gx, K = H(gr), and
C = (gx)r) that is already IND-CCA secure in the ROM under the
GDH assumption, where y is a public key, as Boyen [11] pointed
out.

Instantiations from factoring or RSA.
We have new AKE protocols as concrete instantiations of our

generic construction GCwR in Section 3 based on the hardness of
integer factoring, which are slightly more efficient than those in the
standard model in [23], say, from 2.27kbits to 1.30kbits.

From the factoring assumption, we have Rabin-SAEP+ [7] or
Rabin-KEM [16] that are IND-CCA secure in the ROM under the
factoring assumption.

For the RSA assumption, we have the REACT PKE scheme [44]
that was shown to be OW-CCA secure PKE scheme under the RSA
assumption.

If we employ the Rabin and RSA PKE schemes as wKEM, we
may face an efficiency issue because these schemes require prime
generation in the key-generation algorithm, which is executed in
the key-generation algorithms of wKEM in our generic construc-
tion GCwR. In order to address this issue, we introduce the fol-
lowing simple OW-CPA secure KEM based on Wee’s IND-CPA
PKE scheme [59], which requires no prime generation in the key-
generation algorithm and has ciphertext of length 2|N |. Let us
briefly recall the properties of the signed quadratic residues [28, 29]
Fix a Blum integer N = pq for safe primes p, q ≡ 3 (mod 4). The
signed quotient group QRt

N = QRN/(±1) is a cyclic group of order
(p − 1)(q − 1)/4 and efficiently recognizable by computing Jacobi
symbol. Let g be a random generator of QRt

N . The public parame-
ter is (N, g) and the key pair is (ek, dk), where dk ← [1, (N − 1)/4]
and ek = g2dk. The encapsulation algorithm outputs K = gr and
C = (u, τ) = (g2r, (ek · g)r), where r ← [1, (N − 1)/4]. The decap-
sulation algorithm outputs K = τ · u−dk. The one-wayness follows
from the hardness of factoring the Blum integer with safe primes.

Instantiations from codes.
We can instantiate new AKE protocols as concrete instantiations

of our generic construction GCwR in Section 3 from code-based
problems, though the protocols are not so efficient.

We have Dowsley et al.’s PKE [18] scheme that is IND-CCA
secure in the StdM under the McEliece and LPN assumptions. (See
Ref. [18] for definitions of these assumptions.)

We also have a padding for the McEliece PKE scheme [33] that
is IND-CCA secure in the ROM under the McEliece one-way as-
sumption. Cayrel, Hoffmann, and Persichetti [14] provided a vari-
ant of McEliece PKE scheme, converted it into IND-CCA secure
schemes by the FO conversion, and reported implementation result.

On the key size, Bernstein et al. [6] estimated the size of a public
key of the McEliece using binary Goppa codes at about 1.8 Mbits
for 128-bit security. Since the key is huge, there are several at-
tempts to reduce the size of keys. Cayrel et al. [14] reported an
implementation result based on very structured code in [48].

If we adapt the scheme in [14] with parameter set in [48, Ta-
ble 3]2, then we obtain an AKE protocol with communication costs
about |ek| + 3 |C| = 52.32 kbits. If we adopt the IND-CCA secure
PKE scheme in [18] with parameter set in [48, Table 3] and a one-
time signature scheme whose verification key and signature are of
length 128 bits, then the communication costs results in approxi-
mately |ek| + |C| + 2 · 128 · |C| ≈ 1.31 Mbits.

2 Persichetti [48] proposed the parameters (q,m, n, k, s, t) = (25,
2, 992, 415, 25, 9) for 128-bit security. We have |ek| = kmt lg q =
37440 and |C| = n lg q = 4960 bits.

Instantiation from NTRU.
We have already a padding scheme for NTRU encryption [27,

31]. Hence, we can have an AKE protocol based on the NTRU
encryption scheme. The scheme enjoys fast computation and light
communication costs, as the ring-LWE based AKE does. For ex-
ample, the communication costs is only |ek| + 3 |C| ≈ 19.76 kbits if
we employ the parameter set [31, ees449ep1] for 128-bit security
and optimized size. 3

Instantiation from subset sum.
As a bonus of the ROM, we also have a new AKE protocol from

the subset-sum problem. Lyubashevsky, Palacio, and Segev [39]
proposed an IND-CPA secure PKE scheme based on the subset-
sum problem. To obtain IND-CCA PKE scheme by applying the
FO conversion [24], we have to modify the parameters of the scheme
slightly, and the details will appear in the full version of this paper.
For example, if we set the security parameter n as 256, then we
have 1.30 Mbits for the communication cost. 4

Instantiation from multi-variate quadratic systems.
It is known that solving multi-variate quadratic equations over

Fq is hard in the worst case. There were several PKE schemes
exploiting its hardness and several attacks against them.

