
��� ���

An Attack-localizing Watermarking Scheme for Natural
 Language Documents

Gaurav Gupta Josef Pieprzyk Hua Xiong Wang

Centre for Advanced Computing - Algorithms and Cryptography
Department of Computing

Macquarie University
Sydney, NSW 2109, Australia

{ggupta,josef,hwang}@ics.mq.edu.au

ABSTRACT
We present a text watermarking scheme that embeds a bit-
stream watermark Wi in a text document P preserving the
meaning, context, and flow of the document. The docu-
ment is viewed as a set of paragraphs, each paragraph being
a set of sentences. The sequence of paragraphs and sen-
tences used to embed watermark bits is permuted using a
secret key. Then, English language sentence transforma-
tions are used to modify sentence lengths, thus embedding
watermarking bits in the Least Significant Bits (LSB) of the
sentences’ cardinalities. The embedding and extracting al-
gorithms are public, while the secrecy and security of the
watermark depends on a secret key K. The probability of
False Positives is extremely small, hence avoiding inciden-
tal occurrences of our watermark in random text documents.
Majority voting provides security against text addition, dele-
tion, and swapping attacks, further reducing the probability
of False Positives. The scheme is secure against the gen-
eral attacks on text watermarks such as reproduction (pho-
tocopying, FAX), reformatting, synonym substitution, text
addition, text deletion, text swapping, paragraph shuffling
and collusion attacks.

Keywords
watermarking, permutation, copyright

1. INTRODUCTION
With the emergence of Internet and electronic communi-

cation, illegal distribution of media has become a cause of
concern for the publishers and legitimate owners. To dis-
suade people from getting involved in such activities, or-
ganizations insert copyright marks in media that they sell.
These marks establish the company’s ownership over the
media in events of disputes. Identification of the person in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’06, March 21-24, 2006, Taipei, Taiwan.
Copyright 2006 ACM 1-59593-272-0/06/0003 ...$5.00.

volved in illegal distribution of copyrighted material is called
fingerprinting. Digital watermarking techniques are used to
accomplish both Copyright Protection and Fingerprinting.

Text documents [1, 6, 5, 7, 8, 11, 12, 13, 14, 18], images [9],
audio [2, 4] and video [10, 16] files are common media objects
that are watermarked. Schemes have also been proposed to
watermark media like music sheets [15] and numeric sets
[17]. The information that companies want to copyright is
mostly in the form of text documents. Text documents are,
however, the most difficult to watermark because text ma-
nipulations are guided by strict rules in terms of grammar,
syntax, semantics, context-based selection of a word from
a set of synonymous words, etc; while in the case of other
media, there is large amount of redundant information to
manipulate. For example, human visionary system cannot
distinguish between an original image and a watermarked
image with the last few LSBs in certain pixels flipped. Sim-
ilar is the case with audio and video files. But in text doc-
uments, grammatical rules need to be preserved while mak-
ing any changes. There has been significant work done in
format-based text watermarking using inter-word and inter-
space spacing, justification, alignment, character height and
width, etc [6, 5, 7, 8, 11, 14, 18]. The common problem
these techniques have is that watermark cannot survive re-
formatting and reproduction attack as they introduce loss
of formatting information in the document. Alternatively,
the attacker can simply re-type the entire document which
would be watermark-free.

Synonym substitution watermarking schemes [12] are re-
silient to the above mentioned trivial attacks but not to
random synonym substitutions made by the attacker. Even
more importantly, words can not always be replaced by their
exact synonyms. Hence, the quality of the documents is de-
preciated by synonym substitution.

1.1 Current scenario
The current focus in text watermarking is on syntactic

watermarking [1, 19] where language syntax structures are
modified to embed watermarks. Notable progress has been
made in [1], where watermark bits are embedded in sen-
tences using the following transformations -

1. Adjunct movement: Inserting an adjunct (example,
“Usually”, “Generally”, etc) at many of the possible

��� ���

positions in a sentence.

