
Extending Logical Attack Graphs for
Efficient Vulnerability Analysis

Diptikalyan Saha
Motorola India Research Lab

Bangalore, India
diptikalyan@motorola.com

ABSTRACT
Attack graph illustrates all possible multi-stage, multi-host attacks
in an enterprise network and is essential for vulnerability analysis
tools. Recently, researchers have addressed the problem of scal-
able generation of attack graph by logical formulation of vulnera-
bility analysis in an existing framework called MulVAL. In this pa-
per, we take a step further to make attack graph-based vulnerability
analysis useful and practical for real networks. Firstly, we extend
the MulVAL framework to include more complex security policies
existing in advanced operating systems. Secondly, we present an
expressive view of the attack graph by including negation in the
logical characterization, and we present an algorithm to generate it.
Finally, we present an incremental algorithm which efficiently re-
computes the attack graph in response to the changes in the inputs
of the vulnerability analysis framework. This is particularly useful
for mutation or “what-if” analysis, where network administrators
want to view the effect of network or host parameter changes to the
attack graph before pushing the changes on the network. Prelimi-
nary experiments demonstrate the effectiveness of our algorithms.

Categories and Subject Descriptors
C.2.0 [General]: Security and Protection; D.1 [Programming Tech-
niques]: Logic Programming

General Terms
Security, Management

Keywords
Attack Graphs, Incremental Analysis, Logic Programming

1. INTRODUCTION
Attack graph represents all possible ways to achieve multi-host,

multi-stage attack in a network. Typically, this is useful for enter-
prise networks where the network administrators want to know the
security risks that can result due to the vulnerabilities present in the
hosts. Scanning of each host can produce the vulnerabilities present
in the network. However, patching or removing all vulnerable soft-
ware is not always feasible for network administrators, and is not
enough to remove the effects of combining multiple vulnerabilities.
Thus, it is important to design automatic tools that can generate all
possible ways to exploit the network and different ways of counter
possibility of such attacks. For the last decade, a lot of research has

Copyright 2008 Motorola, Co., Inc.
CCS’08, October 27–31, 2008, Alexandria, Virginia, USA.
ACM 978-1-59593-810-7/08/10.

been done in generation and analysis of attack graphs ([10]). The
main goal here are scalable generation, visualization, and analysis
of attack graphs, and use of attack graphs for security flaw detec-
tion.

Inspite of the vast research in the area of attack graph generation
and analysis, there has been a lack of evidence of end-to-end frame-
works and formal approaches for vulnerability analysis. Recently,
Ou et. al [16] presented a scalable end-to-end framework called
MulVAL for vulnerability analysis using a logic-based approach.
The use of logical framework makes the implementation less er-
ror prone. The logical semantics also facilitates other analysis on
attack graphs.

The primary focus of previous research of attack graph had been
to develop scalable algorithms for generation of concise yet useful
view of all possible multi-state, multi-host attacks. Initially, re-
searchers had focused on generating full attack graph which is ex-
ponential in size to the number of configuration parameters, where
each state represents boolean combination of all the configurations.
The work by Sheyner et. al. [29] uses formal verification tech-
niques to generate such attack graphs. Later solutions [5] focused
on different representations of attack graphs, which is based on the
assumption of monotonicity in attacker’s behavior. Various other
kinds of attack graphs are proposed for analyzing network secu-
rity [14, 15, 13, 37] based on abstraction. Recent work has intro-
duced logical attack graph ([18]) by extending the logical frame-
work of [16] which represents “why the attack can happen”, instead
of Sheyner’s representation which essentially represents “how an
attack can happen”. The causality relation between system configu-
ration information and an attacker’s potential privileges is captured
in the logical attack graph.

Logical attack graphs and previous solutions seem to be adequate
for one-time generation of attack graphs. In practice, the network
and host configurations of an enterprise-wide network change very
frequently, as current networks are more dynamic in nature. The
current solutions seem to be inadequate for the following require-
ments:

• How to efficiently re-generate attack graphs in view of chang-
ing network/host parameters.

• How the attack graph analysis information changes in re-
sponse to changes in the network/host parameters.

• How to efficiently perform mutation analysis on attack graphs
which show the effect of changing network/host parameters,
without actually changing those in real network/host.

Our Contributions. The current MulVAL framework lacks in as-
sociating complex security policies existing in advanced operating
systems with that of vulnerability analysis. In this paper, we try

63

to bridge the gap by extending the rules of MulVAL to include the
rules for security policies of advanced operating systems such as
Windows XP R©and SELinuxTM. This helps administrators to iden-
tify access control vulnerabilities in the system.

Moreover, logical attack graph cannot provide proper causal-
ity reasoning when rules describing the causality relation contain
negation. For instance, if a privilege of an attacker negatively de-
pends on another privilege of the attacker, logical attack graph can
represent that the first privilege is attainable by the attacker as sec-
ond privilege cannot be attained. However, it cannot give any rea-
son as to why the second privilege cannot be attained.

As a practical example of such a scenario, we consider buffer
overflow attack. Buffer overflow attack typically results in termi-
nation of the attacked service, thereby, preventing other use of such
a service. Let an attack (say A) is dependent on running of that ser-
vice (say S). The scenario is represented using the following rules:
(i) A is feasible if service S is not terminated, (ii) the service S is
terminated if buffer overflow attack is possible on the service, and
(iii) additional rules describing why buffer overflow attack can be
possible on a service. Logical attack graph represents the above
case by showing that the attack A is possible if the service S is
not terminated. However, it cannot explain the non-termination of
service S.

The above problem is also evident when MulVAL rules are aug-
mented with security policies of advanced operating systems which
contain negation in rules. We address this problem in this paper,
by presenting a novel algorithm to generate logical attack graphs
which includes causal reasoning for negatively dependent derived
predicates in rules.

Finally, we address the problem of maintaining attack graph in
response to the changes in the inputs of vulnerability analysis frame-
work. One way to approach the above problems is to discard the
attack graph or analysis result and recompute the attack graph from
scratch, followed by the analysis on the new data. The above pro-
cess is known as from-scratch evaluation technique. In contrast,
we take an incremental approach where attack graphs are incre-
mentally maintained in response to the changes in the input param-
eters. The main aim of incremental computation is to compute the
changes to the result to update the attach graph. Our main goal is
to implement mutation analysis on attack graph in which the ad-
ministrator can view the effect of changing the network/host con-
figuration on attack graphs without actually making changes in the
network. This analysis is extremely helpful for answering “what
if” questions of the administrators.

The rest of the paper is organized as follows. The deductive
framework of vulnerability analysis is presented in Section 2. Based
on the framework, the attack graph is generated using an online
technique. The attack graph generation algorithm along with its
difference from MulVAL’s algorithm is presented in Section 3. The
incremental algorithm to maintain results of logical deduction is
presented in Section 4. The effectiveness of incremental algorithm
is demonstrated in Section 5. The relation between our work and
other works in the areas of incremental computation and vulnera-
bility analysis is described in Section 6. We conclude in Section 7
with future work.

2. DEDUCTIVE FORMULATION OF VUL-
NERABILITY ANALYSIS

Our work is based on the deductive framework called MulVAL[16],
an end-to-end framework and reasoning system that conducts multi-
host, multistage vulnerability analysis on a network. MulVAL uses
logic programs as the modeling language for the elements in the

Figure 1: Example Network

analysis. A logic program ([11]) is a sequence of facts and rules. A
fact has the form “r(args)”. A rule is of the form

r(args) : −r1(args1), . . . , rn(argsn)

and corresponds to a logical implications r1(args1)∧. . . rn(argsn) ⇒
r(args). Arguments may contain variables which must start with
upper case letters, and literals which start with lower-case letters.
The right hand side of “:-” sign (which can be read as ’if’) is called
the body and the left hand side is called the head. The body con-
sists of one relation or conjunction of one or more relations or
negation of relations. Each relation in the body is also called sub-
goal. Various elements of MulVAL modeling like network and
host configuration, vulnerability specification, exploit rules, and
privilege model are described using the following example taken
from [16]. Note that it is possible to leverage existing vulnerabil-
ity database and scanning tools by expressing their output in Data-
log [35]. Moreover, we augment MulVAL models using more com-
prehensive security policy language, discussed later.