Huang, Liu, and Yang [30] proposed a new PKE scheme based
on the hardness of solving a special case of multi-variate quadratic
equations over Fq. A slight modification on the parameters makes
their scheme perfectly correct as in the case of subset-sum based
construction (the details appear in the full version). When we adapt
their estimation [30, Case 1], the communication cost is 11.44 Mbits. 5

Meanwhile, we can hide the quadratic part from public parame-
ters. Employing the idea in the case of LWE-based PKE [46], we
have pp ∈ Zm×n

q , ek ∈ Zm×ℓ
q , and C ∈ Zn+ℓ

q . In this case, we have
|ek| = mℓ lg q = 7.57 Mbits and |C| = (n + ℓ) lg q = 33.71 kbits.
They result in 7.67 Mbits as the communication cost.
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APPENDIX
A. PROOF OF THEOREM 1

In the experiment of CK+ security, we suppose that sid∗ is the
session identity for the test session. We will show that if a PPT
bounded adversary A can distinguish the session key of a fresh
session from a randomly chosen session key, we can construct a
OW-CCA or OW-CPA adversary S. Let κ be the security param-
eter, and let A be a polynomially (in κ) bounded adversary. We
use adversary A to construct S that succeeds with non-negligible
probability. Suc denotes the event that A wins. Let AskH be the
event that adversary A poses (KA,1,KB,1,KB,2,UA,UB, ekA,1, ekB,1,

CA,1, ekA,2,CB,1,CB,2) to H2. Let AskH be the complement of event
AskH. Let sid be any completed session owned by an honest party
such that sid , sid∗ and sid is non-matching to sid∗. Since sid and
sid∗ are distinct and non-matching, the inputs to the key deriva-
tion function H2 are different for sid and sid∗. Since H2 is a ran-
dom oracle, A cannot obtain any information about the test ses-
sion key from the session keys of non-matching sessions. Hence,
Pr[Suc ∧ AskH] ≤ 1

2 and Pr[Suc] = Pr[Suc ∧ AskH] + Pr[Suc ∧
AskH] ≤ Pr[Suc ∧ AskH] + 1

2 . Henceforth, the event Suc ∧ AskH
is denoted by Suc∗.

For party P, we denote the static secret key by dkP,1, the ephem-
eral secret key for an initiator by rP,1 ∈ {0, 1}κ and rP,2 ∈ RSG
and the ephemeral secret key for a responder by rP,1 ∈ {0, 1}κ and
rP,2 ∈ RS E . Assume that A succeeds in an environment with N
users, activates at most ℓ sessions within a party.

We consider the following events.
• Let AskS be the event thatA poses the static secret key dkA,1

to H1 when UA is the owner of sid∗.
• Let AskS be the complement of event AskS.

More specifically, we consider the following events that cover all
cases of the behavior ofA.
• Let E1 be the event that the test session sid∗ has no matching

session sid
∗
, the owner of sid∗ is the initiator and the static

secret key of the initiator is given toA.
• Let E2 be the event that the test session sid∗ has no matching

session sid
∗
, the owner of sid∗ is the initiator and the ephem-

eral secret key of sid∗ is given toA.
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• Let E3 be the event that the test session sid∗ has no matching
session sid

∗
, the owner of sid∗ is the responder and the static

secret key of the responder is given toA.
• Let E4 be the event that the test session sid∗ has no match-

ing session sid
∗
, the owner of sid∗ is the responder and the

ephemeral secret key of sid∗ is given toA.
• Let E5 be the event that the test session sid∗ has matching

session sid
∗
, and both static secret keys of the initiator and

the responder are given toA.
• Let E6 be the event that the test session sid∗ has matching

session sid
∗
, and both ephemeral secret keys of sid∗ and sid

∗

are given toA.
• Let E7 be the event that the test session sid∗ has matching

session sid
∗
, and the static secret key of the owner of sid∗ and

the ephemeral secret key of sid
∗

are given toA.
• Let E8 be the event that the test session sid∗ has matching ses-

sion sid
∗
, and the ephemeral secret key of sid∗ and the static

secret key of the owner of sid
∗

are given toA.