2. Clefting: Explicit emphasis on the mandatory sub-
ject in the sentence. (example, “We are concerned
with < subject >” to “it is < subject > we are
concerned with”)

3. Passivization: Changing of voice from active to pas-
sive and vice versa. (example “He led me” to “I was
led by him”)

4. Combination of the above.

This scheme has certain drawbacks such as 1) overhead
introduced because of parsing each sentence, numbering the
nodes and creating a hash for each node. 2) requirement of
marker sentences reduces the capacity. 3) not resilient to
multiple sentence transformation attacks.

Table 1 summarizes the central ideas of the current wa-
termarking schemes.

1.2 Outline of the proposed scheme
In the proposed watermarking scheme, the sequence of the

paragraphs and sentences used to embed the watermark is
permuted. This results in effect of attacks getting localized
to a small region and not getting spread across the docu-
ment. Watermark bits are physically embedded by mod-
ifying the sentences’ word counts. Error-correcting codes
and majority voting are used to embed watermark bits at
multiple locations providing increased security against at-
tacks. The watermark contents are signed using private
key of user and publisher which prevents the publisher from
framing an innocent user. The watermark bitstream con-
tains a collusion-secure code (described in detail later) to
identify colluding users.

1.3 Type of adversary
The attacker is assumed to have the capabilities to -

1. Add and/or delete sentences from the document.

2. Swap sentences within the same or between different
paragraphs.

3. Make natural language transformations on sentences.

4. Shuffle paragraphs in the document.

5. Collude with other users to compare and modify the
document.

1.4 Organization of paper
In Section 2, we discuss the general mathematical model of

the scheme and definitions used for rest of the paper. In Sec-
tion 3, we propose our scheme, the sequence-permutation,
watermark composition, watermark embedding, extracting
and verification step. In Section 4, we discuss these attacks
in greater detail, the probability of False Positives and ca-
pacity analysis. Experimental results are given in Section 5.
Conclusion and future work follow in Section 6.

2. MATHEMATICAL MODEL AND DEFI-
NITIONS

2.1 Mathematical Model
We represent the watermarking scheme as WS, where

WS =< {P,Wi,K}, {ξ, ζ, ψ} > (1)

P=y-paragraph text {p1, p2, . . . , py}

pi=ith paragraph with xi-sentences {si1, si2, . . . , sixi}

sij=jth sentence in ith paragraph

dij number of tokens/words in sij

Wi = {w1, w2, . . . , wn} is the watermark to be inserted
where ∀i, wi ∈ {0, 1}

K = k-bit secret key

Watermark insertion ξ : Wi×P ×K → P (w), where P (w)

is watermarked text

Watermark extraction ζ : P (w) ×K → We (extracted wa-
termark)

Watermark verification ψ : We ×Wi → {true/false}

2.2 Definitions
di = |si| gives the number of words in sentence si

di = {bi,1, bi,2, . . . , bi,ki} where bi,j ∈ {0, 1}, ki = �log2 di� is
the binary representation of di with bi1 as the LSB and so on.

Watermark W = {w1, w2, . . . , wm} where wi is the ith bit
of the watermark.

Lexicographically sorted permutations for a set of n ele-
ments are ρn1 , ρ

n
2 , . . . , ρ

n
n!. ρni gives the ith permutation of

n elements. �ni,j gives the value of the jth element in ρni .

Majority Voting - ∀i, ai ∈ {0, 1}.

majority(a1, a2, . . . , an) =

�

1 if |ai = 1| > n
2

0 otherwise

Text document P = {p1, p2, . . . , py} =
�

{sα1+1, . . . , sα1+x1}, . . . , {sαy+1, . . . , sαy+xy}
�

where pi is the ith text paragraph and si is the ith text sen-
tence.

pi = {sαi+1, sαi+2, . . . , sαi+xi}

αi =

�

0 if i = 1
�i−1

j=1 xj if 2 ≤ i ≤ y

|pi| defines number of sentences it contains.

τ = number of paragraphs in which each watermark bit is
embedded.