Illustrative Example. The topology of an example network (taken
from [16]) is given in Figure 1. The host access control list along
with other facts are specified in Figure 2.

These facts are resolved against a set of MulVAL rules when
a query is asked to the Prolog engine. Each rule pertains to a
clause of a derived predicate. The top level query is made to
policyViolation(Adversary,Access,Resource), which is resolved
against the following rule:

policyViolation(P,Access,Data):-
access(P,Access,Data), % Rule
not allow(P,Access,Data). % Fact

access(P,Access,Data):-
dataBind(Data, H, Path), % Fact
accessFile(P,H,Access,Path). % Rule

The top-down query evaluation generates a query (also called
subgoal or call) access(Adversary,Access,Resource), which in turn
is resolved against the clauses for the predicate access/3 (Predi-
cate/Arity). In XSB, predicates can be marked either as tabled or
non-tabled. In our encoding of MulVAL, all derived predicates are
marked tabled. A call to a tabled predicate is stored in a table called
call table.

At a high level, top-down tabled evaluation [33] of logic pro-
grams is performed by recording subgoal (referred to as calls) and
their provable instances (referred to as answers) in a table. Clause

64

hacl(internet, webserver, tcp, 80).
hacl(webserver, fileserver, rpc,100003).
hacl(webserver, fileserver, rpc, 100005).
hacl(fileserver,_AnyHost, _AnyProtocol, _AnyPort).
hacl(workstation, _AnyHost,_AnyProtocol, _AnyPort).
hacl(H, H, _AnyProtocol, _AnyPort).

hasAccount(emp, workstation, emplAccount).
hasAccount(sysAdmin, webserver, root).
hasAccount(sysAdmin, fileserver, root).
hasAccount(sysAdmin, workstation, root).

located(attacker, internet).
malicious(attacker).

networkSvcInfo(fileserver, mountd, rpc, 100005, root).
networkSvcInfo(webserver, httpd, tcp , 80 , apache).
nfsExportInfo(fileserver, ’export’, read, workstation).
nfsExportInfo(fileserver, ’export’, write, workstation).
nfsExportInfo(fileserver, ’export’, read, webserver).
nfsExportInfo(fileserver, ’export’, write, webserver).

nfsMounted(webserver, ’share’, fileserver, ’export’, read).
nfsMounted(webserver, ’share’, fileserver, ’export’, write).
nfsMounted(workstation, ’share’, fileserver, ’export’, read).
nfsMounted(workstation, ’share’, fileserver, ’export’, write).

fileAccessInfo(_,root,read,_).
fileAccessInfo(_,root,write,_).

allow(Anyone,read,webPages).
allow(user,AnyAccess,projectPlan).
allow(sysAdmin,AnyAccess,Data).

vulExists(fileserver, cve20030252, mountd).
vulExists(webserver, cve20020392, httpd).

vulProperty(cve20030252, remoteExploit, privEsc).
vulProperty(cve20020392, remoteExploit, privEsc).

dataBind(webpages, fileserver, ’export’).
dataBind(projectPlan, workstation, ’home’).

Figure 2: Example facts

resolution, which is the basic mechanism for program evaluation,
proceeds as follows. For non-tabled predicates, the subgoal is re-
solved against program clauses. For tabled predicates, if the sub-
goal or its variant1 is already present in the table, it is resolved
against the answers present in the table for that call; otherwise, the
subgoal is entered into the table and its answers, computed by re-
solving the subgoal against the program clause, are also entered
into the table.

The resolution of the call to access/3
predicate (shown above) generates the call
accessFile(Adversary,fileserver,Access,’export’) after resolv-
ing with the fact dataBind(webpages,fileserver,’export’). The call
to accessFile/4 predicate is then resolved against the following
rules:

/* Principal P can access files on a NFS server if the files on the server are
mounted at a client and he can access the files on the client side */

accessFile(P,Svr,Access,SvrPath) :-
nfsMounted(Cl,ClPath,Svr,SvrPath,Access),
accessFile(P,Cl,Access,ClPath).

/* NFS shell */
accessFile(P,Server,Access,Path):-

execCode(P,Client,root),
nfsExportInfo(Server,Path,Access,Client),
hacl(Client,Server,rpc,100003).

/* Principal P can access files on a NFS client if the files on the server are
mounted at the client and he can access the files on the server side */

accessFile(P, Cl, Access, ClPath) :-
nfsMounted(Cl, ClPath, Svr, SvrPath, read),
accessFile(P, Svr, Access, SvrPath).

The entire resolution is process is not shown here. However,
the tabled evaluation generates three answers to the call to
policyViolation/3 viz. policyViolation(attacker,read,projectPlan),
policyViolation(attacker,write,projectPlan), and
policyViolation(attacker,write,webPages). Tabled evaluation
memoizes these calls and their answers. The primary advantage
is that the tabled evaluation does not loop (as in ordinary Prolog
evaluation) for most of logic programs including Datalog [35].

In the context of vulnerability analysis, memoization facilitates
use of existing answers in the table when administrator issues an-

1Two terms are variant to each other if one can be converted to
other by renaming its variables.

other query. Thus, subsequent queries can be evaluated quickly.
Moreover, tabled evaluation is demand-driven [24], which means
the analysis only uses the facts that are needed to answer the query
of the administrator.

Extended Security Policies. The security policies in MulVAL
is modeled using the fact predicate allow/3. Each policy is repre-
sented as a fact of the form allow(Principal,Permission,Resource).
For example, allow(user,read,projectPlan) means that user can
read the projectPlan.

However, most modern access control model derives the allow/3
predicate based on other constraints. The two most familiar
access control models are Discretionary Access Control (DAC)
and Mandatory Access Control (MAC). Windows XP R©uses DAC
whereas, SELinuxTM [4] uses MAC. Thus we extend the security
policies of MulVAL to handle security policies of advanced op-
erating systems. Based on these policies, we make allow/3 as a
derived predicate. We also include several rules for vulnerabili-
ties caused by the inconsistent access control rules such as giving
write-permission by a non-admin user to a resource which is also
executed by the admin user. The main advantage of including host
access control policies is to make MulVAL rules take into consid-
eration of access control based vulnerabilities along with software
vulnerabilities. This helps network administrator to fix access con-
trol vulnerabilities too.

Our encoding of security policies are motivated from [12, 28, 7,
30]. [12] provides rules for Windows XP R©security policies and is
shown in Figure 3. Due to space limitations we do not discuss the
details of the security policies, instead we refer the readers to [12].

Note that our logical encoding of rules uses negation in the rules.
We make sure that the negation used in our rules are safe, and calls
to negated subgoal should be totally ground i.e. does not have any
un-instantiated variable. Moreover, our encoding ensures use of
only stratified negation. A logic program with negation is called
stratified if there is no cycle involving negation in the predicate de-
pendency graph. In other words, the entire program can be divided
into multiple strata of definite (no negation) logic programs, and
negation is allowed only at juncture of different strata.