To finish the proof, we investigate events AskS ∧ Suc∗ and Ei ∧
AskS ∧ Suc∗ (i = 1, . . . , 8) that cover all cases of event Suc∗.

A.1 Event AskS ∧ Suc∗

S receives the challenge ciphertext C∗ for the key K∗. In the
event AskS, A poses the static secret key dkA,1 to H1. S embeds
the instance as C∗B,1 = C∗ and decrypts C∗ with dkA,1. Then, S
obtains K∗.

A.2 Event E1 ∧ AskS ∧ Suc∗

In the event E1, the test session sid∗ has no matching session
sid
∗
, the static secret key of UA is given to A. In the case of event

E1 ∧ AskS ∧ Suc∗, OW-CCA adversary S performs the following
steps.

Initialization.
S receives the public key ek∗ as a challenge. Also, S receives the

challenge ciphertext C∗ for the key K∗.

Setup.
S randomly selects two parties UA,UB and i ∈ [1, ℓ] that be-

comes a guess of the test session with probability 1/N2ℓ. S sets
all N users’ static secret and public keys except UB. S selects rI ∈
RSG randomly, runs the key generation algorithm (dkI,1, ekI,1) ←
KeyGen(rI), and sets UI’s static secret and public key as (dkI,1, ekI,1).
S sets ek∗ as the static public key of UB.

Also, S sets the ephemeral public key of i-th session of UA as
follows: S generates ekA,2 obeying the protocol and sets (C∗, ekA,2)
as the ephemeral public key.

Simulation.
S simulates oracle queries by A as follows. S maintains the

lists LH1 and LH2 that contains queries and answers of the H1 and
H2 oracles respectively, and the list LSK that contains queries and
answers of SessionKeyReveal.

1. H1(ri, dki): If there exists a tuple (ri, dki, ∗) ∈ LH1 , S returns
the registered value 6; otherwise, S chooses hi ∈ RS E ran-
domly, returns hi and records it to LH1 .

6 H1(rA,1, dkA,1) is not registered in LH1 . However, A does not
pose SessionStateReveal(sid∗) by the security definition; thus,A
cannot know information about rA,1. Thus, A cannot distinguish
the real experiment from the simulation by such queries.

2. H2(KP,1,KQ,1,KQ,2,UP,UQ, ekP,1, ekQ,1,CP,1, ekP,2,CQ,1,CQ,2):
(a) If P = A, Q = B, CA,1 = C∗, and (Π,I,UA,UB, ekA,1,

ek∗, (C∗, ekA,2), (CB,1,CB,2)) is i-th session of UA, then S
outputs KA,1 as the answer of OW-CCA game (i.e., K∗);

(b) else if there exists a tuple (KP,1,KQ,1,KQ,2,UP,UQ, ekP,1,
ekQ,1,CP,1, ekP,2,CQ,1,CQ,2, h) ∈ LH2 ,S returns registered
value h;

(c) else if P = B and there exists a tuple (UB,UB, ek∗, ekQ,1,
(CB,1, ekB,2), (CQ,1,CTQ,1), h) ∈ LSK , and KB,1 = K′B,1,
KQ,1 = K′Q,1 and KQ,2 = K′Q,2, where S computes K′B,1 =
DeCapdkQ,1

(CB,1) and K′Q,2 = wDeCapdkP,2
(CQ,2), poses

CQ,1 to the decryption oracle, and the oracle outputs K′Q,1,
then S returns recorded value h, and records (KB,1,KQ,1,
KQ,2,UB,UQ, ek∗, ekQ,1, (CB,1, ekB,2), (CQ,1,CQ,2), h) in the
list LH ;

(d) else if Q = B and there exists a tuple (UP,UB, ekP,1,
ek∗, (CP,1, ekP,2), (CB,1,CB,2), h) ∈ LSK , and KP,1 = K′P,1,
KB,1 = K′B,1 and KB,2 = K′B,2, where S computes K′B,1 =
DeCapdkP,1