3. PROPOSED SCHEME
In order to limit distortions caused by modifications made

by the attacker, we permute the sequence of sentences and

��� ���

Table 1: General ideas of current watermarking schemes
Modifications made based on watermark bit Scheme
Interword spacing [6, 7, 14, 18]
(example - 10-pixels if bit=0; 11-pixels otherwise)
Interline spacing [6, 14, 18]
(example - 10-pixels if bit=0; 11-pixels otherwise)
Abbreviation and Synonym substitution x [12]
(example - “must” if bit=0; “should” otherwise)
(example - “a.m.” if bit=0; “A.M.” otherwise)
Sentence structures [1]
(example - “He led me” if bit=0; “I was led by him” otherwise)

paragraphs used to embed the watermark. It needs to be em-
phasized that sentences/ paragraphs are not physically per-
muted but only the sequence in which they will be “picked”
to embed the watermark is permuted. Embedding each wa-
termark bit in multiple paragraphs (say µ) results in any
µ
2

+ 1 unmodified bits leading to successful recovery of the
watermark.

3.1 Sequence permutation
In the current implementation, we use AES outputs to

generate permutations that results in higher cryptographic
security and more importantly introduces an “uncertainty
effect” that is described in Section 4. With AES, the key
size k ∈ {128, 192, 256}. However, one can use any other
method to generate permutations.

1. The set of paragraph indices {1, 2, . . . , y} is sorted in
ascending order of the number of sentences they con-
tain to G = {g1, g2, . . . , gy} such that |pgi | ≤ |pgj |, i <
j. If two paragraphs, pi, pj contain number of sen-
tences, pi precedes pj if i < j. This step nullifies para-
graph shuffling attacks.

2. In binary notation, �log2 y� (say δ) bits are required
to represent index of any given paragraph in a set of y
paragraph.

3. Vector V is a k-bit vector initialized to secret Viv.

4. ∀i, input to AES is V
�

gi and key is K. The first δ
bits of encrypted output (mod y) gives the paragraph’s
position θi in new sequence.

5. If V generates a valid permutation (∀(i, j), i �= j, 1 ≤
i ≤ y, 1 ≤ j ≤ y, θi �= θj), final test vector Vf=V ,
otherwise reject V , repeat step 3,4 with V = V + 1.

6. The new paragraph sequence is given by {θ1, θ2, . . . , θy}.
This essentially means that pθi is used before pθj if
i < j. As an example, if the sequence set is {5, 1, 2,
3, 4} such that θ1 = 5 and θ2 = 1, then paragraph 5 is
used before paragraph 1 in watermark embedding.

7. For 1 ≤ i ≤ y, ρxi!

(θi)
K(mod(xi!))

is the new sequence of

the sentences to be used within the paragraph i. This
permutation is generated using Algorithm 1.

8. The resulting paragraph sequence is Θ = {θ1, θ2, . . . , θy}
and the sentence sequence is given in Table 2

x = xi;
for l = 1; l ≤ xi; l = l + 1 do

oldindex[l] = l;
end

j = θKi (mod(x!));
q = 1;
if x > 0 then

s = � j
(x−1)!

�;
j = j%(x− 1)!;
newindex[q] = oldindex[s];
for l = s; l ≤ x− 1; l = l + 1 do

oldindex[l] = oldindex[l + 1];
end
q = q + 1;
x = x− 1;

end
Algorithm 1: Sentence sequence generation: Generating
xi
th permutation from a lexicographically sorted set of per-

mutation

As an illustration, let a document contain 5 paragraphs
{a, b, c, d, e} with 7, 8, 5, 3, and 6 sentences respectively.
Let the new paragraph sequence be {4, 1, 2, 5, 3} and the
new sentence sequence be {2, 1, 3} for paragraph d (which
is now in first position), {5, 3, 7, 2, 4, 1, 6} for paragraph a,
{8, 1, 4, 2, 3, 7, 5, 6} for paragraph b, {3, 4, 6, 2, 5, 1} for
paragraph e, and {1, 4, 3, 2, 5} for paragraph c. This means
that the sequence of paragraphs used to embed watermark
will be paragraph d, then paragraph a, b, e and finally c.
While using d (which contains 3 sentences) the sequence of
sentences used for watermark embedding will be sentence 2,
sentence 1 and finally sentence 3; and so on for sentences in
other paragraphs.