3. ATTACK GRAPH GENERATION
In the example presented in the last section, an attacker can first

get access to the webserver by exploiting the remote-exploit vulner-

65

allow(Principal,read,Resource):-
get_sid(Principal,Sid),
read(Sid,Resource).

allow(Principal,write,Resource):-
get_sid(Principal,Sid),
write(Sid,Resource).

allow(Principal,execute,Resource):-
get_sid(Principal,Sid),
execute(Sid,Resource).

read(Sid,RSRC) :-
processTokenuser(Token,Sid),
accesscheck(Token,RSRC,r).

write(Sid,RSRC) :-
processTokenuser(Token,Sid),
accesscheck(Token,RSRC,w).

execute(Sid,RSRC) :-
processTokenuser(Token,Sid),
accesscheck(Token,RSRC,e).

accesscheck(Token,RSRC,T) :-
nulldacl(RSRC),
accesstype(T).

accesscheck(Token,RSRC,T) :-
firstpass(Token,RSRC,T),
secondpass(Token,RSRC,T).

allowace(Token,RSRC,T,I):-
ace(RSRC,I,allow,Sid,T),
hasenabledSid(Token,Sid).

denyace(Token,RSRC,T,I) :-
ace(RSRC,I,deny,Sid,T),
hasenabledSid(Token,Sid).

denyace(Token,RSRC,T,I) :-
ace(RSRC,I,deny,Sid,T),
hasdenyonlySid(Token,Sid).

denyace(Token,RSRC,T,I) :-
denyace(Token,RSRC,T,D),
numaces(RSRC,NUM), I is D+1, I < NUM.

firstpass(Token,RSRC,T) :-
allowace(Token,RSRC,T,I),
not denyace(Token,RSRC,T,I).

secondpass(Token,RSRC,T) :-
norestrSids(Token),
firstpass(Token,RSRC,T).

secondpass(Token,RSRC,T) :-
restrallowace(Token,RSRC,T,I),
not restrdenyace(Token,RSRC,T,I).

sestrallowace(Token,RSRC,T,I) :-
ace(RSRC,I,allow,Sid,T),
hasrestrSid(Token,Sid).

sestrdenyace(Token,RSRC,T,I) :-
ace(RSRC,I,deny,Sid,T),
hasrestrSid(Token,Sid).

sestrdenyace(Token,RSRC,T,I) :-
restrdenyace(Token,RSRC,T,D),
numaces(RSRC,NUM), I is D+1,I < NUM.

Figure 3: Netra’s [13] encoding of Windows XP R©security policies

ability (cve20020392) present in httpd running in the webserver.
The attacker can run code in the webserver with apache permis-
sion. The attacker can now write to the fileserver’s export directory
using NFS protocol. Attacker can also exploit the vulnerability
cve2030252 in mountd in the fileserver to get root access in file-
server, and subsequently can write to the fileserver. Attacker can
write to the webpages as webpages are bind to the fileserver’s ex-
port directory. As workstation’s share directory is mounted at file-
server’s export directory, attacker can write to workstation’s share
directory. Now attacker can install a trojan horse to get the root
permission and subsequently read and write permission to work-
station’s home directory which is bound to the projectPlan. Thus
a query to policyViolation/3 will return that the attacker can write
and read to the projectPlan, and write to the webpages, though they
were not allowed by the security policies defined by allow/3 predi-
cate.

The aim of attack graph is to visually represent the above sce-
nario. Each node of logical attack graph of MulVAL corresponds
to a logical statement. The nodes do not represent the entire state
of the network (as in Sheyner’s attack graph), but each node repre-
sents one boolean variable which is logical conclusion of the facts
given. The edge relation in logical attack graph represents causal-
ity relation between system configurations and attackers potential
privileges. In this paper we follow the characterization of logical
attack graph but remove its drawback to properly represent ’the
reason of attack’ in presence of negation in the logical encoding of
vulnerability analysis.

Logical attack graph in [18] is generated in two steps. Firstly,
each MulVAL rule is modified to add a last subgoal in the body,
which asserts the reason for which the rule is satisfied. One
instance of such transformation is presented below:

networkSvcInfo(webserver,httpd,tcp,80,apache)

vulExists(webserver,cve20020392,httpd,removeExploit,privEsc)

netAccess(attacker,webserver,tcp,80)

execCode(attacker,webserver,apache)

Figure 4: One Step of Logical Attack Graph

/* remote exploit of a server program */
execCode(Attacker, H, Perm) :-

malicious(Attacker),
vulExists(H, _, Software, remoteExploit, privEsc),
networkSvcInfo(H, Software, Protocol, Port, Perm),
netAccess(Attacker, H, Protocol, Port).

execCode(Attacker, H, Perm) :-
malicious(Attacker),
vulExists(H, VulID, Software, remoteExploit, privEsc),
networkSvcInfo(H, Software, Protocol, Port, Perm),
netAccess(Attacker, H, Protocol, Port),
assert(because(
’remote exploit of a server program’,
[networkService(Host,Program,Protocol,Port,User),
vulExists(H, VulID, Software, remoteExploit, privEsc),
netAccess(Attacker,H,Protocol,Port)])).

Once the transformed rule is executed and satisfied, the last sub-
goal asserts the provable instance of all the subgoals present in the
body. Each such assert produces a part of the attack graph shown
in Figure 4. In the second step, after evaluation of the query, the
entire logical attack graph is built by composing these parts.

Note that the disadvantage of the above approach is that the
assert-subgoal is executed if all the other subgoals in the body are
satisfied. However, consider the below rule along with the rules in
Figure 3.

/* remote exploit of a server program */
policyViolation(P,Access,Data):-

access(P,Access,Data), % Rule
not allow(P,Access,Data). % Fact
assert(because(

’policy violation’,
[policyViolation(P,Access,Data),
not allow(P,Access,Data)])).

If a call to allow/3 predicate fails, only then its parent call of
predicate policyViolation/3 is true. Moreover, an allow/3 failed
clause will not execute the assert subgoal occurring at the last sub-
goal in its body. Thus logical attack graph fails to provide informa-
tion on why the allow/3 predicate has failed. Showing only that the
call to allow/3 fails and not showing why it failed gives incomplete
information to the administrator, as the administrator can take ac-
tion on its security policies to allow some of the overly constrained
security policies.

Our Approach. A call to a subgoal fails if all rules whose head
subgoal matches (unifies) with the call fail. Each such rule fails
if one of its body subgoal fails. For instance, consider a call to
allow(attacker,write,webpages), which fails when it matches the
second rule of allow/3, and the call to write(attacker_sid,webpages)
fails. The failed resolution procedure is shown in Figure 5.

In our approach, the dependency between failed head subgoal
call and the failed body subgoal call is captured and shown in the

66

allow(attacker,write,webpages)
get_sid(attacker,attacker_sid)
write(attacker_sid,webpages)

processTokenUser(token,attacker_sid)
accessCheck(token,webpages,w)

nulldacl(webpages)
accesstype(w)

accesscheck(token,webpages,w)
firstpass(token,webpages,w)

allowace(token,webpages,w)
ace(token,webpages,w)

[f]

[f]

[f]

[f]

[f]
[f]

[f]
[f]

[t]

[t]

[t]

*t=true answer
f=failed call

Figure 5: Failed Resolution

not_allow(attacker,write,webPages)
access(attacker,write,webPages)

policyViolation(attacker,write,webPages)

allow(attacker,write,webPages)

Figure 6: Attack Graph part

attack graph, i.e. in attack graph, we only show the dependencies
between the failed calls [f] as shown by the arrows in Figure 5.

Note that the assert subgoal when executed creates the depen-
dencies between provable instances of each subgoal in the body of
a rule with that of provable instance of the head subgoal. In other
words, it captures the dependency between the answers.

The XSB engine is changed such that the dependency between
answers and dependency between calls are created at the time of
query processing. No extra assert statements are required to create
steps of logical conclusion. Moreover, the second step of logical
attack graph creation is not needed as the entire data structure is
built at the time of query evaluation. We now formally define our
logical attack graph.

DEFINITION 1 (LOGICAL ATTACK GRAPH). A graph G =
(V × E) is a logical attack graph where,

• V ⊆ Ns ∪ Na ∪ Nc ∪ Nf where Ns, Na, Nc, and Nf

are called support nodes, answer nodes, call nodes, and fact
nodes respectively.