(CB,1) and K′B,2 = wDeCapdkP,2
(CB,2), poses

CP,1 to the decryption oracle, and the oracle outputs K′P,1,
then S returns recorded value h, and records (KP,1,KB,1,
KB,2,UP,UB, ekP,1, ek∗, (CP,1, ekP,2), (CB,1,CB,2), h) in the
list LH ;

(e) else if there exists a tuple (UP,UQ, ekP,1, ekQ,1, (CP,1, ekP,2),
(CQ,1,CQ,2), h) ∈ LSK , and KP,1 = K′P,1, KQ,1 = K′Q,1 and
KQ,2 = K′Q,2, whereS computes K′Q,1 = DeCapdkP,1

(CQ,1),
K′P,1 = DeCapdkQ,1

(CP,1) and K′Q,2 = DeCapdkP,2
(CQ,2),

than S returns recorded value h and record (KP,1,KQ,1,
KQ,2,UP,UQ, ekP,1, ekQ,1, (CP,1, ekP,2), (CQ,1,CQ,2), h) in the
list LH2 ;

(f) otherwise, S returns a random value SK ∈ {0, 1}κ and
records it in the list LH2 .

3. Send(Π,I,UP,UQ): If P = A and the session is i-th session
of UA, S returns the ephemeral public key (C∗, ekA,2) com-
puted in the setup. Otherwise, S computes the ephemeral
public key (CP,1, ekP,2) obeying the protocol, returns it and
records (Π,UP,UQ, (CP,1, ekP,2)).

4. Send(Π,R,UQ,UP, (CP,1, ekP,2)): S computes the ephemeral
public key (CQ,1,CQ,2) obeying the protocol, and the session
key SK as follows:
(a) If Q = B and there exists a tuple (KP,1,KB,1,KB,2,UP,UB,

ekP, ek∗, (CP,1, ekP,2), (CB,1,CB,2), h) ∈ LH for (KP,1,KB,1,
KB,2), where KB,1 and KB,2 are known for S, and S poses
CP,1 to the decryption oracle and the oracle outputs KP,1,
then S sets SK = h;

(b) else if there exists a tuple (KP,1,KQ,1,KQ,2,UP,UQ, ekP,1,
ekQ,1, (CP,1, ekP,2), (CQ,1,CQ,2), h) ∈ LH2 for (KP,1,KQ,1,
KQ,2), where KP,1 = DeCapdkQ,1

(CP,1), and KQ,1 and KQ,2

are known for S, then S sets SK = h;
(c) otherwise, S chooses SK ∈ {0, 1}κ randomly.

Finally, S records (Π,UP,UQ, (CP,1, ekP,2), (CQ,1,CQ,2)) as the
completed session and SK in the list LSK .

5. Send(Π,I,UP,UQ, (CP,1, ekP,2), (CQ,1,CQ,2)):
(a) If P = B and there exists a tuple (KB,1,KQ,1,KQ,2,UB,

UQ, ek∗, ekQ, (CB,1, ekB,2), (CQ,1,CQ,2), h) ∈ LH for (KB,1,
KQ,1,KQ,2), where KB,1 = DeCapdkQ,1

(CB,1) and KQ,2 =

wDeCapdkB,2
(CQ,2), and S poses CQ,1 to the decryption

oracle and the oracle outputs KQ,1, then S sets SK = h;
(b) else if Q = B and there exists a tuple (KP,1,KB,1,KB,2,UP,

UB, ekP, ek∗, (CP,1, ekP,2), (CB,1,CB,2), h) ∈ LH for (KP,1,
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KB,1,KB,2), where KB,1 = DeCapdkP,1
(CB,1) and KB,2 =

wDeCapdkP,2
(CB,2), and S poses CP,1 to the decryption

oracle and the oracle outputs KP,1, then S sets SK = h;
(c) else if there exists a tuple (KP,1,KQ,1,KQ,2,UP,UQ, ekP,1,

ekQ,1, (CP,1, ekP,2), (CQ,1,CQ,2), h) ∈ LH2 for (KP,1,KQ,1,
KQ,2), KP,1 = DeCapdkQ,1

(CP,1), KQ,1 = DeCapdkP,1
(CQ,1)

and KQ,2 = DeCapdkP,2
(CQ,2), then S sets SK = h;

(d) otherwise, S chooses SK ∈ {0, 1}κ randomly.