For generating a permutation of a set containing y ele-
ments, the first element can be chosen in y ways, the second
in (y− 1) ways and so on, and the total combinations (with
repetitions) are yy, hence, the probability of getting a per-
mutation when choosing elements with repetitions is given
be the following equation:

P (θi �= θj ,∀i,∀j, i �= j) = (
y!

yy
) (2)

Results of the experiments conducted to generate permu-
tations using AES-128 confirm the results. Table 3 provides
the comparison of empirical results with theoretical values.

3.2 Watermark composition

��0 ���

Figure 1: Generating a paragraph permutation using AES

Table 2: New sequence of sentences that will be used to embed the watermark�
{ρx1!

(θ1)K(mod(x1!)),1
, . . . , ρ

x1!

(θ1)K (mod(x1!)),x1
},

�
{t(1,1), t(1,2), . . . , t(1,x1)},

{ρx2!

(θ2)K(mod(x2!)),1
, . . . , ρ

x2!

(θ2)K(mod(x2!)),x2
}, . . ., = {t(2,1), t(2,2), . . . , t(2,x2)}, . . . ,

{ρ
xy !

(θy)K (mod(xy!)),1
, . . . , ρ

xy!

(θy)K(mod(xy !)),xy
}
�

{t(y,1), t(y,2), . . . , t(y,xy)}
�

Table 3: Comparison of empirical results with theoretical values
Number of elements Keys searched

Empirical result Theoretical Value
2 1.88 2
3 4.44 4.5
4 7.33 10.6667
5 16.16 26.04171
6 64.27 64.8
7 145.22 163.401
8 516.55 416.102
9 1140.77 1067.63
10 3381.77 2755.73
11 6240.94 7147.66
12 15307.72 18613.9
13 37694.88 48638.8
14 108803.61 127463
15 433622.72 334865
16 1097114.16 881658
17 2004049 2330000
18 6203832.22 6150000
19 16376576.78 16300000

��0 ���

Figure 2: Keys required to get a valid permutation
using AES-128: Experimental results are in accor-
dance with theoretical values

It is crucial to construct the watermark such that

1. Watermark can identify the publisher and user suc-
cessfully.

2. Publisher cannot frame an innocent user.

3. Watermark can withstand collusion attacks.

To satisfy the first requirement, the watermark simply
needs to have two components - a publisher component and
a user component. But by this method, the publisher can
generate any desired watermark and thus frame an innocent
user. Hence we adopt the following protocol -

1. The publisher sends user a watermark Wu carrying the
user identity.

2. User signs Wu with his private key Pru and sends pub-
lisher the “signed user component” SPru(Wu).

3. Publisher verifies the correctness by verifying the signed
user component with the user’s public key Puu. He
then appends the document specific publisher compo-
nent Wp to the signed user component and signs it
with his private key Prp.

4. Final watermark Wi is SPrp(Wp||SPru (Wu)).

The court can verify the watermark with the public keys
of publisher and user. Neither the publisher, nor the user
can tamper with the watermark without the knowledge of
the other person’s private key. A small problem with this
scheme is that since the “user components” of various users
will differ, hence multiple users can collude and destroy the
watermark. Hence the physical Wu should be chosen such
that colluding users can successfully be identified.

For this purpose, we use the logarithmic length c-secure
codes proposed in [3]. These codes can successfully identify
at least one of the c colluding users from a group of n users.
Given integers N and c, and an error tolerance metric � > 0,
set n = 2c, L = 2c log(2N/�), and D = 2n2 log(4nL/�). The
code Γ�(L,N, n, d) (details in [3]) is c− secure with �-error.

Let the codeword for the user for which the document is
being watermarked be Wu = {w1, w2, . . . , wLd(n−1)}. Boneh-
code enables us to identify colluding parties of at most c =
n/2 users with a probability of 1 − �. For further details
about these collusion-secure codes, please refer to [3].

Now the watermark SPrp(Wp||SPru (Wu)) satisfies all three
requirements mentioned at the beginning of the section and
can be embedded.