• E = Esupports ∪ Euses_of ∪ Eneg ∪ Ecall where
Esupports ⊆ (Ns × Na), Euses_of ⊆ ((Na ∪ Nf) × Ns),
Eneg ⊆ (Nc × Na), and Ecall ⊆ (Nc × Nc).

The nodes Na and Nc denote the set of answers (provable in-
stances of a call to derived predicates) nodes and call nodes 2, re-
spectively. Each answer node is created because of satisfiable sub-
stitution of atleast one clause defining the derived predicate. For
each such satisfiable substitution of the body of the clause a support
node is created which constitutes the set Ns along with Esupports

and Euses_of edges. The dependency edges between answers and
supports constitute the answer dependency graph or support graph.

We also maintain the call dependency structure where
dependency edge exists between a call corresponding to
head predicate of a clause and a call generated in the
2Hereafter we do not distinguish between answer and answer
nodes. Although in the context of logical deduction answer is
appropriate and in the context of attack graph answer node is
appropriate.

clause body. In our example, a call dependency exists
between policyViolation(Adversary,Access,Resource) and
access(Adversary,Access,Resource). However, this dependency is
not exposed as a part of attack graph. Our logical attack graph
exposes call dependency that is rooted at the negated subgoals as
shown in Figure 5.

We use a simple program transformation in XSB compiler such
that each clause does not have a mix of positive and negated sub-
goals. Below is an example where not_allow/3 is the newly intro-
duced tabled predicate.

policyViolation(P,Access,Data):-
access(P,Access,Data),
not allow(P,Access,Data).

⇒
policyViolation(P,Access,Data):-

access(P,Access,Data),
not_allow(P,Access,Data).

:- table not_allow/3.
not_allow(P,Access,Data):-

tnot(allow(P,Access,Data)).

The transformation results in an attack graph which separates the
answer dependency edges and call dependency edges by a Eneg

edge, as shown in Figure 6 using unfilled arrow. The part of the at-
tack graph below allow(attacker,write,webPages) is already shown
in Figure 5.

The main motivation of extending logical attack graph of Mul-
VAL is to provide precise information to the network administrator
on why a subgoal is failed. Consider the following vulnerability
due to access control rules along with the rules in Figure 3:

% Principal P gets root access to Host
% if P can write to a resource RSRC in Host
% which is executed by root
execCode(P,Host,root):- installed(H,RSRC),

allow(P,write,RSRC),
allow(root,execute,RSRC).

The user P can write to the resource RSRC if in the call to
firstpass/3, the call to denyace/4 fails. Logical attack graph
of MulVAL can only provide the information that the call to
denyace/4 fails. However, in this paper, logical attack graph can
precisely inform that the call to denyace/4 has failed whether due
to absence of deny access control entry (ACE) in access control list
(ACL), or allow ACE comes before deny ACE in ACL. This helps
administrator to take appropriate action. Note that our algorithm
for generation of attack graph also provides the administrators a
way to query to know why an attack is not possible in the network.

Acyclic Attack Graph. The attack graph defined above is not
acyclic, as the deduction process itself can have cycles. Consider
the following rules:

% root subsumes other privileges
execCode(P, Host, Perm) :-

execCode(P, Host, root).
%% Trojan horse installation
execCode(Attacker, H, root) :-

accessFile(Attacker, H, write, _Path).
%% Permission
accessFile(P, H, Access, Path) :-

execCode(P, H, Usr),
fileAccessInfo(H, Usr, Access, Path).

In this example, the call execCode(p1,h1,root) will create a
loop which will indicate that execCode(p1,hi,root) is true because
execCode(p1,hi,root) is true. We use the notion of derivation length
of answers to remove cycles in attack graph. The derivation length
(dl) of different nodes is defined below:
answer.dl = {support.dl| support is the first support of answer}
support.dl = max{ans.dl | (ans, support) ∈ Euses_of} + 1
fact.dl = 0

67

Based on the above definition, we can deem a support s of an
answer a as acyclic if s.dl ≤ a.dl. Note that any support of an
answer which is cyclically dependent on the answer itself will defi-
nitely have derivation length more than answer’s derivation length.
Using this definition, we can identify the acyclic supports during
the query processing. No extra pass is required to identify such
supports. However, it is possible that there are supports which have
higher derivation length than their supported answer, and still do
not cyclically dependent on their supported answer. Due to the
above reason, our visual display using uDrawGraph of attack graph
shows only the acyclic supports and makes non-acyclic supports
hidden (using “hidden” node attribute in uDrawGraph graph for-
mat), which can be seen by selecting the answer node and using
appropriate menu option.

4. INCREMENTAL ALGORITHM
In this section, we describe a novel incremental algorithm to

maintain attack graph in response to the changes in the different
inputs to the vulnerability analysis framework. Changes in the in-
put to our framework can be modeled as insertion and deletion of
the facts and rules corresponding to the inputs. Any update to the
input can be modeled as the deletion of the old facts/rules followed
by the insertion of the new facts/rules. Note that tabled evaluation
in XSB keeps all the calls and answers generated via the query, and
in our instrumented XSB we keep dependencies between calls and
answers while evaluating a query, and we have shown in Section 3
that an attack graph is a part of dependencies between calls and
answers. Thus, the problem of maintaining attack graph amounts
to maintaining the tabled calls and answers and their dependencies
in response to insertion and deletion of facts and rules. In this pa-
per, we only describe the incremental algorithm which responds to
changes in facts, though our implementation handles both changes
in facts and rules.

A non-incremental strategy can incorporate any changes in the
rules and facts by abolishing all memoized calls, answers, and var-
ious dependency structures, and re-issuing the same query which
will again generate all information with respect to changed facts
and rules. However, such re-computation is often wasteful as typi-
cally in network the changes occur are small which typically results
in small changes to the already computed information. Therefore,
the entire memoized information and dependency structure need
not be recomputed. The aim of our incremental algorithm is to
identify the parts of the existing computed information that need
to be changed, and recompute them. Most incremental algorithms
overapproximate the information that needs to be changed, and thus
the efficiency of the incremental computation depends on confining
this overapproximation.

Algorithm. Our algorithm has two phases: (i) In the first phase
(called invalidation phase) it identifies some of the existing calls
as affected by marking them with the nature of possible effect.
These calls are potential candidates for re-evaluation. (ii) The sec-
ond phase (called re-evaluation phase) re-evaluates (a subset of) the
affected calls and propagates the effect of such re-evaluation.

Invalidation Phase. XSB’s tabled evaluation memoizes each
call and their provable instances (called answers) in answer table
associated with each call. The net effect of addition and deletion of
some facts and rules is addition and deletion of some answers. The
aim of the invalidation phase is to identify the calls whose answers
can be potentially deleted, or new answers can be potentially added
to them. These calls are potential candidates for re-evaluation in
the second phase. Note that not all calls need not be re-evaluated,
as only some calls can be actually affected because of insertion and
deletion of answers. Invalidation algorithm, presented in the Fig-

1invalidate (Call , Type)
2 if Type==INS
3 Call . falsecount++
4 oldtype=Call . type
5 Call . type=compose (oldtype ,TYPE)
6 if (oldtype!=Call .type)
7 propagate_invalid (Call , TYPE)
8
9propagate_invalid (C ,TYPE)

10 enque (affectedq , C)
11 if (C is neg_call)
12 if (C has an answer and TYPE=DEL)
13 or
14 (C has no answer and TYPE=INS)
15 check_and_propagate (C , TYPE)
16 for C ’ = C .outedge .negative
17 if TYPE !=DEL
18 C ’ . falsecount++;
19 oldtype = C ’ . type ;
20 C ’ . type = compose (oldtype , ! TYPE)
21 if (oldtype != C ’ . type)
22 propagate_invalid (C ’ , !TYPE)
23 else
24 if C is a not call
25 if (C has an answer and TYPE=DEL)
26 or
27 (C has no answer and TYPE=INS)
28 check_and_propagate (C , TYPE)
29 else
30 check_and_propagate (C ,TYPE)
31
32check_and_propagate (C , TYPE)
33 for all C ’ in C .outedge .positive
34 if type=INS
35 C ’ . falsecount++
36 oldtype = C ’ . type ;
37 C ’ . type = compose (oldtype ,TYPE)
38 if (oldtype != C ’ . type)
39 propagate_invalid (C ’ ,TYPE)
40 /∗ comments :
41 ! (INS)=DEL ; ! (DEL)=INS
42 compose (NO ,X)=X , compose (INS , DEL)=BOTH ,
43 compose (DEL , INS)=BOTH , compose (BOTH , X)= BOTH
44 ∗ /

Figure 7: Invalidation Algorithm

dataBind(Data,H,Path)
accessFile(P,fileserver,Access,’export’)

accessFile(P,workstation,Access,’home’)
.....................