Finally, S records (Π,UP,UQ, (CP,1, ekP,2), (CQ,1,CQ,2)) as the
completed session and SK in the list LSK .

6. SessionKeyReveal(sid):

(a) If the session sid is not completed, S returns an error
message;

(b) else if sid is recorded in the list LSK , then S returns the
recorded value SK;

(c) otherwise, S returns a random value SK ∈ {0, 1}κ and
records it in the list LSK .

7. SessionStateReveal(sid): S responds the ephemeral secret
key and intermediate computation results of sid as the defini-
tion. If the owner of sid is UB, S poses ciphertexts received
by UB to the decryption oracle and can simulate all interme-
diate computation results. Note that the SessionStateReveal
query is not posed to the test session from the freshness defi-
nition.

8. Corrupt(UP): S responds the static secret key of UP as the
definition.

9. Test(sid): If sid is not i-th session of UA, then S aborts with
failure. Otherwise, S responds to the query as the definition.

10. IfA outputs a guess b′, S aborts with failure.

A.2.1 Analysis.
The simulation for S is perfect except with negligible probabil-

ity. The probability that A selects the session as the test session
sid∗ is at least 1

N2ℓ
.

Under the event Suc∗, A poses correctly formed KP,1,KQ,1,KQ,2

to H2. Therefore, S is successful and does not abort.
Thus, S is successful with non-negligible probability.

A.3 Other Events

A.3.1 Event E2 ∧ AskS ∧ Suc∗.
In the event E2, the test session sid∗ has no matching session

sid
∗
, the ephemeral secret key of sid∗ is given to A. Thus, A can-

not obtain any information about dkA,1 except negligible guessing
probability, since H1 is the random oracle. Hence, S performs the
reduction same as in the case of event E1 ∧ AskS ∧ Suc∗.

A.3.2 Event E3 ∧ AskS ∧ Suc∗.
In the event E3, the test session sid∗ has no matching session sid

∗
,

the static secret key of UB is given to A. Thus, A cannot obtain
any information about dkB,1 except negligible guessing probability,
since H1 is the random oracle. Hence, S performs the reduction
same as in the case of event E1 ∧ AskS ∧ Suc∗.

A.3.3 Event E4 ∧ AskS ∧ Suc∗.
In the event E4, the test session sid∗ has no matching session

sid
∗
, the ephemeral secret key of sid∗ is given to A. Thus, A can-

not obtain any information about dkB,1 except negligible guessing
probability, since H1 is the random oracle. Hence, S performs the
reduction same as in the case of event E2 ∧ AskS ∧ Suc∗.

A.3.4 Event E5 ∧ AskS ∧ Suc∗.
In the event E5, the test session sid∗ has the matching session

sid
∗
, both static secret keys of UA and UB are given toA. OW-CPA

adversary S embeds ek∗ to ekA,2 and C∗ to CB,2. Then, S obtains
K∗ by the hash list LH2 .

A.3.5 Event E6 ∧ AskS ∧ Suc∗.
In the event E6, the test session sid∗ has the matching session

sid
∗
, both the ephemeral secret keys of sid∗ and sid

∗
are given

to A. Then, A cannot obtain any information about dkA,1 ex-
cept negligible guessing probability because H1 is the random ora-
cle. Hence, S performs the reduction same as in the case of event
E2 ∧ AskS ∧ Suc∗.

A.3.6 Event E7 ∧ AskS ∧ Suc∗.
In the event E7, the test session sid∗ has the matching session

sid
∗
, the static secret keys of UA and the ephemeral secret key of

sid
∗

are given to A. Then, A cannot obtain any information about
rA,1 except negligible guessing probability because H1 is the ran-
dom oracle. Hence, S performs the reduction same as in the case
of event E1 ∧ AskS ∧ Suc∗.

A.3.7 Event E8 ∧ AskS ∧ Suc∗.
In the event E8, the test session sid∗ has the matching session

sid
∗
, the static secret keys of UB and the ephemeral secret key of

sid∗ are given toA. S embeds ek∗ to ekA,1 and C∗ to CB,1. Then, S
obtains K∗ by the hash list LH2 .
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