3.3 Watermark embedding step
Before proceeding to the watermark embedding algorithm,

we describe how watermark bits will be physically carried in
the document. Let the number of words in a sentence si be
di and the binary representation of di be di,1, di,2, . . . , di,z
such that di,1 is the LSB. We utilize di,1 and d1,2 to carry
the watermark. If we want to embed two bits w1 and w2 in
a sentence si, then

1. Set di,1 = w1, di,2 = w2. Let the new value of d be d�.

2. Transform the sentence such that it contains d� number
of words using one or more of the following (and other)
transformations -

(a) Change of voice from active to passive and vice
versa. Example, “The cops rewarded Anjali” ↔
“Anjali was rewarded by the cops”.

(b) Addition/deletion of an adjunct to/from the sen-
tence. Example, “The company praised Gunjan”
↔ “It was the company which praised Gunjan”.

(c) Addition/Removal of optional articles. Example,
“Maya was cutting up the trees for Christmas” ↔
“Maya was cutting up trees for Christmas”.

(d) Grouping of multiple subjects. Example, “Ravi
married Tina” ↔ “Ravi and Tina got married”.

(e) Addition/removal of coordinate conjunctions. Ex-
ample, “Mohit started to sing and Gaurav be-
gan playing the guitar” ↔ “Mohit started to sing,
Gaurav began playing the guitar”.

(f) Introducing, or eliminating “then” from the if ...
then pair of correlative conjunctions. Example
“If this is what you want, then this is what you’ll
get” ↔ “If this is what you want, this is what
you’ll get”.

Given the information on how we are going to store wa-
termarking bits in the document, the watermark embedding
algorithm is given below -

1. All the sentences and sentences are marked as “un-
used”.

2. Choose the paragraphs corresponding to the next τ
“unused” indices from the new paragraph sequence.
(Go to start of sequence if end of sequence reached).

3. Take the first available “unused” sentences (using new
sentence sequence) from the τ paragraphs and embed
the first γ bits in them using Algorithm 2, where each
watermark bit is inserted µ = τβ

γ
times. The water-

mark bit is physically embedded using English lan-
guage transformations (discussed in [1]). For exam-
ple, for a sentence “This is not so difficult to un-
derstand” having word count of 7 (0111) if we need

��� ���

to reduce one word from it to embed the watermark
bits (10) in the 2 LSBs of its word count, preserving
its meaning, we can change the sentence to “Under-
standing this is not so difficult” which has a word
count of 6 (0110).

4. Delete the γ watermark bits embedded in the first step
from the watermark.

5. Mark the sentences chosen in step 2 as “used” and if
all the sentences of a paragraph are marked as “used”,
mark the paragraph as “used”.

6. Repeat steps 2-5 till the entire watermark is embedded.

The pseudo-code for the above procedure is provided in
Algorithm 2.

counter = 1;
for l = 1; l < y; l + + do

ql = {st(l,1) , st(l,2) , . . . , st(l,xl)
};

end
Q = {q1, q2, . . . , qy};
for i = 1; i ≤ m; i+ = β do

for j = 1, j ≤ τ ; j + + do
temp = (j + counter)(%y);
st�j = st(temp,1) ;

bj = |st�j |;
qtemp = qtemp − st(temp,1) ;

if qtemp = φ then
Q = Q− qtemp;
y = y − 1;

end

end
for j=1;j ≤ τ

2
;j++ do

for l=1;l ≤ β;l = l + 1 do
bjl = w((j+l−1)%γ)+((counter−1)×γ);
b(j+ τ

2)(β−l+1) = bjl;

end
transform sentences according to new d by
applying English language transformations;

end
counter = (counter + τ)(%y);

end
Algorithm 2: Watermark embedding

3.4 Watermark Extracting and Verification
The watermark bits are extracted in the same permuted

sequence used while embedding (Algorithm 1). The embed-
ding process is similar to embedding process except that in
this case we set the watermark bits to the LSBs of the word
counts. Finally, majority-voting is applied on the multiple
instances of each watermark bit. Table 4 illustrates how
majority voting works.

The extracted watermark We is compared to the inserted
watermark Wi and if the Hamming Distance is less then a
maximum tolerance value Ω, the watermark is acceptable,
otherwise it is rejected (in which case collusion detection is
performed using algorithm suggested in [3].

4. ANALYSIS

4.1 Attacks
We discuss the various attacks possible on the water-

marked document and degree of resilience offered by our
scheme:

1. Reformatting/Reproducing attacks: The water-
mark is carried in the structure of the sentences and
not the formatting information (such as interword/ in-
terline spacing, font characteristics, indentation, etc).
Hence, changing these attributes does not alter the
watermark.