...............

policyViolation(P,Access,Data)

access(P,Access,Data)

outedge.positive not_allow(atatcker,read,projectPlan)

outedge.negative

allow(atacker,read,projectPlan)

Figure 8: Example Call Dependency

ure 7 identifies an overapproximate of such calls along with its type
of effect which can take four values {DEL, INS, BOTH, NO} based
on whether it is possible to only delete, only insert, both insert and
delete, or no changes of their answers, respectively. The algorithm
explores the dependencies between calls to know which calls can
be affected. The direct call dependencies are captured using two
sets call.outedge.positive and call.outedge.negative.

Consider the partial (the call dependencies from accessFile/4 and
call to other not_allow calls are not shown in the Figure) call de-
pendencies shown in the Figure 8 corresponding to the transformed
policyViolation/3 predicate. The normal arrows represent the posi-

68

tive call dependencies, and the dotted arrow represents the negative
call dependency which signifies presence of negated subgoal. In
this case, the call to not_allow/3 is called not call, and the call
which has atleast one negative outgoing edge is called neg call, in
this case the call allow(attacker,read,projectPlan).

The invalidation phase propagates the invalidation type from a
call to its successor calls in the call dependency graph following the
positive call and negative call dependencies. Consider addition of a
new fact dataBind(docs,fileserver,‘home’). The invalidation phase
first identifies the call dataBind(Data,H,Path) and invokes the func-
tion invalidate(dataBind(Data,H,Path),INS). The function marks
the type of calls dataBind(Data,H,Path), access(P,Access,Data),
policyViolation(P,Access,Data) as INS as answers can be poten-
tially added to these calls. The algorithm also maintains a counter
with each call, called falsecount, which tracks the number of
its immediate predecessor calls that are invalidated with INS. If
re-evaluation of a call does not add any answer to the call the
falsecount of its immediate successor calls is decreased by 1. If
a falsecount of a call reaches zero it is not re-evaluated as it is not
possible to add answers to that call. For example, in this case the
addition do not add any answer to the call access(P,Access,Data)
and thus the call policyViolation(P,Access,Data) need not be not re-
evaluated. Note that invalidation phase does not update falsecount
for deletion mark propagation. This is because our algorithm finds
whether an answer to be deleted (except for not call) using depen-
dencies among answers, and not using re-evaluation of calls.

In Figure 7, the Function check_and_propagate (Lines 33-39)
propagates the INS/DEL mark to the positively supported calls.
The Function propagate_invalid checks whether a call is not or neg,
and propagates the invalidation type accordingly. An INS mark to
a neg call is propagated as DEL mark to the corresponding nega-
tively supported not call. Note that not and neg calls are grounded
and they can have atmost one answer. Thus, an INS mark is not
propagated to successors of a neg/not call if the neg/not call already
has one answer, and similar logic holds for DEL mark as shown in
the Function propagate_invalid.

Re-evaluation Phase. The aim of the re-evaluation phase is to
compute the answers deleted from and inserted into the tables. The
algorithm essentially interleaves two independent algorithms which
perform insertion and deletion of answers for definite logic pro-
grams (programs without negation). Note that both the algorithms
are discussed in [25, 26] in the context of definite logic programs.
Our contribution is to judiciously interleave those algorithms for
logic programs with stratified negation. We summarize incremental
insertion and deletion algorithms followed by our algorithm which
extends them for logic programs with stratified negation.

Incremental Insertion. Our incremental evaluation algorithm to
handle addition of facts is based on program transformation [25].
This difference-rules based technique is relatively straightforward,
and has been studied extensively in the literature (e.g. [20]). For
every relation r defined in the program, we derive a new relation,
called its delta relation (denoted by δr), which captures changes
to the relation due to the addition of facts. For every rule of the
form r :− r1, r2, . . . rn in the original program, we add rules of
the form γr :− (r1; δr1

), . . . , (ri−1; δri−1
), δri

, ri+1, . . . , rn for
each i ∈ [1, n], where δr is defined as γr − r.

Incremental Deletion. In short, deletion algorithm called DRed
has two phases. In the deletion phase (Function delete) all the
answers that can be potentially deleted are marked. This is done
by propagating the deletion mark from the deleted fact to sup-
ports containing the fact. An answer is marked deleted if all its
acyclic supports are marked deleted. The second phase known as
rederivation phase (Function rederive) unmarks all answers which

1 re−evaluation phase ()
2 / / affectedq contains the calls
3 / / whose type is changed in the first phase
4
5 DRed ()
6 re−evaluate ()
7 garbage_collect ()
8
9 DRed ()

10 delete ()
11 rederive ()
12
13 re−evaluate ()
14 while ((c=next_invalid_call ()) ! =NULL){
15 call (δc) ;
16 }
17
18 next_invalid_call ()
19 again : C=deque (affectedq)
20 if (C . TYPE!=DEL) and C . falsecount>0
21 return C
22 else
23 if (C is a neg call and C . type!=INS)
24 if still has an unmarked answer
25 propagate_valid (c . outedge . negative)
26 goto again :
27
28 propagate_valid (C)
29 for all C ’ in C . outedge . positive
30 if C ’ . falsecount>0
31 C ’ . falsecount−−
32 if (C ’ . falsecount==0)
33 propagate_valid (C ’)
34
35 answer_check_insert (Answer)
36 C=Answer .call ;
37 if (Answer ∈ answer_table (C))
38 if Answer is marked deleted
39 remove mark from Answer
40 rederive_answer (Answer)
41 if C is a neg call
42 C ’=C . outedge . negative
43 C ’ . falsecount=0;
44 propagate_valid (C ’)
45 else
46 / / new answer is inserted in C
47 if C is neg call
48 C ’=C .outedge .negative
49 mark_answer (C ’ . answer)
50 rederive ()
51
52 check_complete_insert (C)
53 if (C . type!=NO)
54 if no new answer has been inserted in C
55 propagate_valid (C)

Figure 9: Re-evaluation Algorithm

have atleast one unmarked supports and unmarks all supports if all
its constituent answers are unmarked and propagating the effect of
rederivation to answers and supports. Due to space limitations we
do not provide the code of DRed here, instead we refer the readers
to [26].

The Re-evaluation algorithm re-evaluates each affected call
which amounts to calling of its corresponding delta predicate call
and inserting answers generated in delta predicate’s table to an-
swer table of the call. The algorithm of re-evaluation phase is
shown in Figure 9. The re-evaluation is done in topological or-
der of calls in the call dependencies. A call is re-evaluated only if it
INS/BOTH marked and has the falsecount greater than zero (Lines
20-21). After each re-evaluation of each call is completed the re-
evaluation algorithm checks (Function check_complete_insert(C)
in Figure 9) whether the call has any new answer or not. In case the
re-evaluation of the call has not generated any new answer in the

69

Prolog
Runtime
Environment

Generator
Attack Graph

Attack Graph
Analyzer

Vulnerability
Database

Exploit Rules

Security Policy

Host Scanner Network Configuration

uDrawGraph

User Response

Figure 10: Framework

call, the function propagate_valid is called to nullify the effect of
invalidation phase. This is already explained while describing the
significance of falsecount attribute.