2. Sentence addition/ deletion: Addition/ deletion of
a sentence (say si) results in the sentence sequence be-
ing distorted for the paragraph (say pj) containing si.
But each watermark bit carried in sentences of pj is
embedding in µ− 1 sentences in other paragraphs and
can be correctly extracted using majority voting (ex-
plained in 3.4). Hence, the watermark can withstand
this attack. In the worst case, if the attacker adds/
deletes µ

2
sentences carrying the same watermark bits,

the watermark might be destroyed. Thus, the water-
mark can survive at least µ

2
− 1 additions/deletions

(lower bound).

3. Text swapping: Text swapping refers to selecting
two sentences si ∈ pj and si� ∈ pj� from a document
and swapping them. The sentence sequence is not
disturbed in this case and only watermark bits corre-
sponding to the swapped sentences are affected. Like
in sentence addition/ deletion, the other µ−1 instances
of the watermark bits result in correct watermark re-
trieval. Here also, the watermark can withstand at
least µ

2
− 1 swaps.

4. Paragraph shuffling: In 3.1, we first sort the para-
graph sequence according to cardinality before carry-
ing out the permutation operation. Hence, even if the
paragraphs are shuffled by the attacker, the original
permutation will be restored when extracting the wa-
termark. Hence, the scheme is totally secure against
paragraphs being shuffled.

5. Collusion attack: Boneh-code is inserted as the user
component Wu. If an illegal copy is discovered, then
the algorithm described in [3] is executed which out-
puts the member(s) of the collusion with high proba-
bility.

6. Cryptographic attacks: AES lies at the core of our
scheme as it is used to generate permutations. First
the attacker needs O(2k) time to perform an exhaus-
tive search on K. For each potential K, however, the
attacker would need to generate potential index sets,
which requires O(2k) time. Hence the time complexity
of an exhaustive search attack is O(22k). More impor-
tantly, a key K� different to key used to embed the
watermark (K) can still, with high probability, gener-
ate a valid permutation. This permutation is different
to permutation generated while watermark embedding
and this introduces an “uncertainty effect” where the
attacker cannot be sure of the correctness of a permu-
tation generated by a random key.

��� ���

Table 4: Illustration of majority voting
Copy Watermark bits

w0 w1 w2 w3 w4

1 0 0 1 1 1
2 1 0 1 0 1
3 0 0 0 0 0
4 0 0 1 0 1
5 0 1 1 1 1
output w0 = 0 w1 = 0 w2 = 1 w3 = 0 w4 = 1

4.2 False Positive probability
The probability of an m-bit watermark matching another

watermark extracted from a randomly picked document is
2−m. Since each bit of the watermark is actually embedded
at µ positions, µ

2
+1 of those µ bits should match correspond-

ing bit of our watermark. This makes the actual probability

of having False Positives = 2−(m+
µ
2 +1). This is lower than

probability of false positives in [1].

4.3 Watermarking Capacity
The optimal capacity utilization is when a document con-

tains
�y

j=1 xj sentences and each sentence carries β bits.

Every watermark bit is embedded in µ = τβ
γ

sentences.

Hence the watermarking capacity of our scheme is
β×

�y
j=1 xj

µ

=
γ×

�y
j=1 xj

τ
.

5. EXPERIMENTAL RESULTS

5.1 Implementation details
The experiments were carried out in Unix using C lan-

guage on Pentium 4 2.4 GHz processor. Usage of C as a
programming language makes the implementation extremely
efficient in terms of time. Quartz digital signature scheme
was utilized for producing digital signatures since the size
of these signatures is very small (128-bits). Java implemen-
tation provided by Christophe Wolf was used to generate
signatures.

5.2 Results
We used 5 sample documents of varying sizes (from 16505

words to 46271 words) and paragraph structures to embed
watermarks of 5 sizes constructed using quartz digital sig-
nature scheme (which produces 128-bit digital signatures)
and analyzed the results of the experiments. It should be
noted that the watermark embedded essentially consists of
two signatures - user’s and publisher’s) and optionally other
information like timestamp, metadata, padding and so on.
The number of bits that change are proportional to the wa-
termark size as indicated in Table 5.