While re-evaluation of a call C (i.e. execution of call δC) if
an answer Answer of the call γC is generated, it is first checked
whether the answer already existed in the answer table of C. If
the answer is already present in the table and marked deleted,
then re-evaluation of C has found another way of deriving the an-
swer. Subsequently, the effect of its deletion is nullified by Func-
tion rederive_answer(Answer) which rederives a single answer and
propagates the effect of the rederivation to other answers. In case
C is a neg call whose deleted answer is inserted again, the effect of
potential deletion of answer in neg call, and subsequently insertion
in its not call done in the invalidation phase needs to be nullified
(Lines 40-43). In case the answer a is a new answer of a neg call
C (Lines 45-49), the corresponding answer in not call needs to be
deleted and effect of such deletion is propagated using two func-
tions mark_answer and rederive.

Rederivation phase eagerly propagates the effect of deletion of
answers before processing any calls for re-evaluation. Thus, before
re-evaluation of a neg call whose type includes DEL and which
has an answer (Lines 23–25), if the algorithm finds that its answer
is not marked deleted, then the answer is not going to be deleted.
Subsequently the effect of DEL mark in the neg call done in the
invalidation phase is nullified using a function propagate_valid(C)
which is a reverse function of Function propagate_invalid(C,TYPE)
in Figure 7.

The incremental algorithm presented here not only improves the
time to recompute the attach graph, but is used to generate the dif-
ference between previous and present version of the attack graph.
The changes are shown in the udrawGraph gui as a hidden graph
which can be seen using appropriate menu option.

Note that the associated data structures are built while the re-
evaluation of call. Any already existing answer or call dependen-
cies that can arise due to re-evaluation are eliminated. The com-
plexity of attack graph generation algorithm is lesser or equal to
non-incremental algorithm whose complexity matches with that of
MulVAL.

5. EXPERIMENTS
Our framework is shown in Figure 10. The framework is very

similar to MulVAL framework[16]. MulVAL uses XSB Prolog en-
vironment [39] to execute its rules. Our implementation uses a
modified version of XSB to serve the same purpose. The differ-
ences of these two frameworks are mainly the extended security
policies input to the system and the interaction of attack graph and

Full Partitioned Ring Star Tree
9.1 23.6 40.0 60.0 60.3

(a)
Full Partitioned Ring Star Tree
0.1 0.7 0.1 0.1 0.1

(b)

Table 1: % of From-Scratch Time for Single Host Addition (a)
and Deletion (b)

analysis engine. For Windows XP R©, we use the rules provided
by Netra [12] and for SELinuxTM [4] we use the rules provided by
PAL[28]. Attack graph is shown to the user in the uDrawGraph
environment [34]. uDrawGraph is a graph viewing software which
has various abstraction function to hide/view/zoom graphs or part
of it which is exposed to the user for easy navigation and view of
attack graphs. It also takes graph input as in Prolog term format
which is suitable to generate in Prolog environment. It exposes
hooks which can be used to define user-defined function on the
events. We use its API to present customized menu functionality
for various analysis on attack graphs. We have used these features
to expose interactive functionality to the attack graph. User can
select facts nodes and delete/undelete it and see the effects on the
attack graph. Based on user options, the changes to the graphical
environment can effect the actual network and host, or can tem-
porarily affect the facts existed in the Prolog environment without
affecting the actual configuration. The user of the system can see
the effect first and then decide to push the changes to the actual
network.

In this section, we demonstrate the effectiveness of our al-
gorithm. Performance measurements were taken on a PC with
1.6GHz Pentium R©processor with 512MB of memory running
LinuxTM. We have modified XSB [39] version 2.7.1 to include our
algorithms.

The selection of benchmarks used in this paper is motivated
from [18]. The benchmarks contain network configuration, ma-
chine configuration, and vulnerability information simulated for a
variety of network sizes, and topologies. The tuples specify the al-
lowed network traffic among machines in the network. Attacker’s
machine is located on the internet as the shown in our previous
example. The vulnerabilities are set of vulExists and vulProperty
tuples such that the same vulnerability exists on each of the sim-
ulated machines, and each vulnerability is a remote exploit of a
service program at a unique protocol and port number. The policy
states that the attacker is not allowed for root privilege in any of the
machine in the network.

Five network topologies are simulated by generating the hacl/4
facts. The “Fully Connected” (abbreviated as Full) network topol-
ogy simulates network accessibility of all protocols and ports be-
tween every pair of machines. The “star” topology has one cen-
tralized machine that has two way accessibility to all protocols and
ports of all machines. The non-centralized machines, among which
are the attacking machines, have no direct access to any other ma-
chines. The “ring” topology has one machine of the ring connected
to the internet, and all the other machines on the ring connected
only to its two immediate neighbors with two way access to all
protocols and ports. The “partitioned” (abbreviated as part) topol-
ogy was simulated as equal sized fully connected networks con-
nected to each other only by one pair of machines, one from each
connected network. The “Tree” topology creates a network of tree
shape, where Attacker’s machine is connected to the root of the
tree. All hosts have 2 software and 2 vulnerabilities each.

Attach Graph Generation. Attack graph generation timings for
various network topologies and number of hosts are presented in

70

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450 500

Ti
m

e
in

 s
ec

s

Number of Hosts

Full
Part
Ring
Star
Tree

Figure 11: Attack Graph generation times

No. Links Added Full Partitioned Ring Star Tree
1 8.0 9.4 68.6 53.7 59.8

10 8.0 10.1 70.4 52.6 61.0
50 9.8 9.8 72.8 54.4 63.9
100 9.9 9.8 73.2 53.4 58.6

(a)
No. Links Deleted Full Partitioned Ring Star Tree

1 0.4 0.2 0.2 0.4 0.1
10 0.4 0.2 0.2 0.4 0.1
50 0.4 0.3 0.3 0.4 0.3
100 0.6 0.3 0.3 0.5 0.3

(b)

Table 2: % of From-Scratch Time for Links Addition (a) and
Deletion (b)

Figure 11. The worst case is for fully connected network topolo-
gies. Note that our query time includes the attack graph genera-
tion time whereas [18] requires another step to generate the attack
graph from each step. Thus, our algorithm for generation attack
graph is empirically faster than the logical attack graph generation
algorithm presented in [18].

Incremental Host Addition and Deletion. We experimented
with adding and deleting one host into/from the network such that
the entire structure of the network remains as it is. That is, when
one host is added to full connected network then all links are added
to all other host and for all ports. For example, for full connected
graph we generate all the facts for 200 and 201 hosts, and take the
difference of them. Note that we are adding here hacl/3, vulEx-
ists/3, and networkSvcInfo/5 facts. Once the query is performed on
network of 200 hosts, all the difference facts are added using incre-
mental addition builtin and the incremental time is noted. This is
compared against the time required to perform query on 201 hosts.
The percentage value of comparisons is presented in Table 1(a).
Note that our algorithm takes 9-60% time for inserting single host
on different topologies. The reason is that insertion is based on dif-
ference rule evaluation, which involves the join operation on rela-
tions. The difference rule based insertion algorithm do not take any
advantage of fine grained dependency structure existed between an-
swers which is explored in our deletion algorithm. Inspite of this,
our insertion result takes less than 10% of time for ’full’ topology
for which the non-incremental attack graph generation time is the
most.

In contrast, our incremental algorithm performs excellent in case
of single host deletion (Table 1(b)). The incremental algorithm
takes less than 1% of from-scratch time to delete single host from
the network. The excellent incremental deletion time is due to
exploiting fine grained dependency structure (i.e. answer depen-

dency) and use of acyclic supports to stop propagation of changes.
Incremental deletion algorithm does not involve any rule evalu-
ation, and thereby considerable faster than incremental addition.
Note that this example demonstrates ability of incremental algo-
rithms to handle addition and deletion of multiple facts.

Incremental Link Addition and Deletion. We have performed
experiments similar to the last one for random link addition and
deletion in the network. This is done inserting or deleting hacl/4
random facts for various number of links (1, 10, 50, 100). The
result is shown in Table 2. We obtain the similar result as in case
of single host addition/deletion.

In most of the other experiments which affect the attack graph or
query computation like configuration changes of network, changes
in vulnerability information into vulnerability, and inserting vul-
nerability into software in host, we have seen similar result as dis-
cussed before. In another experiment where we have just intro-
duced a new vulnerability in the vulnerability database without in-
cluding any software which has that vulnerability, the incremental
addition time is almost nil, as no call is invalidated in the first in-
validation phase.

Above experiments demonstrate that the incremental algorithm
takes lesser time than from-scratch algorithm. Note that for in-
cremental deletion of facts, our algorithm is more effective than
handling addition. This is particularly useful for mutation analy-
sis when administrators typically want to delete facts from the at-
tack graph view in uDrawGraph to see its effect. Our framework
also incorporates the analysis on the attack graphs namely the min-
imum cost attack removal strategy and minimum effort prediction
of attackers by encoding them as logic programs. The result of
such analysis typically boils down to removal of some configura-
tion from the system which results into removal of some facts. Our
incremental algorithm is, therefore, useful for mutation analysis on
other analysis result.

6. RELATED WORK
In this section, we compare different aspects of our work with

works in the areas of vulnerability analysis, and incremental algo-
rithms.

Vulnerability Analysis using Attack Graph. MIT-Lincoin lab-
oratory has produced an excellent review of the attack graph papers
in [10]. Some of the earlier works by Sheyner, Ritchey, Amman,
Wing, Jha, Jajodia have been well described there, and are not re-
peated here.

In a recent news article ([1]) Jajodia et al. described a sys-
tem called CAULDRON (Combinatorial Analysis Utilizing Log-
ical Dependencies Residing on Networks). CAULDRON can an-
alyze and visualize vulnerabilities and attack paths, encouraging
“what-if analysis”. However, the efficiency problem in “what-if”
analysis addressed here is not addressed in their work. CAUL-
DRON utilizes hierarchical graph visualization technique described
in [14, 13]. They presented a number of techniques to collapse
various parts of the attack graph and transforming the graphs into
adjacency matrix [15]. Noel et al. [37] proposed a symbolic equa-
tion simplifier to produce recommendations from the attack graphs.
Wang et. al. [36] have used an attack graph variant called Queue
graph for intrusion alert correlation.

Swarup et. al. have presented a framework in [32] for rule based
vulnerability analysis. Their attack graph characterization is same
as that of Sheyner’s scenario graph and exponential in the size of
the configuration. Their work do not present any experimental re-
sults. Wang et. al. [38] also discusses a relational model for repre-
sentation and generation of attack graph. They use database query
to perform analysis and generate attack graph using different set of

71

queries thereafter. In relational databases query evaluation is typ-
ically performed in a set-at-a-time basis (for example the join op-
eration is performed on two sets). In that context generating attack
graph is real challenging as attack graph captures the dependency
between tuples. Infact, different set of queries are required for gen-
eration of attack graph for different analysis query to database. In
contrast, XSB’s top down evaluation is tuple-at-a-time [24] where it
is easy to capture dependencies between tuples. They use the term
interactive analysis which denotes the ability for administrator to
define new queries and to evaluate them. They do not consider any
incremental algorithm to re-evaluate each query. Moreover, note
that generating and running new queries is extremely efficient in
XSB’s environment as the new queries can be resolved against the
existing memoized information in the tables.

Skybox ViewTM [2] is a commercial tool that performs attack
graph analysis. The company’s patent [6] describes their algorithm.
Based on the patent, we believe that the company may have built
a variant of a host-compromised graph, and may report only the
shortest attack paths to a target.

MIT-Lincoin laboratory has produced an excellent review of the
attack graph papers in [10]. They followed by two works ([21, 9])
on the attack graph. They present a tool called NetSPA which has
the same motivation of MulVAL, creating scalable tool which can
generate attack graph for thousands of host. However, their tool
does not have any incremental capability. It would be an interesting
problem to include incremental capability in their tool.

Closest to our formalism of attack graph is the Logical Attack
Graph developed by Ou et. al. [22]. The basis of their work is a
framework called MulVAL ([19, 17]) which uses Datalog [35] en-
coding of exploit rules and attack propagation rules, and evaluate
the rules in logic programming system (they use XSB [39]) with
respect to the factbase which contains network and host configura-
tion, and vulnerability information. Similar logical techniques in
the domain of system security was also explored in [22]. The com-
parison with MulVAL’s algorithm to generate the attack graph is
already presented in Section 3.

Naldurg et. al. ([12]) have presented a framework called Netra
for access control analysis for detecting information flow vulner-
ability. Their framework is also based on Datalog which gener-
ates proof of every answer. Their exploit rules defining only infor-
mation flow vulnerabilities differ from that of MulVAL as it does
not take host or network configuration as input. In other words,
their rules are directed towards finding individual vulnerabilities
and not the effect of combining multiple exploits resulting multi-
stage attacks. Notably their rules contain negation and their attack
graph shows negative edges for the fact-subgoal that are not satis-
fied. Note that it is also possible to show such negative edges in
MulVAL based logical attack graph using asserts. However, if the
negated subgoal is a derived predicate it does not give relevant in-
formation to the user on why the derived goal had failed. Section 3
of this paper solves this representation problem. None of the above
work including Netra do not incorporate incremental capability.

Singh et. al. in [30] have used a spreadsheet like framework
called Deductive Spreadsheet to represent various security policies,
and MulVAL rules. However, the main aim there was to perform
query and thus attack graph is not built as a result of the analy-
sis. Even though Deductive Spreadsheet is capable of incremental
analysis using the algorithm presented in [27] which just explores
call dependencies, the algorithm presented in this paper is more
efficient than [27] as it exploits the answer dependencies for dele-
tion propagation. [30] does not present any performance result on
incremental maintenance of queries of MulVAL.

Incremental Algorithms. Incremental algorithms have been ap-
plied to various fields of research, viz. AI, View Maintenance, Pro-
gram Analysis, Model Checking, Functional and Logic Program-
ming. The main focus of those algorithms is to efficiently recom-
pute the output in response to the change in the output. However,
we do not discuss those algorithms which do not record the evalu-
ation process as proofs to guide the incremental evaluation.

Among the works on materialized view maintenance, our dele-
tion algorithm has similar two phases deletion and rederivation as
in [8]. However, the deletion algorithm used here improves over
[8] by using acyclic supports to restrict deletion propagation and
unmarked supports for fast rederivation.

The product graph generated during the model checking pro-
cess is used by incremental model checking algorithm of [31]. The
graph is similar to attack graph; though, is only applicable for defi-
nite logic programs. Incremental attribute grammar evaluation [23]
generates an acyclic dependency graph to record the functional de-
pendencies among attribute in the non-circular attribute grammar.
Another instance of an acyclic dependency graph is the augmented
dependency graph [3] which records dependencies between input
and output values in the execution of pure functional programs.