The net change in document size is fairly constant for a
specific document. The change in document size is less than
1% in most of the cases (refer to Table 6). Hence, quantita-
tively speaking, there is minimal distortion to the document.
It was observed that the documents with larger paragraphs
had fewer changes as compared to documents with smaller
paragraphs. This also suggests that the paragraph struc-
ture, and thereby the permutation we select play a key role

in determining the number of words that will be added or
deleted from the document.

6. CONCLUSION AND FUTURE WORK
Our scheme is shown to be resilient against document re-

production, reformatting, synonym substitution, text addi-
tion, text deletion, text swapping and paragraph shuffling.
Previous watermarking schemes [6, 5, 7, 8, 11, 12, 13, 14, 18]
are not secure against majority of these these attacks. Com-
pared to [1], our scheme provides higher security (determin-
istic resilience to at least µ

2
−1 changes against probabilistic

resilience to single change in [1]) against text addition, text
deletion, text swapping and total security against paragraph
shuffling. It is also secure against collusion attacks. An ex-
haustive cryptographic attack on the scheme takes O(22k)
time (k being the size of key used). With high probability,
the scheme can successfully identify at least one of the col-
luding users in event of a collusion attack. The capacity of

the scheme is
γ×

� y
j=1 xj

τ
watermark bits.

We are currently working on the following aspects of our
scheme -

1. Designing indigenous collusion-secure codes: Currently,
we are using collusion secure codes given by Boneh.
We are trying to design alternative collusion-secure
codes which have shorted length but similar security.

2. Increasing the capacity of the scheme by using an er-
ror correcting code instead of the currently used repet-
itive correcting code/ majority-voting: In the existing
scheme, each watermark bit is embedded in multiple
paragraphs making it a repititive code that reduces the
watermark-carrying capacity of a document. Instead,
if error-correcting codes are utilized, capacity would
significantly improve.

3. Extending the scheme to multilingual documents in-
corporating the grammatical aspects of various lan-
guages: In the current implementation, only English
documents are watermarked. Watermarking other doc-
uments would required analysis of grammer rules of
that language. This is more of an implementation is-
sue than a design issue as the underlying principle is
the same.

7. ACKNOWLEDGEMENTS
We would like to thank Vijayakrishnan Pasupathinathan,

Robert Dale, Krystian Matusiewicz and Christophe Tartary
for their valuable contributions towards this research.

��� ���

Table 5: Number of bit changes in document with increase in watermark size
Watermark Size Bit Changes

(in bits) document 1 document 2 document 3 document 4 document 5

320 1802 1762 1431 1269 1280
400 1903 1895 1507 1436 1334
480 2003 2037 1589 1522 1438
560 2182 2121 1657 1631 1526
640 2301 2266 1717 1726 1604

Table 6: Number of words added to document with increase in watermark size
Watermark Size Words Added

(in bits) document 1 document 2 document 3 document 4 document 5

320 -8 8 0 1 -14
400 -11 2 -4 -16 -12
480 -15 -5 -17 -1 -19
560 -14 -5 -20 -10 -26
640 -11 -7 -24 17 -14

The second author is supported by Australian Research
Council grants DP0345366 and DF0451484.

8. REFERENCES
[1] M. Atallah, V. Raskin, M. Crogan, C. Hempelmann,

F. Kerschbaum, D. Mohamed, and S. Naik. Natural
language watermarking: design, analysis, and a
proof-of-concept implementation. In Proc. of 4th
International Workshop on Information Hiding, IH
2001. LNCS, volume 2137, pages 185–199.
Springer-Verlag, Heidelberg, 2001.

[2] P. Bassia and I. Pitas. Robust audio watermarking in
the time domain. In 9th European Signal Processing
Conference (EUSIPCO’98), pages 25–28, Island of
Rhodes, Greece, 8–11 1998.

[3] D. Boneh and J. Shaw. Collusion-secure fingerprinting
for digital data. Lecture Notes in Computer Science,
963:452 – 465, 1995.