In the context of tabled logic program evaluation in XSB, var-
ious incremental algorithms are already developed by Saha et. al
[25, 27]. [25] can handle only definite logic programs and use only
answer dependency graph (or support graph) for deletion, and dif-
ference rules for addition. The algorithm presented in [27] can
handle stratified negation by only exploiting call dependency to
re-evaluate calls to update tables. However, the call graph based
algorithm does not present great incremental efficiency[27]. The
algorithm presented in this paper takes advantage of having both
support graph and call graph. Note that among all the applications
where incremental tabled evaluation is applied, attack graph is the
first application where support and call graph have served the dual
purpose of data representation and incremental efficiency. The nov-
elty of our algorithm is to judiciously interleave the support graph
based incremental deletion algorithm and difference rule based in-
sertion algorithm using topological order existed in call dependen-
cies to handle stratified negation. Note that to handle incremental
algorithms for stratified negation it is usually required to execute
addition and deletion algorithms for each strata before propagating
effect of lower stratum to higher stratum [8]. An important char-
acteristic of our algorithm is that it does not explicitly require the
strata information from predicate dependency graph and uses just
call dependencies for interleaving insertion and deletion.

7. CONCLUSION
In this paper, we have presented a logical framework for attack

graph generation and maintenance. We have extended the MulVAL
framework to include complex security policies. We have extended
the concept of logical attack graph to include justification for why a
negated subgoal has failed. Finally, we have presented an efficient
algorithm for maintaining attack graph in response to changes in
the network, and perform mutation analysis. Future work includes
evaluation of the algorithm for real enterprise network, and an at-
tack graph compression algorithm.

8. ACKNOWLEDGEMENT
We thank Dr. Subir Saha for supporting this work. We also

thank anonymous reviewers, C. Manjari, and Anu Singh for their
invaluable comments.

72

9. REFERENCES
[1] www.physorg.com/news124982803.html.
[2] www.skyboxsecurity.com.
[3] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive

functional programming. In ACM POPL, volume 37, pages
247–259, New York, NY, USA, 2002. ACM Press.

[4] The National Security Agency. Security Enhanced LinuxTM.
[5] Paul Ammann, Duminda Wijesekera, and Saket Kaushik.

Scalable, graph-based network vulnerability analysis. In CCS
’02, pages 217–224, New York, NY, USA, 2002. ACM Press.

[6] G. Cohen et. al. System and method for risk detection and
analysis in a computer network united states patent
6,952,779, october 2005.

[7] Sudhakar Govindavajhala and Andrew Appel. A Windows
access control demystified. Tech. rep., princeton university,
2006.

[8] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In SIGMOD, pages
157–166, 1993.

[9] Ingols K., Lippmann R., and Piwowarski K. Practical attack
graph generation for network defense. In Computer Security
Applications Conference, 2006.

[10] R. Lippmann and K. Ingols. An annotated review of past
papers on attack graphs. Technical report, MIT Lincoln
Laboratory, USA, March 2005.

[11] J. W. Lloyd. Foundations of Logic Programming. Springer,
1984.

[12] Prasad Naldurg, Stefan Schwoon, Sriram Rajamani, and
John Lambert. Netra:: seeing through access control. In
FMSE ’06: Proceedings of the fourth ACM workshop on
Formal methods in security, pages 55–66, New York, NY,
USA, 2006. ACM.

[13] Steven Noel, Michael Jacobs, Pramod Kalapa, and Sushil
Jajodia. Multiple coordinated views for network attack
graphs. In VizSEC, page 12, 2005.

[14] Steven Noel and Sushil Jajodia. Managing attack graph
complexity through visual hierarchical aggregation. In
VizSEC, pages 109–118, 2004.

[15] Steven Noel and Sushil Jajodia. Understanding complex
network attack graphs through clustered adjacency matrices.
In ACSAC, pages 160–169, 2005.

[16] X. Ou, S. Govindavajhala, and A. W. Appel. MulVAL: A
logic-based network security analyzer. In 14th USENIX
Security Symposium. Society for Industrial and Applied
Mathematics, 2005.

[17] Xinming Ou. A Logic-Programming Approach to Network
Security Analysis. PhD thesis, Department of Computer
Science, Princeton University, USA, November 2005.

[18] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A
scalable approach to attack graph generation. In CCS ’06,
pages 336–345, New York, NY, USA, 2006. ACM Press.

[19] Xinming Ou, Sudhakar Govindavajhala, and Andrew W.
Appel. Mulval: a logic-based network security analyzer. In
SSYM’05: Proceedings of the 14th conference on USENIX
Security Symposium, pages 8–8, Berkeley, CA, USA, 2005.
USENIX Association.

[20] R. Paige and S. Koenig. Finite differencing of computable
expressions. TOPLAS, 4(3):402–454, 1982.

[21] Lippmann R., Ingols K., Scott C., Piwowarski K.,
Kratkiewicz K., and Cunningham R. Validating and restoring
defense in depth using attack graphs. In MILCOM, 2006.

[22] C. R. Ramakrishnan and R. Sekar. Model-based analysis of
configuration vulnerabilities. Journal of Computer Security
(JCS), 10(1 / 2):189–209, 2002.

[23] T. Reps, T. Teitelbaum, and A. Demers. Incremental
context-dependent analysis for language-based editors. ACM
Trans. Program. Lang. Syst., 5(3):449–477, 1983.

[24] K. Sagonas, Terrace Swift, and D. S. Warren. XSB as an
efficient deductive database engine. In ACM SIGMOD, pages
442–453. ACM, 1994.

[25] D. Saha and C. R. Ramakrishnan. Incremental evaluation of
tabled logic programs. In International Conference on Logic
Programming, volume 2916 of LNCS, pages 389–406, 2003.

[26] D. Saha and C. R. Ramakrishnan. Incremental and
demand-driven points-to analysis using logic programming.
In Principles and Practice of Declarative Programming.
ACM Press, 2005.

[27] D. Saha and C. R. Ramakrishnan. Incremental evaluation of
tabled prolog: Beyond pure logic programs. In Practical
Aspects of Declarative Languages, volume 3819 of LNCS,
pages 215–229, Charleston, South Carolina, Jan 2006.

[28] Beata Sarna-Starosta and Scott D. Stoller. Policy analysis for
security-enhanced linux. In Proceedings of the 2004
Workshop on Issues in the Theory of Security (WITS), pages
1–12, April 2004. Available at
http://www.cs.sunysb.edu/˜stoller/WITS2004.html.

[29] Oleg Sheyner, Somesh Jha, and Jeannette M. Wing.
Automated generation and analysis of attack graphs. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 2002.

[30] Anu Singh, C. R. Ramakrishnan, I. V. Ramakrishnan, Scott
Stoller, and David S. Warren. Security policy analysis using
deductive spreadsheets. In 5th ACM Workshop on Formal
Methods in Security Engineering (FMSE), Alexandria,
Virginia, Nov 2007.

[31] O. V. Sokolsky and S. A. Smolka. Incremental model
checking in the modal mu-calculus. In CAV, volume 818 of
LNCS, pages 351–363, 1994.

[32] Vipin Swarup, Sushil Jajodia, and Joseph Pamula.
Rule-based topological vulnerability analysis. In
MMM-ACNS, pages 23–37, 2005.

[33] H. Tamaki and T. Sato. OLDT resolution with tabulation. In
International Conference on Logic Programming, pages
84–98, 1986.

[34] uDraw(Graph). Available at
http://www.informatik.uni-bremen.de/
uDrawGraph/en/uDrawGraph/uDrawGraph.html.

[35] J.D. Ullman. Principles of Database and Knowledge-base
Systems, Volume II. Computer Science Press, 1989.

[36] Lingyu Wang, Anyi Liu, and Sushil Jajodia. Using attack
graphs for correlating, hypothesizing, and predicting
intrusion alerts. Computer Communications,
29(15):2917–2933, 2006.

[37] Lingyu Wang, Steven Noel, and Sushil Jajodia.
Minimum-cost network hardening using attack graphs.
Comput. Commun., 29(18):3812–3824, 2006.

[38] Lingyu Wang, Chao Yao, Anoop Singhal, and Sushil Jajodia.
Interactive analysis of attack graphs using relational queries.
In DBSec, pages 119–132, 2006.

[39] XSB. The XSB logic programming system. Available at
http://xsb.sourceforge.net.

73