[4] L. Boney, A. H. Tewfik, and K. N. Hamdy. Digital
watermarks for audio signals. In International
Conference on Multimedia Computing and Systems,
pages 473–480, 1996.

[5] J. Brassil, S. Low, N. Maxemchuk, and L. O’Gorman.
Marking text features of document images to deter
illicit dissemination. In Proc. of the 12th IAPR
International Conference on Computer Vision and
Image Processing, volume 2, pages 315 – 319,
Jerusalem, Israel, October 1994.

[6] J. Brassil, S. Low, N. F. Maxemchuk, and
L. O’Gorman. Hiding information in documents
images. In Conference on Information Sciences and
Systems (CISS-95), 1995.

[7] N. Chotikakamthorn. Electronic document data hiding
technique using inter-character space. In Proc. of The
1998 IEEE Asia-Pacific Conference on Circuits and
Systems, IEEE APCCAS 1998, pages 419–422,
Chiangmai, Thailand, November 1998.

[8] N. Chotikakamthorn. Document image data hiding
technique using character spacing width sequence
coding. In Proc. of International Conference on Image

Processing, ICIP 1999, volume 2, pages 250–254,
Kobe, Japan, October 1999.

[9] I. Cox, J. Kilian, T. Leighton, and T. Shamoon.
Secure spread spectrum watermarking for multimedia.
Technical Report 128, NEC Research Institute,
August 1995.

[10] F. Hartung and B. Girod. Digital watermarking of raw
and compressed video. In Proc. European EOS/SPIE
Symposium on Advanced Imaging and Network
Technologies, Berlin, Germany, October 1996.

[11] H. Ji, J. Sook, and H. Young. A new digital
watermarking for text document images using
diagonal profile. In Proc. of Second IEEE Pacific Rim
Conference on Multimedia, PCM 2001. LNCS, volume
2195, pages 748 –, Beijing, China, October 2001.
Springer-Verlag, Heidelberg.

[12] M. S. Kankanhalli and K. F. Hau. Watermarking of
electronic text documents. Electronic Commerce
Research, 2(1-2):169–187, 2002.

[13] S. Low, N. Maxemchuk, J. Brassil, and L. O’Gorman.
Document marking and identification using both line
and word shifting. In Fourteenth Annual Joint
Conference of the IEEE Computer and
Communications Societies. Bringing Information to
People, INFOCOM 1995, volume 2, pages 853–860,
Boston, USA, April 1995.

[14] N. Maxemchuk and S. Low. Marking text documents.
In Proc. of International Conference on Image
Processing, page 13, Washington, USA, 26-29 October
1997.

[15] M. Monsignori, P. Nesi, and M. Spinu. Watermarking
music sheets. In Proc. of Second IEEE Pacific Rim
Conference on Multimedia, PCM 2001. LNCS, volume
2195, pages 646–653, Bejing, China, 2001.

[16] T.-S. K. K.-R. K. Seung-Jin Kim, Suk-Hwan Lee and
K.-I. Lee. A video watermarking using the 3-d wavelet
transform and two perceptual watermarks. In Proc. of
Fourth International Workshop on Digital
Watermarking, IWDW 2002. LNCS, volume 3304,
pages 294 – 303, Seoul, Korea, October 2004.

��� ���

Springer-Verlag, Heidelberg.

[17] R. Sion, M. Atallah, and S. Prabhakar. On
watermarking numeric sets. In Proc. of First
International Workshop on Digital Watermarking,
IWDW 2002. LNCS, volume 2163, pages 130–146,
Seoul, Korea, November 2002. Springer-Verlag,
Heidelberg.

[18] I.-S. O. Young-Won Kim, Kyung-Ae Moon. A text
watermarking algorithm based on word classification
and inter-word space statistics. In Conference on
Document Analysis and Recognition (ICDAR03), 1995.

[19] W.-T. H. Yuei-Lin Chiang, Lu-Ping Chang and W.-C.
Chen. Natural language watermarking using semantic
substitution for chinese text. In Proc. of Second
International Workshop on Digital Watermarking,
IWDW 2002. LNCS, volume 2939, pages 129–140,
Seoul, Korea, October 2003. Springer-Verlag,
Heidelberg.

